
A Document Preparation System

User's Guide and Reference Manual

Leslie Lamport

Digital Equipment Corporation

1
Illustrations by Duane Bibby

A vv
Addison-Wesley Publishing Company

011
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid San Juan Milan Paris .

Many of the designations used by the manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designations
appear in this book, and Addison-Wesley was aware of a trademark claim,
the designatio& have been printed in initial caps or all caps.

The procedures and applications presented in this book have been included
for their instructional value. They have been tested with care but are not
guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with respect
to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Lamport, Leslie.
L A ' ' : a document preparation system / Leslie Lamport. -- 2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-52983-1
1. (Computer file) 2. Computerized typesetting. I. Title.

Z253.4.L38L35 1994
682.2 ' 25445364~20 93-39691

CIP

This documentation was prepared with UT$ and reproduced by Addison-
Wesley from camera-ready copy supplied by the author.

This book describes Wl)i~X2~, the second widely released version of UT*.

Reprinted with corrections November, 1994

Copyright @ 1994, 1985 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher. Printed in the United States of America.

To Ellen

This page intentionally left blank

Contents
Preface

1 Getting Acquainted
1.1 How to Avoid Reading This Book
1.2 How to Read This Book .

. 1.3 The Game of the Name
1.4 Turning Typing into Typography

. 1.5 WhyWSQX?
1.6 Turning Ideas into Input .
1.7 Trying It Out .

2 Getting Started
2.1 Preparing an Input File .
2.2 The Input .

2.2.1 Sentences and Paragraphs
Quotation Marks .
Dashes .

. space After a Period
. Special Symbols

Simple Text-Generating Commands
Emphasizing Text .
Preventing Line Breaks
Footnotes .

. Formulas
Ignorable Input .

2.2.2 The Document .
The Document Class
The Title "Page" .

. 2.2.3 Sectioning
. 2.2.4 Displayed Material

. Quotations
. Lists

Poetry . 25
Displayed Formulas . 26

2.2.5 Declarations . 27
2.3 Running W&X . 28
2.4 Helpful Hints . 31
2.5 Summary . 32

3 Carrying On
3.1 Changing the Type Style .
3.2 Symbols from Other Languages

3.2.1 Accents .
3.2.2 Symbols .

3.3 Mathematical Formulas .
. 3.3.1 Some Common Structures

Subscripts and Superscripts
. Fractions

. Roots ...
. Ellipsis

. 3.3.2 Mathematical Symbols
. Greek Letters

. Calligraphic Letters
. A Menagerie of Mathematical Symbols

. Log-like Functions
. 3.3.3 Arrays

. The array Environment
Vertical Alignment .

. More Complex Arrays
3.3.4 Delimiters .
3.3.5 Multiline Formulas .

. 3.3.6 Putting One Thing Above Another
Over- and Underlining
Accents .

. Stacking Symbols
. 3.3.7 Spacing in Math Mode

. 3.3.8 Changing Style in Math Mode
Type Style .

. Math Style
3.3.9 When All Else Fails .

. 3.4 Defining Commands and Environments
3.4.1 Defining Commands .

. 3.4.2 Defining Environments
3.4.3 Theorems and Such .

. 3.5 Figures and Other Floating Bodies

I

3.5.1 Figures and TablesI 58
. 3.5.2 Marginal Notes 1 59

3.6 Lining It Up in Columns ~ 60
3.6.1 The tabbing Environment) 60
3.6.2 The tabular Environment) 62

3.7 Simulating Typed Text 1 63

4 Moving Information Around I 65
4.1 The Table of Contents 1 66

. 4.2 Cross-References . i 67
4.3 Bibliography and Citation I 69

. 4.3.1 Using BIBTEX 1 70
. 4.3.2 Doing It Yourself) 71

. 4.4 Splitting Your Input 7 .
72

. 4.5 Making an Index or Glossary 74

. 4.5.1 Compiling the Entries 74
. 4.5.2 Producing an Index or Glos ary by Yourself 75

. 4.6 Keyboard Input and Screen Outpu 76
. 4.7 Sending Your Document I 77

5 Other Document Classes 79
. 5.1 Books

* I .
80

5.2 Slides 80
5.2.1 Slides and Overlays . 81
5.2.2 Notes 83

. 83
5.2.4 Other Text 84

5.3 Letters 84

6 Designing It Yourself
6.1 Document and Page Styles

6.1.1 Document-Class Options
6.1.2 Page Styles
6.1.3 The Title Page and Abstrac
6.1.4 Customizing the Style

6.2 Line and Page Breaking
6.2.1 Line Breaking
6.2.2 Page Breaking

6.3 Numbering
6.4 Length, Spaces, and Boxes

6.4.1 Length
6.4.2 Spaces
6.4.3 Boxes

LR Boxes

8 7
. 88

. 88
. 89

. 90
. 91

. 93
. 93

. 96
. 97

. 99
. 99
. 101
. 103

. 104

Parboxes . 104
Rule Boxes . 106
Raising and Lowering Boxes 107
Saving Boxes . 107

6.4.4 Formatting with Boxes . 1.08
6.5 Centering and "Flushing" . 1.11
6.6 List-Making Environments . 112

6.6.1 The list Environment 112
6.6.2 The trivlist Environment 115

6.7 Fonts . 115
6.7.1 Changing Type Size . 115
6.7.2 Special Symbols . 116

7 Pictures and Colors 1:17
7.1 Pictures . 118

7.1.1 The picture Environment 119
7.1.2 Picture Objects . 120

Text . 120
Boxes . 120
Straight Lines . 122
Arrows . 123
Stacks . 123
Circles . 124
Ovals and Rounded Corners 124
Framing . 125

7.1.3 Curves . 125
7.1.4 Grids . 126
7.1.5 Reusing Objects . 127
7.1.6 Repeated Patterns . 127
7.1.7 Some Hints on Drawing Pictures 128

7.2 The graphics Package . 129
7.3 Color . 131

8 Errors 133
8.1 Finding the Error . 134
8.2 HlJjX's Error Messages . 136
8.3 W ' s Error Messages . 140
8.4 I$w Warnings . 145
8.5 TEX Warnings . 147

A Using Makelndex 149
A.l How to Use MakeIndex . 150
A.2 How to Generate Index Entries 150

A.2.1 When, Why. What. and How to Index 150

A.2.2 The Basics . 151
A.2.3 The Fine Print . 153

A.3 Error Messages . 154

B The Bibliography Database 155
B.l The Format of the b ib File . 156

B.l . l The Entry Format . 156
B.1.2 The Text of a Field . 157

Names . 157
Titles . 158

B.1.3 Abbreviations . 158
B.1.4 Cross-References . 159

B.2 The Entries . 160
B.2.1 Entry Types . 160
B.2.2 Fields . 162

C Reference Manual 165
C.l Commands and Environments . 166

C.l . l Command Names and Arguments 166
. C . 1.2 Environments 167

C.1.3 Fragile Commands . 167
. C.1.4 Declarations 168

C . 1.5 Invisible Commands and Environments 169
C . 1.6 The \ \ Command . 169

. (2.2 The Structure of the Document 170
. C . 3 Sentences and Paragraphs 170

C.3.1 Making Sentences . 170
. C.3.2 Making Paragraphs 171

. C.3.3 Footnotes 172
. C.3.4 Accents and Special Symbols 173

C.4 Sectioning and Table of Contents 174
. C.4.1 Sectioning Commands 174

. C.4.2 The Appendix 175
. C.4.3 Table of Contents 175

. C.4.4 Style Parameters 176
. C.5 Classes, Packages, and Page Styles 176

. (2.5.1 Document Class 176
. C.5.2 Packages 178

. C.5.3 Page Styles 179
. C.5.4 The Title Page and Abstract 181

. C.6 Displayed Paragraphs 183
. C.6.1 Quotations and Verse 184

. C.6.2 List-Making Environments 184

. C.6.3 The l is t and t r i v l i s t Environments 185
C.6.4 Verbatim . 186

C.7 Mathematical Formulas . 187
C . 7.1 Math Mode Environments 187
C.7.2 Common Structures . 189
C.7.3 Mathematical Symbols . 189
C.7.4 Arrays . 190
C.7.5 Delimiters . 190
C.7.6 Putting One Thing Above Another 190
C . 7.7 Spacing . : . 191
C.7.8 Changing Style . 191

C.8 Definitions, Numbering, and Programming 192
C . 8.1 Defining Commands . 192
C.8.2 Defining Environments . 192
C.8.3 Theorem-like Environments 193

. C.8.4 Numbering 194
(2.8.5 The i f t hen Package . 195
Figures and Other Floating Bodies 197
C.9.1 Figures and Tables . 197
(2.9.2 Marginal Notes . 200
Lining It Up in Columns . 201 .
C.lO. 1 The tabbing Environment 201 .
C.10.2 The a r ray and tabular Environments 204
Moving Information Around . 207
C. l l . 1 Files . 207
C . 11.2 Cross-References . 209

. C . 11.3 Bibliography and Citation 209
C.11.4 Splitting the Input . 210
C . 11.5 Index and Glossary . 211

. Producing an Index 211
. Compiling the Entries 212

. C.11.6 Terminal Input and Output 212
. C.1h Line and Page Breaking 213

. I C.12.1 Line Breaking 213
C . 12.2 Page Breaking . 214

. C 13 Lengths, Spaces, and Boxes 215
. C.13.1 Length 215
. C.13.2 Space 216

C.13.3 Boxes . 217
. C.14 Pictures and Color 219

. C.14.1 The p ic ture Environment 219
I Picture-Mode Commands 220

. Picture Objects 221

D What's New

E Using Plain Commands

Picture Declarations
C.14.2 The graphics Package
C.14.3 The color Package

C.15 Font Selection
(3.15.1 Changing the Type Style
C.15.2 Changing the Type Size

Bibliography

Index

. 223

. 223
. 224

. 225
. 225

. 226
. C . 15.3 Special Symbols . . . I 226

This page intentionally left blank

xiii

List of Tables
3.1 Accents . 38
3.2 Non-English Symbols . 39
3.3 Greek Letters . 41
3.4 Binary Operation Symbols . 42
3.5 Relation Symbols . 43
3.6 Arrow Symbols . 43

. 3.7 Miscellaneous Symbols 43
3.8 Variable-sized Symbols . 44
3.9 Log-like Functions . 44

. 3.10 Delimiters 47
3.11 Math Mode Accents . 50

List of Figures
6.1 Boxes and how T@ puts them together 103
6.2 The complete definition of the \face command 110
6.3 The format of a list . 113

7.1 Points and their coordinates . 119
7.2 \put (1.4.2.6)C\line(3. -i)C4.8H 122

C.l Making footnotes without the \footnote command 173
C.2 Sectioning and table of contents commands 174
C.3 Page style parameters . 182
C.4 An example title . 183
C.5 Writing programs with the i f then package's commands 196
C.6 A tabbing environment example 202
(2.7 Examples of the tabular and tabular* environments 204
C.8 A sample picture environment 220

This page intentionally left blank

Preface
The first edition of this book appeared in 1985. It described H m 2 . 0 9 , the
first widely used version of H W . Since then, I4W has become extremely
popular, with many thousands of users around the world. Its functionality has
grown through the efforts of many people. The time has come for a new version,
&+WzE, which is described in this edition. H w 2E includes many of the
enhancements that were made to I4ljEX 2.09, as well as some new ones.

I implemented most of H w 2 . 0 9 myself. was implemented by
a group led by Frank Mittelbach, which included Johannes Braams, David
Carlisle, Michael Downes, Alan Jeffrey, Chris Rowley, Sebastian Rahtz, and
Rainer Schopf. They were assisted by many testers of the new version, and by
the following organizations: the American Mathematical Society, the Open Uni-
versity (UK), and the Zentrum fiir Datenverarbeitung der Universitat Mainz.
Lyle Ramshaw helped with the implementation of Bezier curves. My thanks to
all of these people-especially Frank and Chris, with whom I have spent many
enjoyable hours arguing about H W .

B W has been made more useful by two programs: B I B T ~ ~ , written by
Oren Patashnik, and MakeIndex, written by Pehong Chen and modified by
Nelson Beebe.

Many people helped me write this book-often without knowing it. Advice
given to me over the years by Cynthia Hibbard and Mary-Claire van Leunen
has found its way onto a number of these pages. Andrei Broder was my local
informant for Romanian. Helen Goldstein assisted with research on matters
ranging from art to zoology.

This edition was improved by the corrections and suggestions of Marc Brown,
Michel Goossens, and the implementers of B(2E. Stephen Harrison helped
produce the final output. Errors and infelicities in the first printing were found
by Rosemary Bailey, Malcolm Clark, and Ellen Gilkerson. The following peo-
ple found errors in, or suggested improvements to, the previous edition: Martin
Abadi, Helmer Aslaksen, Barbara Beeton, Rick Clark, John DeTreville, Math-
ieu Federspiel, Michael Fischer, Stephen Gildea, Andy Hisgen, Joseph Hurler,
Louis E. Janus, Dave Johnson, Charles Karney, Nori Kawasaki, Steve Kelem,
Mark Kent, William LeFebvre, Jerry Leichter, Hank Lewis, Stephen Peckham,

xvi

Hal Perkins, Flavio Rose, Scott Simpson, David Sullivan, Matthew Swift, Walter
Taylor, Joe Weening, Sam Whidden, Edgar Whipple, Chris Wilson, David Wise,
and Rusty Wright. I also received helpful comments and complaints about pre-
liminary versions of @7&X and of the first edition of this book from Todd Allen,
Robert Amsler, David Bacon, Stephen Barnard, Per Bothner, David Braunegg,
Daniel Brotsky, Chuck Buckley, Pave1 Curtis, Russell Greiner, Andrew Hanson,
Michael Harrison, B. J. Herbison, Calvin W. Jackson, David Kosower, Ken-
neth Laws, Tim Morgan, Mark Moriconi, Stuart Reges, A. Wayne Slawson,
David Smith, Michael Spivak, Mark Stickel, Gary Swanson, Mike Urban, Mark
Wadsworth, and Gio Wiederhold. Assistance in the development of W ' 2.09
was provided by David Fuchs, Richard Furuta, Marshall Henrichs, Lynn Rug-
gles, Richard Southall, Chris Torek, Howard Trickey, and SRI International.

Since the introduction of version 2.09, my work on WIj$ has been supported
by Digital Equipment Corporation. I want to thank Robert Taylor and all the
other members of Digital's Systems Research Center for making it a fun place
to work.

Finally, I want to express my special thanks to two men who made this book
possible. Donald Knuth created w, the program on which KQX is based. He
also answered all my questions, even the stupid ones, and was always willing to
explain T@'s mysteries. Peter Gordon persuaded me to write the first edition,
despite my doubts that anyone would buy a book about a typesetting system.
Over the years, he has provided advice, fine dining, and friendship.

Palo Alto, California
September 1994

CHAPTER 1

2 1 Getting Acquainted

Bw is a system for typesetting documents. Its first widely available version,
mysterjiously numbered 2.09, appeared in 1985. BW is now extremely popular
in the hientific and academic communities, and it is used extensively in industry.
It has become a lingua frmnca of the scientific world; scientists send their papers
electropically to colleagues around the world in the form of I 4 W input.

Ov$r the years, various nonstandard enhancements were made to I4'' 2.09
to oveqcome some of its limitations. BTjjX input that made use of these en-
hance~ents would not work properly at all sites. A new version of l3lJjX was
needed to keep a Tower of Babel from rising. The current version of B ' ,
with the so~newhat less mysterious number &, was released in 1994. I4 'W2&
contaiqs an improved method for handling different styles of type, commands
for including graphics and producing colors, and many other new features.

Almost all standard B9&X 2.09 input files will work with B ' 2E. However,
to take advantage of the new features, users must learn a few new B W 2 &
conventions. B w 2 . 0 9 users should read Appendix D to find out what has
changed. The rest of this book is about Bw, which, until a newer version
appears, means BT)$ ZE.

Bw is available for just about any computer made today. The versions
that rup on these different systems are essentially the same; an input file created
according to the directions in this book should produce the same output with
any of them. However, how you actually run I4' depends upon the computer
system. Moreover, some new features may not be available on all systems when
B?&X 2E is first released. For each computer system, there is a short companion
to this book, titled something like Local Guide to BT)$ for the McKludge PC,
containing information specific to that system. I will call it simply the Local
Guide. It is distributed with the B9&X software.

Thete is another companion to this book, The BW Companion by Goossens,
Mittelbach, and Samarin [3]. This companion is an in-depth guide to Bw and
to its packages-standard enhancements that can be used at any site to provide
additional features. The BT)$ Companion is the place to look if you can't find
what you need in this book. It describes more than a hundred packages.

1.1 How to Avoid Reading This Book
Many people would rather learn about a program at their computer than by
reading a book. There is a small sample input file named small2e. t e x
that shdws how to prepare your own input files for typesetting simple documents.
Before reading any further, you might want to examine small2e. tex with a text
editor and modify it to make an input file for a document of your own, then
run BTj$ on this file and see what it produces. The Local Guide will tell you
how to find small2e. tex and run B ' on your computer; it may also contain
information about text editors. Be careful not to destroy the original version of
small2e. tex; you'll probably want to look at it again.

1.2 How to Read This Book 3

The file small2e. tex is only forty lines long, and it shows how to produce
only very simple documents. There is a longer file named sample2e. tex that
contains more information. If small2e. tex doesn't tell you how to do some-
thing, you can try looking at sample2e. tex.

If you prefer to learn more about a program before you use it, read on.
Almost everything in the sample input files is explained in the first two chapters
of this book.

1.2 How to Read This Book

While sample2e. tex illustrates many of BT@'s features, it is still only about
two hundred lines long, and there is a lot that it doesn't explain. Eventually,
you will want to typeset a document that requires more sophisticated formatting
than you can obtain by imitating the two sample input files. You will then have
to look in this book for the necessary information. You can read the section
containing the information you need without having to read everything that
precedes it. However, all the later chapters assume you have read Chapters 1
and 2. For example, suppose you want to set one paragraph of a document in
small type. Looking up "type size7' in the index or browsing through the table
of contents will lead you to Section 6.7.1, which talks about "declarations" and
their "scope"-simple concepts that are explained in Chapter 2. It will take just
a minute or two to learn what to do if you've already read Chapter 2; it could
be quite frustrating if you haven't. So, it's best to read the first two chapters
now, before you need them.

WQX's input is a file containing the document's text together with com-
mands that describe the document's structure; its output is a file of typesetting
instructions. Another program must be run to convert these instructions into
printed output. With a high-resolution printer, H'I'@ can generate book-quality
typesetting.

This book tells you how to prepare a WQ$ input file. The current chapter
discusses the philosophy underlying IT'; here is a brief sketch of what's in the
remaining chapters and appendices:

Chapter 2 explains what you should know to handle most simple documents
and to read the rest of the book. Section 2.5 contains a summary of
everything in the chapter; it serves as a short reference manual.

Chapter 3 describes logical structures for handling a variety of formatting
problems. Section 3.4 explains how to define your own commands, which
can save typing when you write the document and retyping when you
change it. It's a good idea to read the introduction-up to the beginning
of Section 3.1-before reading any other part of the chapter.

4 Getting Acquainted

Chapter 4 contains features especially useful for large documents, including
automatic cross-referencing and commands for splitting a large file into
smaller pieces. Section 4.7 discusses sending your document electronically.

Chapter 5 is about making books, slides, and letters (the kind you send by
post).

Chapter 6 describes the visual formatting of the text. It has information about
changing the style of your document, explains how to correct bad line and
page breaks, and tells how to do your own formatting of structures not
explicitly handled by l3?fEx.

Chapter 7 discusses pictures-drawing them yourself and inserting ones pre-
pared with other programs-and color.

Chapter 8 explains how to deal with errors. This is where you should look
when Bw prints an error message that you don't understand.

Appendix A describes how to use the MakeIndex program to make an index.

Appendix B describes how to make a bibliographic database for use with
BIBT~X, a separate program that provides an automatic bibliography fea-
ture for B w .

Appendix C is a reference manual that compactly describes all B w ' s fea-
tures, including many advanced ones not described in the main text. If a
command introduced in the earlier chapters seems to lack some necessary
capabilities, check its description here to see if it has them. This appendix
is a convenient place to refresh your memory of how something works.

Appendix D describes the differences between the current version of @7&X
and the original version, B w 2 . 0 9 .

Appendix E is for the reader who knows "I)$, the program on which B '
is built, and wants to use TEX commands that are not described in this
book.

When you face a formatting problem, the best place to look for a solution is in
the table of contents. Browsing through it will give you a good idea of what
B W has to offer. If the table of contents doesn't work, look in the index; I
have tried to make it friendly and informative.

Each section of Chapters 3-7 is reasonably self-contained, assurning only
that you have read Chapter 2. Where additional knowledge is required, explicit
cross-references are given. Appendix C is also self-contained, but a command's
description may be hard to understand without first reading the corresponding
description in the earlier chapters.

The descriptions of most commands include examples of their use. In
this book, examples are formatted in two columns, as follows:

1.3 The Game of the Name 5

The left column shows the printed output; the right The l e f t column shows the printed output ;
column contains the input that produced it. the right column contains the input that

produced i t .

Note the special typewriter type style in the right column. It indicates what
you type-either text that you put in the input file or something like a file name
that you type as part of a command to the computer.

Since the sample output is printed in a narrower column, and with smaller
type, than B ' normally uses, it won't look exactly like the output you'd get
from that input. The convention of the output appearing to the left of the
corresponding input is generally also used when commands and their output are
listed in tables.

1.3 The Game of the Name
The 'I$$ in U'QX refers to Donald Knuth's l j jX typesetting system. The BlJ$
program is a special version of TJ$ that understands UT)i$ commands. Think
of B?l&X as a house built with the lumber and nails provided by TJ$. You don't
need lumber and nails to live in a house, but they are handy for adding an extra
room. Most B ' users never need to know any more about TEX than they can
learn from this book. However, the lower-level l$jX commands described in The
m b o o k 141 can be very useful when creating a new package for VlJ$.

I will use the term ''W when describing standard T)i$ features and "~'QX"
when describing features unique to I4lJ$, but the distinction will be of interest
mainly to readers already familiar with T)i$. You may ignore it and use the two
names interchangeably.

One of the hardest things about using UQ$ is deciding how to pronounce
it. This is also one of the few things I'm not going to tell you about BTJ$, since
pronunciation is best determined by usage, not fiat. l$jX is usually pronounced
teck, making lah-teck, lah-teck, and lay-teck the logical choices; but language is
not always logical, so lay-tecks is also possible.

The written word carries more legal complications than the spoken, and the
need to distinguish 'QX and B'QX from similarly spelled products restricts how
you may write them. The best way to refer to these programs is by their logos,
which can be generated with simple B' commands. When this is impossible,
as in an e-mail message, you should write them as TeX and LaTeX, where the
unusual capitalization identifies these computer programs.

Turning Typing into Typography
Traditionally, an author provides a publisher with a typed manuscript. The
publisher's typographic designer decides how the manuscript is to be formatted,
specifying the length of the printed line, what style of type to use, how much

6 Getting Acquainted

space to leave above and below section headings, and many other things that
determine the printed document's appearance. The designer writes a series of
instructions to the typesetter, who uses them to decide where on the page to put
each of the author's words and symbols. In the old days, typesetters produced
a matrix of metal type for each page; today they produce computer files. In
either case, their output is used to control the machine that does the actual
typesetting.

Ul&X is your typographic designer, and l&X is its typesetter. The B '
commands that you type are translated into lower-level 'Ij& typesetting com-
mands. Being a modern typesetter, 7&X produces a computer file, called the
device-independent or dv i file. The Local Guide explains how to use this file
to generate a printed document with your computer. It also explains how to
view your document on your computer, using a screen previewer. Unless your
document is very short, you will want to see the typeset version as you're writing
it. Use a previewer instead of laying waste to our planet's dwindling forests by
printing lots of intermediate versions. In fact, unless you want to take a copy
with you on a wilderness expedition, you may never have to print it at all. It
is easier and faster to distribute your document electronically than by mailing
paper copies.

A human typographic designer knows what the manuscript is generally about
and uses this knowledge in deciding how to format it. Consider the following
typewritten manuscript:

The German mathematician Kronecker, s i t t i n g
quiet ly a t h i s desk, wrote:

God created the whole numbers; a l l
the re s t i s man's work.

Seated i n front of the terminal, with Basic
hanging on my every keystroke, I typed:

for i = 1 t o in f in i ty
l e t number [i] = i

A human designer knows that the first indented paragraph (~ o d created . . .)
is a quotation and the second is a computer program, so the two should be
formatted differently. He would probably set the quotation in ordinary roman
type and the computer program in a typewriter type style. B'&X is only a
computer program and can't understand English, so it can't figure all this out
by itself. It needs more help from you than a human designer would.

The function of typographic design is to help the reader understand the au-
thor's ideas. For a document to be easy to read, its visual structure must reflect
its logical structure. Quotations and computer programs, being logically distinct
structural elements, should be distinguished visually from one another. The de-
signer should therefore understand the document's logical structure. Since I4l)jX
can't understand your prose, you must explicitly indicate the logical structure
by typing special commands. The primary function of almost all the B '

1.5 Why EYW? 7

commands that you type should be to describe the logical structure of your doc-
ument. As you are writing your document, you should be concerned with its
logical structure, not its visual appearance. The B ' approach to typesetting
can therefore be characterized as logical design.

Why B W ?

When I 4 ' was introduced in 1985, few authors had the facilities for typesetting
their own documents. Today, desktop publishing is commonplace. You can buy
a "WYSIWYG" (what you see is what you get) program that lets you see exactly
what your document will look like as you type it. WYSIWYG programs are very
appealing. They make it easy to put text wherever you want in whatever size
and style of type you want. Why use I4', which requires you to tell it that a
piece of text is a quotation or a computer program, when a WYSIWYG program
allows you to format the text just the way you want it?

WYSIWYG programs replace B W ' s logical design with v isual design. Vi-
sual design is fine for short, simple documents like letters and memos. It is
not good for more complex documents such as scientific papers. WYSIWYG has
been characterized as "what you see is all you've got" .' To illustrate the advan-
tage of logical over visual design, I will consider a simple example from the file
sample2e. tex.

Near the top of the second page of the document is the mathematical term
(A, B). With a WYSIWYG program, this term is entered by typing (A , R) . You
could type it the same way in the input. However, the term represents a
mathematical structure-the inner product of A and B. An experienced HT)jX
user will define a command to express this structure. The file sample2e.tex
defines the command \ip so that \ip(A)(B) produces (A, B). The term (I?, $')
near the end of the document is also an inner product and is produced with the
\ip command.

Suppose you decide that there should be a little more space after the comma
in an inner product. Just changing the definition of the \ip command will
change (A, B) to (A, B) and (I?,$') to (I?, $I). With a WYSIWYG program,
you would have to insert the space by hand in each formula-not a problem
for a short document with two such terms, but a mathematical paper could
contain dozens and a book could contain hundreds. You would probably produce
inconsistent formatting by missing some formulas or forgetting to add the space
when entering new ones. With I 4 m , you don't have to worry about formatting
while writing your document. Formatting decisions can be made and changed
at any time.

The advantage of logical design becomes even more obvious if you decide
that you prefer the notation (AIB) for the inner product of A and B. The

'Brian Reid attributes this phrase to himself and/or Brian Kernighan.

8 Getting Acquainted

file sample2e.tex contains an alternate definition of \ip that produces this
notetion.

Typing \ipCA)CB) is just a little more work than typing (A,B) (though it's a
lot easier than entering (AIB) if the symbols "(" and ")" must be chosen with a
mouse from a pull-down menu). But this small effort is rewarded by the benefits
of maintaining the logical structure of your document instead of just its visual
appearance.

One advantage of WYSIWYG programs is that you can see the formatted
version of your document while writing it. Writing requires reading what you
have alreadj written. Although you want HQjX to know that the term is an
inner product, you would like to read (A , B) or (AIB), not \ipCA)CB). The
speed of modern computers has eliminated much of this advantage. I now type
a couple of keystrokes and, a few seconds later, a typeset version of the section
I am working on appears on my screen. As computers get faster, those few
seconds will turn into a fraction of a second.

Turning Ideas into Input

The purpose of writing is to present your ideas to the reader. This should always
be your primary concern. It is easy to become so engrossed with form that you
neglect content. Formatting is no substitute for writing. Good ideas couched in
good prose will be read and understood, regardless of how badly the document
is formatted. U r n was designed to free you from formatting concerns, allowing
you to concentrate on writing. If you spend a lot of time worrying about form,
you are misusing U r n .

Even if your ideas are good, you can probably learn to express them better.
The classic introduction to writing English prose is Strunk and White's brief
Elements of Style [6]. A more complete guide to using language properly is
Theodore Bernstein's The Careful Writer [I]. These two books discuss general
writing style. Writers of scholarly or technical prose need additional informa-
tion. Mary-Claire van Leunen's Handbook for Scholars [7] is a delightful guide
to academic and scholarly writing. The booklet titled How to Write Mathe-
matics [5] can help scientists and engineers as well as mathematicians. It's also
useful to have a weightier reference book at hand; Words into Type [8] and the
Chicago Manual of Style [2] are two good ones.

1.7 Trying It Out

You may already have run with input based on the sample files. If not,
this is a good time to learn how. The section in the Local Guide titled Running
a Sample File explains how to obtain a copy of the file sample2e. tex and run
UT@ with it as input. Follow the directions and see what @T)jX can do.

1.7 Trying It Out 9

After printing the document generated in this way, try changing the docu-
ment's format. Using a text editor, examine the file sample2e. tex. A few lines
down from the beginning of the file is a line that reads

Change that line to

\documentclass [twocolumn] {article)

Save the changed file under the name chgsam.tex, and use this file to print a
new version of the document. To generate the new version, do exactly what
you did the last time, except type chgsam wherever you had typed sample2e.
Comparing the two printed versions shows how radically the appearance of the
document can be altered by a simple change to a command. To try still another
format, change chgsam. tex so the line above reads

\documentclass [12ptl {article)

and use the changed file to print a third version of the document.
From now on, I will usually ignore the process of going from the W?;x input

file to the printed output and will write something like: "Typing --- produces
a long dash." What this really means is that putting the three characters ---
in your input file will, when that file is processed by W?;x and the device-
independent file printed, produce a long dash in the printed output.

CHAPTER 2

Started

12 Getting Started

2.1 Preparing an Input File

The input to B'lJ$ is a text file. I assume that you know how to use a text
editor to create such a file, so I will tell you only what should go into your input
file, not how to get it there. A good text editor can be customized by the user
to make it easier to prepare B ' input files. Consult the Local Guide to find
out how to customize the text editors on your computer.

On most computers, file names have two parts separated by a period, like
sample2e. tex. I will call the first part its first name and the second part its ex-
tension, so sample2e is the first name of sample2e. tex, and tex is its extension.
Your input file's first name can be any name allowed by your computer system,
but its extension should be tex.

Let's examine the characters that can appear in input file. First, there
are the upper- and lowercase letters and the ten digits 0 . . . 9. Don't confuse
the uppercase letter 0 (oh) with the digit 0 (zero), or the letter 1 (the lowercase
el) with the digit 1 (one). Next, there are the following sixteen punctuation
characters:

Note that there are two different quote symbols: ' and ' . You may think of ' as
an ordinary "single quote" and ' as a funny symbol, perhaps displayed like ' on
your screen. The Local Guide should tell where to find ' and ' on your keyboard,
if they're not obvious. The characters (and) are ordinary parentheses, while
[and I are called square brackets, or simply brackets.

The ten special characters

are used only in B ' commands. Check the Local Guide for help in finding
them on your keyboard. The character \ is called backslash, and should not
be confused with the more familiar /, as in 1/2. Most B W commands begin
with a \ character, so you will soon become very familiar with it. The (and 3
characters are called curly braces or simply braces.

The five characters

are used mainly in mathematical formulas, although + and = can be used in
ordinary text. The character " (double quote) is hardly ever used.

Unless your Local Guide tells you otherwise, these are the only characters
that you should see when you look at a B ' input file. However, there are
other "invisible" characters in your file: space characters, such as the one you
usually enter by pressing the space bar, and special characters that indicate the
end of a line, usually entered by pressing the return key (sometimes labeled
enter). These invisible characters are all considered the same by w, and I will

2.2 The Input 13

treat them as if they were a single character called space, which I will sometimes
denote by ". Any sequence of space characters is handled the same as a single
one, so it doesn't matter if the space between two words is formed by one space
character or several of them. However, a blank line-one containing nothing but
space characters-is interpreted by 'I@ as the end of a paragraph. Some text
editors organize a file into pages. acts as if there were a blank line between
the pages of such a file.

2.2 The Input

Most I4TjjX commands describe the logical structure of the document. To un-
derstand these commands, you must know how K Q X perceives that logical
structure. A document contains logical structures of different sizes, from chap-
ters down through individual letters. We start by considering the very familiar
intermediate-sized structures: sentences and paragraphs.

2.2.1 Sentences and Paragraphs

Describing simple sentences and paragraphs to WQ@ poses no problem; you
pretty much type what comes naturally.

The ends of words and sentences are marked The ends of words and sentences are marked
by spaces. It doesn't matter how many spaces you by spaces. It doesn't matter how many
type; one is as good as 100. spaces you type; one is as good as 100.

One or more blank lines denote the end of a
paragraph. One or more blank lines denote the end

of a paragraph.

'&X ignores the way thk input is formatted, paying attention only to the logical
concepts end-of-word, end-of-sentence, and end-of-paragraph.

That's all you have to know for typing most of your text. The remainder of
this book is about how to type the rest, starting with some other things that
occur fairly frequently in ordinary sentences and paragraphs.

Quotation Marks

Typewritten text uses only two quotation-mark symbols: a double quote " and
single quote ', the latter serving also as an apostrophe. Printed text, however,
uses a left .and a right version of each, making four different symbols. Q$
interprets the character ' as a single left quote, and the character ' as a single
right quote. To get a double quote, just type two single quotes.

'Convention' dictates that punctuation go inside 'Convent ion ' dictates that punctuation go
quotes, like "this," but I think it's better to do inside quotes, like "this, " but I think
"this". it's better to do "this".

14 Getting Started

Remember that the right-quote character ' is the one you're used to thinking
of as a single quote, and the left-quote character ' is the one you're probably
unfamiliar with. An apostrophe is produced with the usual ' character.

Typing a double quote followed by a single quote, or vice versa, poses a
problem because something like " ' would be ambiguous. The solution is to
type the command \, (a \ character followed by a comma) between the two
quotation marks.

" 'Fi' or 'fum?' " he asked. "\,'Fi' or 'fum?'\," he asked.

The \, is a typesetting command that causes 'I)jX to insert a small amount of
space. Don't leave any space in the input file before or after the \, command.

Dashes

You can produce three different sizes of dash by typing one, two, or three "-"
characters:

An intra-word dash or hyphen, as in X-ray. An intra-word dash or,hyphen, as in X-ray.
A medium dash for number ranges, like 1-2. A medium dash for number ranges, like 1--2.
A punctuation dash-like this. A punctuation dash---like this.

There is usually no space before or after a dash. Minus signs are not dashes;
they should appear only in mathematical formulas, which are discussed below.

Space After a Period

Typesetters often put a little extra space after a sentence-ending period. This
is easy for a human typesetter, but not for a program like T)jX that has trouble
deciding which periods end sentences. Instead of trying to be clever, T)$ simply
assumes that a period ends a sentence unless it follows an uppercase letter. This
works most of the time, but not always-abbreviations like "etc." being the most
common exception. You tell T$jX that a period doesn't end a sentence by using
a \, command (a \ character followed by a space or the end of a line) to make
the space after the period.

Tinker et al. made the double play. Tinker et al.\ made the double play.

It doesn't matter how many spaces you leave after the \ character, but don't
leave any space between the period and the backslash. The \u command pro-
duces an ordinary interword space, which can also be useful in other situations.

On the rare occasions that a sentence-ending period follows an uppercase
letter, you will have to tell T$jX that the period ends the sentence. You do this
by preceding the period with a \Q command.

The Romans wrote I + I = 11. Really! The Romans wrote I + I = II\@. Really!

2.2 The Input 15

If a sentence-ending period is followed by a right parenthesis or a right quote
(single or double), then the period's extra space goes after the parenthesis or
quote. In these cases too, m will need a hand if its assumption that a period
ends a sentence unless it follows an uppercase letter is wrong.

"Beans (lima, etc.) have vitamin B." "Beans (lima, e t c .) \ have vitamin B\B."

Extra space is also added after a question mark (?), exclamation point (!), or
colon (:) just as for a period-that is, unless it follows an uppercase letter. The
\,, and \@ commands are used the same way with each of these punctuation
characters.

Special Symbols

%member those ten special characters, mentioned on page 12, that you type
only as part of B m commands? Some of them, like $, represent symbols that
you might very well want in your document. Seven of those symbols can be
produced by typing a \ in front of the corresponding character.

$ & % # - {) are easy to produce. \$ \& \% \# \- \< \) are easy t o produce.

The other three special characters (-, ^, and \) usually appear only in simulated
keyboard input, which is produced with the commands described in Section 3.7.

You can get PT@ to produce any symbol that you're likely to want, and
many more besides, such as: E $ * @I x W e b 4. Sections 3.2 and 3.3.2 tell
how.

Simple Text-Generating Commands

Part of a sentence may be produced by a text-generating command. For example,
the T)# and B ' logos are produced by the commands \TeX and \LaTeX,
respectively.

Some people use plain T)$, but I prefer I4m. Some people use plain \TeX, but I
prefer \LaTeX.

A useful text-generating command is \today, which produces the current date.

This 'page was produced on May 18, 1994. This page was produced on \today.

Another useful text-generating command is \ ldots , which produces an ellzpsis-
the sequence of three dots used to denote omitted material. (Simply typing three
periods doesn't produce the right spacing between the dots.)

If nominated . . . , I will not serve. If nominated \ ldots, I w i l l not serve.

16 Getting Started

Most of the command names you've seen so far have consisted of a \ (backslash)
followed by a single nonletter. From now on, most commands you will encounter
have names consisting of a \ followed by one or more letters. In reading the input
file, 'I)$ knows it has come to the end of such a command name when it finds a
nonletter: a digit like "7", a punctuation character like ";", a special character
like "\", a space, or the end of a line. The most common way to end this kind of
command name is with a space or end of line, so ignores all spaces following
it. If you want a space after the logo produced by the \LaTeX command, you
can't just leave a space after the command name; all such spaces are ignored.
You must teil TEX to put in the space by typing a \, command.

This page of the BTEX manual was produced on This page of the \LaTeX\ manual was
May 18, 1994. produced on \today .

Note how 'IJEX ignored the space after the \today command in the input and
did not produce any space after the date in the output.

The case of letters matters in a command name; typing \Today produces
an error, because the correct command name is \today. Most command names
have only lowercase letters.

Emphasizing Text

Emphasized text is usually underlined in a typewritten manuscript and itali-
cized in a printed document. Underlining and italics are visual concepts; when
typing your document, you should be concerned only with the logical concept
of emphasis. The \emph command tells that text is to be emphasized.

Here is some silly emphasized text. Here is some silly \emph{emphasized text).

In the \emph(emphasized t e x t 3 command, \emph is the command name and
emphasized t e x t is its argument. Most commands have either no arguments,
like \today, or a single argument, like \emph. However, there are a few with
multiple arguments, each of which is enclosed in braces. Spaces are ignored
between the arguments, and between the command name and its first argument.

Commands like \emph can be nested within one another in the obvious way.
Most styles use ordinary roman type for emphasized text that appears inside
emphasized text.

You can have emphasized text within emphasized You can have \emph{emphasized text
text too. \emph{within) emphasized text) too.

Emphasis should be used sparingly. Like raising your voice, it is an effective
way to get attention, but an annoying distraction if done too often.

2.2 T h e Input 17

Preventing Line Breaks

In putting text onto paper, a paragraph must be broken into lines of print.
Text becomes hard to read if a single logical unit is split across lines in an
arbitrary fashion, so typesetters break lines between words when possible and
split words only between syllables (inserting a hyphen at the break). Sometimes
a line should not be broken between or within certain words. Human typesetters
recognize these situations, but 'I)$ must be told about some of them.

Line breaking should be prevented at certain interword spaces. For example,
the expression "Chapter 3" looks strange if the "Chapter" ends one line and the
"3" begins the next. Typing (a tilde character) produces an ordinary interword
space at which m will never break a line. Below are some examples indicating
when a " should be used.

M r . "Jones Figure-7 (1)"gnats
U. "S . "Grant from I to-10

It is best not to break a line within certain words. For example, you should
try to avoid splitting a name (especially your own). The \mbox command tells

to print its entire argument on the same line. In the following example,
will never split "Lamport" across lines.

Doctor Lamport, I presume? Doctor \mboxCLamport>, I presume?

Most line breaks separate logically related units, and it would be nice if they
could be avoided. However, unless you print your document on a mile-long strip
of paper tape, line breaking is a necessary evil. Using too many - and \mbox
commands leaves too few places to break lines. Inhibit line breaking only where
necessary.

Footnotes

Footnotes are produced with a \footnote command having the text of the
footnote as its argument.

Gnus1 can be quite a gnusance. Gnus\footnote{A gnu is a big animal.) can
be quite a gnusance.

'A gnu i s a big animal.

There is no space between the Gnus and the \footnote in this example; adding
space would have put an unwanted space between the text and the footnote
marker (the I).

A \footnote command cannot be used in the argument of most commands;
for example, it can't appex in the argument of an \mbox command. Sec-
tion C.3.3 explains how to footnote text that appears in a command argument.

18 Getting Started

Formulas

If you're writing a technical document, it's likely to contain mathematical for-
mulas. A formula appearing in the middle of a sentence is enclosed by \(and
\) commands.

The formula x - 3y = 7 is easy to type. The formula \(x-3y = 7 \) is easy to type.

Any spaces that you type in the formula are ignored.

Does x + y always equal y + x? Does \i x + y \) always equal \(y+x\)?

l&X regards a formula as a word, which may be broken across lines at certain
points, and space before the \ (or after the \) is treated as an ordinary interword
separation.

Subscripts are produced by the - command and superscripts by the ^ com-
mand.

These two commands can be used only inside a mathematical formula.
When used in a formula, the right-quote character ' produces a prime (I) ,

two in a row produce a double prime, and so on.

This proves that x' < x" - y& < 10x"'z. ... \ (X' < x" - yJ-13) < 10 x"' z \).

Mathematical formulas can get very complex; Section 3.3 describes many
additional commands for producing them. Here, I consider the use of formulas
in the text. A formula is a grammatical unit; it should be treated as such in the
sentence structure.

The formula a < 7 is a noun in this sentence. It is The formula \(a<7 \) is a noun in this
sometimes used as a clause by writing that a < 7. sentence. It is sometimes used . . .

Beginning a sentence with a formula makes it hard to find the start of the
sentence; don't do it. It is best to use a formula as a noun; it should certainly
never appear as a complete sentence in the running text.

A variable like x is a formula. To save you some typing, I+" treats $. . . $
the same as \ (. . . \).

Let x be a prime such that y > 2s. Let x be a prime such that $y>2x$.

Use $. . . $ only for a short formula, such as a single variable. It's easy to forget
one of the $ characters that surrounds a long formula. You can also type

instead of \ (. . . \) . You might want to use this form for very longformulas.

2.2 The Input 19

Ignorable Input

When T@ encounters a % character in the input, it ignores the % and all charac-
ters following it on that lineincluding the space character that ends the line.
7&X also ignores spaces at the beginning of the next line.

Gnus and armadillos are generally tolerant of one Gnus and armadi% More a_#!$^{& gnus?
another and seldom quarrel. 110s are generally ...

The % has two uses: ending a line without producing any space in the output1
and putting a comment (a note to yourself) in the input file.

2.2.2 The Document

We now jump from the document's intermediate-sized logical units to its largest
one: the entire document itself. The text of every document starts with a
\beginCdocument) command and ends with an \end{document) command.
BT)rJ ignores anything that follows the \endCdocument). The part of the input
file preceding the \begin{document) command is called the preamble.

The Document Class

The preamble begins2 with a \documentclass command whose argument is
one of the predefined classes of document that BQX knows about. The file
sample2e. tex begins with

which selects the article class. The other standard class used for or-
dinary documents is the report class. The article class is generally used for
shorter documents than the report class. Other standard classes are described
in Chapter 5.

In addition to choosing the class, you can also select from among certain
document-class options. The options for the article and report classes include
the following:

11pt Specifies a size of type known as eleven point, which is ten percent larger
than the ten-point type normally used.

12pt Specifies a twelve-point type size, which is twenty percent larger than ten
point.

twoside pormats the output for printing on both sides of the page. (B W has
no control over the actual printing.)

-

IHowever, you can't split a command name across two lines.
2As explained in Section 4.7, the \documentclass command may actually be preceded by

prepended files.

20 Getting Started

twocolumn Produces two-column output.

Other options are described elsewhere in this book; all the standard ones are
listed in Section C.5.1. Your Local Guide tells what others are available on your
computer.

You specify a document-class option by enclosing it in square brackets im-
mediately after the "\document class", as in

\documentclass [twosidel (report)

Multiple options are separated by commas.

Don't leave any space inside the square brackets.
The \documentclass command can be used either with or without the

option-choosing part. The options, enclosed in square brackets, are an optional
argument of the command. It is a convention that optional arguments are
enclosed in square brackets, while mandatory arguments are enclosed in curly
braces. QjX ignores spaces after a command name like \documentclass and
between command arguments.

The document class defines the commands for specifying U r n ' s standard
logical structures. Additional structures are defined by packages, which are
loaded by the \usepackage command. For example, the command

loads the latexsym package, which defines commands to produce certain special
math symbols. (See Section 3.3.2.) A package can have options, specified by an
optional argument of \usepackage just like the one for \documentclass.

You will probably want to define some new commands for the special struc-
tures used in your particular document. For example, if you're writing a cook-
book you will probably define your own commands for formatting recipes, as
explained in Section 3.4. These definitions should go in the preamble, after the
\documentclass and \usepackage commands. The preamble can also contain
commands to change some aspects of the formatting. If you have commands or
format changes that you use in several documents, you may want to define your
own package, as described in Section 6.1.4.

The Title "Page"

A document usually has a title "page" listing its title, one or more authors, and
a date. I write "page" in quotes because, for a short document, this information
may be listed on the first page of text rather than on its own page. The title
information consists of the title itself, the author(s), and the date; it is specified
by the three declarations \ t i t l e , \author, and \date. The actual title "page"
is generated by a \maketit le command.

2.2 The I n ~ u t 2 1

Gnus of the World \titleCGnus of the World)
\authorCR. Dather \and J. Pennings

R. Dather J. Pennings B. Talkmore \and B. Talkmore)

4 July 1997 \dateC4 July 19973
. . .

\maket itle

Note how multiple authors are separated by \and commands.
The \maketitle command comes after the \begin{document), usually be-

fore any other text. The \ t i t l e , \author, and \date commands can come
anywhere before the \maketitle. The \date is optional; L w supplies the
current date if the declaration is omitted, but the \ t i t l e and \author must
appear if a \maketitle command is used. Commands for adding other infor-
mation, such as the author's address and an acknowledgment of support, are
described in Section C.5.4.

2.2.3 ' Sectioning

Sentences are organized into paragraphs, and paragraphs are in turn organized
into a hierarchical section structure. You are currently reading Subsection 2.2.3,
titled Sectioning, which is part of Section 2.2, titled The Input, which in turn is
part of Chapter 2, titled Getting Started. I will use the term sectional units for
things like chapters, sections, and subsections.

A sectional unit is begun by a sectioning command with the unit's title as
its argument.

4.7 A Sectioning Command \subsection{A Sectioning Command}

I4w automatically generates the section number.
Blank lines before or afqer a sectioning command \LaTeX\ automatically generates the section

have no effect. number. Blank lines before or after a ...

The document class determines what sectioning commands are provided, the
standard classes have the following ones:3

The a r t i c l e document class does not contain the \chapter command, which
makes it easy to include an "article" as a chapter of a "report". The example
above, likemost others in this book, assumes the a r t i c l e document class, the
4.7 indicating that this is the seventh subsection of Section 4. In the report
class, this subsection might be numbered 5.4.7, with "5" being the chapter
number.

=The names \paragraph and \subparagraph are unfortunate, since they denote units that
are often composed of several paragraphs; they have been retained for historical reasons.

2 2 Getting Started

The sectional unit denoted by each of these commands must appear a s a
subunit of the one denoted by the preceding command, except that the use of
\part is optional. A subsection must be part of a section, which, in the report
class, must be part of a chapter.

The \part command is used for major divisions of long documents; it does
not affect the numbering of smaller units-in the a r t i c l e class, if the last section
of Part 1 is Section 5, then the first section of Part 2 is Section 6.

If there is an appendix, it is begun with an \appendix command and uses the
same sectioning commands as the main part of the document. The \appendix
command does not produce any text; it simply causes sectional units to be
numbered properly for an appendix.

The document class determines the appearance of the section title, including
whether or not it is numbered. Declarations to control section numbering are
described in Section C.4, which also tells you how to make a table of contents.

The argument of a sectioning command may be used for more than just pro-
ducing the section title; it can generate a table of contents entry and a running
head at the top of the page. (Running heads are discussed in Section 6.1.2.)
When carried from where it appears in the input file to the other places it is
used, the argument of a sectioning command is shaken up quite a bit. Some
U ' commands are fragile and can break when they appear in an argument
that is shaken in this way. Fragile commands are rarely used in the argument
of a sectioning command. Of the commands introduced so far, the only fragile
ones are \(, \), \begin, \end, and \footnote-none of which you're likely to
need in a section title.4 On the rare occasions when you have to put a fragile
command in a section title, you simply protect it with a \protect command.
The \protect command goes right before every fragile command's name, as in:

This is actually a silly example because $ is not a fragile command, so you can
instead type

\subsection (Is $x + y$ Prime?)

but, because the problem is so rare, it's hard to find a good example using the
commands described in this chapter.

An argument in which fragile commands need \protect will be called a
moving argument. Commands that are not fragile will be called robust. For
any command that one might reasonably expect to use in a moving argument,
I will indicate whether it is robust or fragile. Except in special cases mentioned
in Chapter 6 and Appendix C, a \protect command can't hurt, so it is almost
always safe to use one when you're not sure if it's necessary.

4Section C.3.3 tells you how to footnote -a section title.

2.2 The Input 23

2.2.4 Displayed Material

We return now to the level of the individual sentence. A sentence like

He turned and said to me, "My answer is no!", and then he left.

contains a complete sentence quoted within it. An entire paragraph can even
appear inside a sentence, as in

He turned and said to me: "I've done all I'm going to. I refuse to
have any further part in it. My answer is no!", and then he left.

It's hard to understand this sentence the way it is written. However, there's no
problem if you read it aloud using a different tone of voice for the quotation.
The typographic analog of changing your tone of voice is setting text off by
indentation, also called displaying. The sentence above is much easier to read
when typeset as follows:

He turned and said to me:
I've done all I'm going to. I refuse to have any further part
in it. My answer is no!

and then he left.

Displayed material functions logically as a lower-level unit than a sentence,
though grammatically it may consist of part of a sentence, a whole sentence,
or even several paragraphs. To decide whether a portion of text should be a dis-
play or a separate sectional unit, you must determine if it is logically subordinate
to the surrounding text or functions as an equal unit.

Quotations are often displayed.

The following is an exaAple of a short displayed . . . example of a short displayed quotation.
quotation. \begin{quote)

. . . it's a good idea to make your input \ldots\ it's a good idea to make your

file as easy to read as possible. input file as easy to read as possible.
\endCquote)

It is indented at both margins. It is indented at both margins.

This example illustrates a type of Bl&X construction called an environment,
which is typed

where name is the name of the environment. The quote environment produces
a display suitable for a short quotation. You've already encountered two other
examples of environments: the math environment and the document environ-
ment.

The standard H w document classes provide environments for producing
several different kinds of displays. Blank lines before or after the environment

24 Getting Started

mark a new paragraph. Thus, a blank line after the \end command means
that the following text starts a new paragraph. Blank lines before and after the
environment mean that it is a complete paragraph. It's a bad idea to start a
paragraph with displayed material, so you should not have a blank line before
a display environment without a blank line after it. Blank lines immediately
following a display environment's \begin command and immediately preceding
its \end command are ignored.

Quotations

provides two different environments for displaying quotations. The quote
environment is used for either a short quotation or a sequence of short quotations
separated by blank lines.

Our presidents have been known for their pithy Our presidents . . . pithy remarks.
remarks. \begin{quote)

The buck stops here. Harry Truman The buck stops here. \emphCHarry Truman)

I am not a crook. Richard Nixon I am not a crook. \emph{Richard Nixon)
It's no exaggeration to say the unde-
cided~ could go one way or another. It s no exaggeration . . . \emphCGeorge Bush)
George Bush \end{quot e)

The quotation environment is used for quotations of more than one paragraph;
as usual, the paragraphs are separated by blank lines.

Here is some advice to remember when you are Here is some advice to remember when you
using B m : are using \LaTeX:

Environments for making quota- \begidquotat ion)

tions can be used for other things as Environments for making quotations

well. . . . other things as well.
Many problems can be solved by

Many ... existing environments. novel applications of existing environ-
ments. \end{quotat ion)

Lists

B7QjX provides three list-making environments: itemize , enumerate, and
description. In all three, each new list item is begun with an \item com-
mand. Itemized lists are made with the itemize environment and enumerated
lists with the enumerate environment.

2.2 The Input

Each list item is marked with a label. The labels
in this itemized list are bullets.

Lists can be nested within one another.

1. The item labels in an enumerated list are
numerals or letters.

2. A list should have at least two items.

B'&X permits at least four levels of nested lists,
which is more than enough.

Blank lines before an item have no effect.

\begin(itemize)
\item Each list item is ... bullets.
\item Lists can be ... one another.
\begin(enumerate)

\item The item labels . . . letters.
\item A list should . . . two items.

\endCenumerate)
\LaTeX\ permits ... more than enough.

\item Blank lines . . . have no effect.
\end(itemize)

In the dascription environment, you specify the item labels with an optional
argument to the \it em command, enclosed in brackets. (Although the argument
is optional, the item will look funny if you omit it.)

Three animals you should know about are: Three animals you should know about are:

gnat A small animal, found in the North Woods, \begiddescription)

that causes no end of trouble. \item[gnat] A small animal . . .
\item [gnu] A large animal

gnu A large animal, found in crossword puzzles, \item [armadillo] A medium-sized ...
that causes no end of trouble. \end<description)

armadillo A medium-sized animal, named after a
medium-sized Texas city.

The characters [and I are used both to delimit an optional argunient and
to produce square brackets in the output. This can cause some confusion if the
text of an item begins with a [or if an \item command's optional argument
contains a square bracket. Section C.l.l explains what to do in these uncommon
situations. All commands that have an optional argument are fragile.

Poetry

Poetry is displayed with the verse environment. A new stanza is begun with
one or more blank lines; lines within a stanza are separated by a \\ command.

There is an environment for verse \begin(verse)
Whose features some poets will curse. There is an environment for verse \\
For instead of making Whose features some poets will curse.

.. Them do all line breaking,
It allbws them to put too many words For instead of making\\

on a line when they'd rather be Them do \emphCall> line breaking, \\
forced to be terse. It allows them ... to be terse.

\endiverse)

The * command is the same as \\ except that it prevents &$" from
starting a new page at that point. It can be used to prevent a poem from being

26 Getting Started

broken across pages in a distracting way. The commands \\ and * are used
in all environments in which you tell Hi$$ where to break lines; several such
environments are described in the next chapter. The * command is called
the *-form of the \ \ command. Several other commands also have *-forms-
versions of the command that are slightly different from the ordinary o n e t h a t
are obtained by typing * after the command name.

The \ \ and * commands have a little-used optional argument described
in Section (2.1.6, so putting a [after them presents the same problem as for
the \item command. Moreover, the * in the \ \ * command is somewhat like an
optional argument for the \\ command, so following a \\ with a * in the text
poses a similar problem. See Section C. l . l for the solutions to these unlikely
problems. Almost every command that has a *-form is fragile, and its *-form is
also fragile.

Displayed Formulas

A mathematical formula is displayed when either it is too long to fit comfortably
in the running text, it is so important that you want it to stand out, or it is to be
numbered for future reference. BT'EX provides the displaymath and equation
environments for displaying formulas; they are the same except that equation
numbers the formula and displaymath doesn't. Because displayed equations are
used so frequently in mathematics, allows you to type \[. . . \ I instead of

Here is an example of an unnumbered displayed Here is an example of an unnumbered
equation: displayed equation:

2 2
2' + y = Z, \ C x' + yA<21 = z_Ci)^<21 \I

and here is the same equation numbered: and here is the same equation numbered:
\beginIequat ion)

2 2
2' + y = zi (8) x ' + ŷ (2) = z-(i)̂ I2>

\end(equation)

The document class determines how equations are numbered. Section 4.2 de-
scribes how BT'@ can automatically handle references to equation numbers so
you don't have to keep track of the numbers.

A displayed formula, like any displayed text, should not begin a paragraph.
Moreover, it should not form a complete paragraph by itself. These two obser-
vations are summed up in a simple rule: in the input, never leave a blank line
before a displayed formula.

TEX will not break the formula in a displaymath or equation environment
across lines. See Section 3.3.5 for commands to create a single multiple-line
formula or a sequence of displayed formulas.

2.2 The Input 2 7

2.2.5 Declarations

You may want to emphasize a large piece of text, such as a quotation. You can
do this with the \emph command, but that makes the input file hard to read
because you have to search for the closing right brace to see where the argument
ends. Moreover, it's easy accidentally to delete the closing brace when you edit
the text. Instead, you can use the \em command, which tells 'I).$ to start
emphasizing text.

This prose is very dull.

Wait! Here is an exciting quote.

Aren't you glad all that excitement is over?

This prose is very dull.
\beginCquote)
Wait! \em Here is an exciting quote.
\end(quotel

Aren't you glad . . .
As explained below, the \endCquote) caused 'I).$ to stop emphasizing text.

Unlike other commands you've encountered so far, \em produces neither text
nor space; instead, it affects the way I4" prints the text that follows it. Such
a command is called a declaration. Most aspects of the way formats a
document-the type style, how wide the margins are, and so on-are determined
by declarations. The \em declaration instructs to change the type style to
the appropriate one for indicating emphasis. The scope of a declaration is ended
by an \end command or a right brace. In the input, braces and \begin and \end
commands must come in matched pairs. The scope of a declaration is ended by
the first \end or 3 whose matching \begin or C precedes the declaration. The
following example shows only the braces, \begin and \end commands (without
their arguments and argument-enclosing braces), and an \em declaration from
some input text; matching braces and matching \begin and \end commands
have the same numbeys. The shaded region is the scope of the \em declaration.

The braces can be the ones that surround a command argument or ones that
are inserted just to delimit the scope of a declaration, as in the first emphasized
that of

That that that that thatcher thought thrilling . . . That {\em that) that \emph(that) . . .

The \C and \I commands do not count for purposes of brace matching and
delimiting the scope of declarations. Also, as explained in Section 3.4, argument
braces for commands you define yourself do not act as scope delimiters.

Every declaration has a corresponding environment of the same name (minus
the \ character). Typing

'YOU should use the \emph command rather than the \em declaration for emphasizing small
pieces of text because it produces better spacing.

28 Getting Started

is equivalent to typing {\em (If a declaration has arguments, they
become additional arguments of the corresponding environment's \begin com-
mand.) Using the environment form of a declaration instead of delimiting its
scope with braces can make your input file easier to read.

2.3 Running B w
If you followed the directions in Section 1.7, you now know how to run I4W
on an input file. If not, consult the Local Guide to find out. When you use your
own input file for the first time, things are unlikely to go a s smoothly as they did
for sample2e. tex. There will probably be a number of errors in your file-most
of them simple typing mistakes. Chapter 8 gives detailed help in diagnosing
errors. Here I will tell you how to apply first aid from the keyboard while
is still running.

When you start BTj@, it will probably be running in one of several windows
on your computer's screen. For historical reasons, I will call that window the
terminal. (If B7&X runs by itself and takes up the entire screen, then your whole
computer is the terminal.) What you type directly to BTj@, and what it types
back at you, are called terminal input and output.

With your text editor, produce a new file named errsam. t e x by making the
following four changes to sample2e. tex:

Line 174 of the file contains an \end{enurnerate) command. Delete the t
to produce \end(enumerae), simulating a typical typing error.

Four lines below is an \item command. Turn it into \ i temt, another
typical typo.

The sixth line down from there begins with the word Whose. Add a pair
of brackets to change that word to [Wl hose.

About a dozen lines further down in the file is a line consisting of the single
word is. Add a space followed by gnomonly to the end of that line.

Now run Bm with errsam. t ex as input and see what error messages it pro-
duces. You needn't write them down because everything T ' writes on your
screen is also written in a file called the log file.6 For the input file errsam. tex,
the log file is named errsam. log on most computers, but it may have a different
extension on yours; check your Local Guide.
B m begins by typing pretty much what it did when you ran it on the

sample2e. t ex file, but then writes the following message on your screen and
stops.

"he log file also has some things that don't appear on your screen, including blank lines
inserted in strange places.

2.3 Running H'l&X 29

! LaTeX Error: \beginCenumerate) on input line 167 ended by \endCenumerae).

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.

B ' translates a command like \end, which describes the document's logical
structure, into W ' s typesetting commands. Some errors are caught by U ' ;
others cause it to generate typesetting commands containing errors that 'I)@
finds- The first line of this message, called the error indicator, tells us that the
error was found by U w rather than w. Like all error messages, this one
begins-with an exclamation point.

The error indicator tells what the problem is. Chapter 8 explains the meaning
of the error indicators for most Urn-detected errors and for the most common
errors that ' finds. Here, U r n is complaining that the \end command that
matches the \begin(enumerate) is not an \endCenumerate), as it should be.
The line beginning with 1.174 is the error locator, telling you where in your
input file the error was discovered. In this case, it was on line 174, after 'Ij$
read the \end(enumerae) command. The ? that ends the message indicates
that I4'' has stopped and is waiting for you to type something.

Just pass over the error by pressing the return key, which instructs @7&X to
continue processing the input. U' now writes

! Undefined control sequence.
1.178 \itemt

This is the third item of the list.
7

The absence of the LaTeX Error at the beginning of the message tells you that
this error was detected by 'l)@ rather than @'I)$. T)jX knows nothing about

commands, so you can't expect much help from the error indicator. The
error locator indicates that the error was detected on line 178 of the input file,
after reading \itemt and before reading This. (The error indicator line is broken
at the point where 'l)@ stopped reading input.) Of course, this error is caused
by \itemt, which is a command name l&X has never heard of.

Continue past this error by pressing return. I4W next writes

! Missing number, treated
<to be read again>

W
1.184 [W]

hose features
?

as zero.

some poets % within a stanza.

30 Getting Started

This error was found by TEX not BT@, and the error indicator isn't very helpful.
has just read the CWI, which looks all right, so the error must have been

caused by something that came before it. Right before the [WI in the input file
is a \\ command. Do you now see what the error is? If not, look in the index
under "\\, C after".

Press return to continue. You immediately get another error message very
similar to the preceding one, with the same error locator. 'I)$ ha& discovered
a second error in the low-level typesetting commands generated by the \ \ com-
mand. Type return again to get past this problem.

When ycu find the first error, it's tempting to stop the program, correct it,
and start over again. However, if you've made one error, you've probably made
more. It's a good idea to find several errors at once, rather than running I4w
over and over to find one mistake at a time. Keep typing return and try to get
as far as you can. You may reach an impasse. A single mistake can cause T&
to produce hundreds of error messages, or to keep generating the same message
over and over again forever. You can stop I4W before it's finished by typing X
followed by return in response to an error message.

l&X may write a * and stop without any error message. This is probably
due to a missing \endCdocument) command, but other errors can also cause it.
If it happens, type \stop followed by wtunz. If that doesn't work, you'll have to
use your computer's standard method for halting recalcitrant programs, which
is described in the Local Guide.

Instead of sitting at your keyboard waiting for errors, you can let lXl$jX
run unattended and find out what happened later by reading the log file. A
\batchmode command at the very beginning of the input file causes rn to
process the file without stopping-much as if you were to type return in response
to every error message, except the messages are not actually written on your
screen. This is a convenient way to run B ! while you go out to lunch, but
you could return to find that a small error resulted in a very long list of error
messages in the log file.

Meanwhile, BTEX has finished processing your input file errsam. tex. After
the last error message, it wrote

Overfull \hbox (10.51814pt too wide) in paragraph at lines 195--200
CI\OTl/cmr/m/n/lO Mathematical for-mu-las may also be dis-played. A dis-played
for-mula is gnomonly

This is a warning message; I4W did not stop (it didn't print a ?), but continued
to the end of the input file without further incident. 'I)$ generated the warning
because it does not know how to hyphenate the word gnomonly, so it couldn't
find a good place to break the line. If you look at the output, you'll find gnomonly
extending beyond the right margin. This is not a serious problem; Section 6.2.1
describes how to correct it.

When you process your input file for the first time, BT)$ is likely to produce
lots of error messages and warnings that you may not understand right away.

2.4 Helpful Hints 3 1

The most important thing to remember is, DON'T PANIC. Instead, turn to
Chapter 8 to find out what to do.

Helpful Hints
The descriptions of individual B'QX features include suggestions about their
use. Here are a few general recommendations that can make your life easier.

As soon as you have some experience with B'QX, read Section 3.4 to learn
how to define your own commands and environments. When I write a paper, I
change my notation much more than I change my concepts. Defining commands
to express concepts allows me to change notation by simply modifying the com-
mand definitions, without having to change every occurrence in the text. This
saves a lot of work.

To avoid errors and simplify making changes, keep your input file as easy to
read as possible. Spacing and indentation can help. Use comments, especially
to explain your command definitions. 'I)$ doesn't care how the input file is
formatted, but you should.

As you write your document, you will be continually running B ' on it so
you can view the latest version. As the document gets longer, Bm takes longer
to process it. When you make some changes to Section 7, don't run B'QX on
Sections 1-6 just to find errors in the new material. Find those errors fast by
running B ' only on Section 7. Process the entire document only when you're
pretty sure Section 7 has no more errors.

There are two ways to run B'QX only on what's changed. The first is to
create a new file containing just the preamble, a \begin(document) command,
the new material, and an \endCdocument) command. This is easy to do with
a good text editor. I have programmed my editor so, at the stroke of a couple
of keys, it will create this file, run B'QX on it, and display the output with a
screen previewer-while I keep editing my document. The second way to run
I4W just on what has changed is to keep your input in several files, using the
commands of Section 4.4 to process one part at a time. Experiment to find out
what method works best for you.

Perhaps the most annoying aspect of a computer program is the way it reacts
to your errors. As with most programs, B'QX's train of thought is derailed by
simple errors that any person would easily correct. The best way to avoid this
problem is to avoid those simple errors. Here are some common ones that are
easy to eliminate by being careful:

A misspelled command or environment name.

Improperly matching braces.

Trying to use one of the ten special characters # $ % & - (1 " \ as
an ordinary printing symbol.

32 Getting Started

Improperly matching formula delimiters-for example, a \(command
without the matching \) .
The use in ordinary text of a command like that can appear only in a
mathematical formula.

A missing \end command.

0 A missing command argument.

A good text editor can detect or help prevent some of these errors.
Because of a bit of fossilized stupidity, e-mail programs on the Unix operating

system often add a > character to the beginning of every line that begins with
the five characters Fromu. The input >From causes 'lJ$ to produce the output
"jFk~m'~. It's a good idea to search all Z+" files received by e-mail for >From,
and to add a space to the beginning of every line that starts with From in all
files that you send by e-mail.

2.5 Summary

This chapter has explained everything you have to know to prepare a simple
document. There is quite a bit to remember. Here is a summary to refresh your
memory.

Input Characters
The input file may contain the following characters: upper- and lowercase letters,
the ten digits, the sixteen punctuation characters

the ten special characters

(the first seven are printed by the commands \#, \$, etc.), and the five charac-
ters + = I < > used mainly in mathematical formulas. There are also invisible
characters, which are all denoted by u, that produce spaces in the input file.

Commands and Environments
Command names consist of either a single special character like -, a \ followed
by a single nonletter (as in \Q), or a \ followed by a string of letters. Spaces
and a single end-of-line following the latter kind of command name are ignored;
use a \,, command to put an interword space after such a command. The case
of letters in command names counts; most I4W command names contain only

2.5 Summary 33

lowercase letters. A few commands have a *-form, a variant obtained by typing
* after the command name.

Command arguments are enclosed in curly braces (and), except for optional
arguments, which are enclosed in square brackets C and I . See Section C . l . l if
an optional argument has a square bracket or if a C in the text could be confused
with the start of an optional argument. Do not leave any extra space within an
argument; use a % to end a line without introducing space.

Some commands have moving arguments. The name of a fragile command
must be preceded by a \protect command when it appears in a moving argu-
ment. Fragile commands include \(, \), \C, \ I , \begin, \end, \\, \item, and
\footnote. A \protect command seldom hurts; when in doubt use one.

A declaration is a command that directs UT)$ to change the way it is for-
matting the document. The scope of a declaration is delimited by enclosing it
within curly braces or within an environment.

An environment has the form

To every declaration corresponds an environment whose name is the same as the
declaration's name without the \.

Sentences and Paragraphs

Sentences and paragraphs are typed pretty much as expected. 'I@ ignores the
formatting of the input file. A blank line indicates a new paragraph.

Quotes are typed with the ' and ' characters, used in pairs for double quotes.
The \, command separates multiple quotation marks, as in ' ' \, 'Fun1\, ' ' .

Dashes of various sizes are produced with one, two, or three "-" characters.
A period, questionimark, or exclamation point is considered to end a sentence

unless it follows an uppercase letter. A \@ command before the punctuation
character forces T)$ to treat it as the end of a sentence, while a \u command
placed after it produces an interword space.

The T@ and WQjX logos are produced by the \TeX and \LaTeX commands.
The \today command produces the current date, and \ ldo ts produces an el-
lipsis (. . .).

Text is emphasized with the \emph command.
The command produces an interword space at which 'I@ will not start a

- new line. The \mbox command prevents w from breaking its argument across
lines. .

Footnotes are typed with the \footnote command, whose argument is the
text of the footnote.

In-line mathematical formulas are enclosed by \ (. . . \) or $. . . $. Sub-
scripts and superscripts are made with the - and ^ commands. The ' character
produces a prime symbol (I) .

34 Getting Started

Larger Structures

The document begins with the preamble. The preamble begins (after any
prepended files--see Section 4.7) with a \documentclass command, which may
be followed by one or more \usepackage commands. The rest of the preamble
may contain command definitions and special style declarations for the docu-
ment. The actual text is contained in a document environment.

A title is produced by using the \title, \author, and \date commands to
declare the necessary information, and the \maketitle command to generate
the title. Multiple authors are separated by \and commands in the argument of
\author.

A sectional unit is begun with one of the following sectioning commands

\part \subsect ion \paragraph
\chapter \subsubsection \subparagraph
\section

whose argument produces the unit's heading and is a moving argument.

Displayed Material

Short quotations are displayed with the quote environment and long quotations
with the quotat ion environment.
&+'I)$ provides three list-making environments: itemize for itemized lists,

enumerate for enumerated lists, and description for lists with user-specified
labels. Each item is begun with an \item command whose optional argument
provides the item labels in the description environment.

The verse environment is used for poetry. A blank line begins a new stanza,
and a line that does not end a stanza is followed by a \\ command-use *
instead of \\ to prevent a page break after the line. (See Section C. l . l if a *
follows an ordinary \\ command.)

Displayed mathematical formulas are produced with the displaymath envi-
ronment or the equivalent \ [. . . \I construction. The equation environment
produces numbered displayed formulas.

CHAPTER 3

36 Carrying O n

y > z if x2 real.

Chapter 2 described commands for simple documents. Sooner or later, you'll
write something that requires more sophisticated formatting. The commands
and environments described in this chapter will handle most of those situations.
Before getting to them, you should know a little more about how operates.

As Tj$X processes your input text, it is always in one of three modes: para-
graph mode, math mode, or left-to-right mode (called LR mode for short).'
Paragraph mode is W ' s normal mode-the one it's in when processing ordi-
nary text. In paragraph mode, 'lj$C regards your input as a sequence of words
and sentences to be broken into lines, paragraphs, and pages.

Tj@ is in math mode when it's generating a mathematical formula. More
precisely, it enters math mode upon encountering a command like $ or \ (or \ C
or \beginCequation) that begins a mathematical formula, and it leaves math
mode after finding the corresponding command like \) that ends the formula.
When Tj-$ is in math mode, it considers letters in the input file to be mathe-
matical symbols, treating is as the product of i and s, and ignores any space
characters between them. r

In LR mode, as in paragraph mode, ?EX considers your input to be a string
of words with spaces between them. However, unlike paragraph mode, 7JjX
produces output that keeps going from left to right; it never starts a new line
in LR mode. The \mbox command (Section 2.2.1) causes QjX to process its
argument in LR mode, which is what prevents the argument from being broken
across lines.

Different modes can be nested within one another. If you put an \mbox
command inside a mathematical formula, is in LR mode when processing
that command's argument, not in math mode. In the example

\ (y > z \mboxC if $xa(2)$ real) \).

Tj$X is in math mode when processing uyu>uzu, in LR mode when processing
,,ifu and ureal , and in math mode when processing ~ ~ (2 3 . The space between
"2' and "if" is produced by the first in the \mbox command's argument, since
space characters in the input produce space in the output when is in LR
mode. The in rea l Iu \) is processed in math mode, so it produces no space
between "real" and "." in the output.

Changing the Type Style
Type style is used to indicate logical structure. In this book, emphasized text
appears in italic style type and I4T@ input in typewriter style. In I4T)i$, a
type style is specified by three components: shape, series, and family.

'Paragraph mode corresponds to the vertical and ordinary horizontal modes in The
W b o o k , and LR mode is called restricted horizontal mode there. I4m also has a restricted
form of LR mode called picture mode that is described in Section 7.1.

3.1 Changing the Type Style 37

Upright shape. Usually the default. \textup(Upright shape. . .)
Italic shape. Often used for emphasized text. \textit.IItalic shape . . . I
Slanted shape. A bit different from italic. \textsl(Slanted shape ...)
SMALL CAPS SHAPE. USE SPARINGLY. \textsc(Small caps shape ...)
Medium series. Usually the default. \textmd(Medium series . . . I
Boldface series. Often used for headings. \textbf{Boldface series . . . I

Roman family. Usually the default. \textrm(Roman family . . . 3
Sans serif family. Often used in ads. \textsfCSans serif family ...I
Typewriter family. Popular with hackers. \texttt(Typewriter family. . .)
These commands can be combined in a logical fashion to produce a wide variety
of type styles.

Who on Earth is ever going to use a boldface sans \textsf (\textbf (Who \textmdCon) Earth)) is
serif or an italic typewriter type style? \textit(\texttt(ever)) ...
Some type styles may be unavailable on your computer. If you specify a style
that isn't available, I4.w will write a warning message and substitute a style
that it thinks is similar. (You may think otherwise.)

Each of the text-style commands described above has a corresponding dec-
laration. Boldface text can be obtained with either the \textbf text-producing
command or the \bf ser ies declaration.

More and more armadillos are crossing the road. \textbf (More) and C\bf series more) . . .
The declarations corresponding to the text-producing command are:

cmd decl cmd decl cmd decl
\textup \upshape \ textsc \scshape \textrm \rmfamily
\ t e x t i t \itshape \textmd \mdseries \ text sf \sf f amily
\ texts1 \slshape \textbf \bf ser ies \ t ex t t t \ttfamily

None of these text-producing commands or declarations can be used in math
mode. Section 3.3.8 explains how to change type style in a mathematical for-
mula.

Type style is a visual property. Commands to specify visual properties belong
not in the text, but in the definitions of commands that describe logical structure.
E%Q$ provides the \emph command for emphasized text; Section 3.4 explains
how to define your own commands for the logical structures in your document.
For example, suppose you want the names of genera to appear in italic in your
book on African mammals. Don't use \ t e x t i t throughout the text; instead,
define a \genus command and write

Connochaetes seems to pop up everywhere. \genus(Connochaetes) seems to pop up ...

Then, if you decide that Connochaetes and all other genera should appear in
slanted rather than italic type, you just have to change the definition of \genus.

38 Carrying On

3.2 Symbols from Other Languages

Languages other than English have a variety of accents and special symbols.
This section tells you how to generate the ones used in most Western languages.
These accents and symbols are not available in the typewriter family of type
styles. All the commands introduced in this section are robust. .

Commands to produce accents and symbols from other languages allow you
to put small pieces of non-English text in an English document. They are not
adequate for writing a complete document in another language. The babel
package allows you to produce documents in languages other than English, as
well as multilanguage documents. Consult the B w Companion for details.

3.2.1 Accents

Table 3.1 shows how to make a wide variety of accents. In this and all similar
tables, the 'I)$ output is followed by the input that produces it, the first entry
in Table 3.1 showing that you produce b by typing \'Co). The letter o appears
in this table, but the commands can accent any letter.

El seiior estA bien, garqon. El se\"Cnlor est\'Cal bien, gar\cCclon.

The letters i and j need special treatment because they should lose their dots
when accented. The commands \i and \ j produce a dotless i and j , respectively.

The commands in Table 3.1 can be used only in paragraph and LR modes.
Accents in math mode, which produce accented symbols in mathematical for-
mulas, are made with commands described in Section 3.3.6.

3.2.2 Symbols

Table 3.2 shows how to make some symbols from non-English languages. Note
that the symbols i and i are produced by typing a pair of punctuation characters,
in much the same way that a medium-length dash is produced by typing two
- characters. The commands in Table 3.2 can appear only in paragraph and LR
modes; use an \mbox command to put one inside a mathematical formula.

Table 3.1: Accents.

3.3 Mathematical Formulas 39

Table 3.2: Non-English Symbols.

The following six special punctuation symbols can be used in any mode:

Remember also that the seven symbols # $ % & - {) are produced by the seven
commands \# \$ \% \% \, \(\).

In addition to the symbol-making commands described here, there are many
others that can be used only in math mode. They are described in Section 3.3.2.

3.3 Mathematical Formulas

A formula that appears in the running text, called an in-text formula, is pro-
duced by the math environment. This environment can be invoked with either
of the two short forms \(. . . \) or $. . . $, as well as by the usual \begin . . .
\end construction. The displaymath environment, which has the short form
\ C. . . \ I , produces an unnumbered displayed formula. The short forms $. . . $,
\ (. . . \) , and \ C. . . \I ;act as full-fledged environments, delimiting the scope of
declarations contained within them. A numbered displayed formula is produced
by the equation environment. Section 4.2 describes commands for assigning
names to equation numbers and referring to the numbers by name, so you don't
have to keep track of the actual numbers.

The math, displaymath, and equation environments put 7)jX in math
mode. TJ$ ignores spaces in the input when it's in math mode (but space
characters may still be needed to mark the end of a command name). Sec-
tion 3.3.7 describes how to add and remove space in formulas. Remember that
'I$$ is in LR mode, where spaces in the input generate space in the output,
when it begins processing the argument of an \mbox command-even one that
appears inside a formula.

All the commands introduced in this section can be used only in math mode,
unless it is explicitly stated that they can be used elsewhere. Except as noted,
they are all robust. However, \begin, \end, \(, \), \ [, and \I are fragile
commands.

40 Carrying On

3.3.1 Some Common Structures

Subscripts and Superscripts

Subscripts and superscripts are made with the - and - commands. These com-
mands can be combined to make complicated subscript and superscript expres-
sions.

Fractions

Fractions denoted by the / symbol are made in the obvious way.

Multiplying by n/2 gives (m + n)/n. Multiplying by $n/2$ g ives \ ((m+n)/n \).
I

Most fractions in the running text are written this way. The \ frac command
is used for large fractions in displayed formulas; it has two arguments: the
numerator and denominator.

The \frac command can be used in an in-text formula to produce a fraction
like (by typing $\f racCilC23$), but this is seldom done.

Roots

The \ sqrt command produces the square root of its argument; it has an optional
first argument for other roots. It is a fragile command.

A square root and an nth root m. . . . \(\sqrt(x+y) \) . . . \(\sqrt [nl€23 \) .

Ellipsis

The commands \ ldots and \cdots produce two different kinds of ellipsis (. . .).

A low ellipsis: XI, . . . , x,.
A centered ellipsis: a + . . - + z .

A low e l l i p s i s : $x-(I), \ ldots ,x-CdS.
A centered e l l i p s i s : $a + \cdots + z$.

Use \ ldots between commas and between juxtaposed symbols like a . . . z; use
\cdots between symbols like +, -, and =. can also produce vertical and
diagonal ellipses, which are used mainly in arrays.

3.3 Mathematical Formulas 4 1

The \ ldots command works in any mode, but \cdots, \vdots, and \ddots can
be used only in math mode.

3.3.2 Mat hematical Symbols

There are TEX commands to make almost any mathematical symbol you're likely
to need. Remember that they can be used only in math mode.

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding a \ to
the name of the letter. For an uppercase Greek letter, just capitalize the first
letter of the command name.

Making Greek letters is as easy as x (or II). . . . is as easy as π (or Π).

(The $'s are needed because these commands can be used only in math mode.) If
the uppercase Greek letter is the same as its Roman equivalent, as in uppercase
alpha, then there is no command to generate it. A complete list of the commands
for making Greek letters appears in Table 3.3. Note that some of the lowercase
letters have variant forms, made by commands beginning with \var. Also,
observe that there's no special command for an omicron; you just use an o.

Lowercase
0 \theta o o
19 \vartheta .rr \p i
L \ i o ta a \varpi
K. \kappa p \rho
A \lambda e \varrho
/A \mu u \sigma
v \nu 5 \varsigma
< \ x i

Uppercase
r \Gamma h \Lambda C \Sigma
A \Delta E \ X i T' \Upsilon
8 \Theta ll \Pi \Phi

Table 3.3: Greek Letters.

42 Carrying On

Calligraphic Letters

7ji-jX provides twenty-six uppercase calligraphic letters A, 23, . . . , 2, also called
script letters. They are produced by a special type style invoked with the
\mathcal command.

Choose 3 such that T (x) > 0. Choose $\mathcalCF)$ such that . . .

Only the twenty-six uppercase letters are available in the calligraphic type style.

A Menagerie of Mathematical Symbols

T)&K can make dozens of special mathematical symbols. A few of them, such as
+ and >, are produced by typing the corresponding keyboard character. Others
are obtained with the commands in Tables 3.4 through 3.7. The shaded symbols
require the latexsym package to be loaded with a \usepackage command. (See
Section 2.2.2.) Additional symbols can be made by stacking one symbol on
top of another with the \stackre1 command of Section 3.3.6 or the array
environment of Section 3.3.3. You can also put a slash through a symbol by
typing \not before it.

If x p y then x $ y - 1. If $X \not< y$ then \ (x \not\leq y-1 \).

If the slash doesn't come out in exactly the right spot, put one of the math-mode
spacing commands described in Section 3.3.7 between the \not command and
the symbol.

There are some mathematical symbols whose size depends upon what kind
of math environment they appear in; they are bigger in the displaymath and
equation environments than in the ordinary math environment. These symbols
are listed in Table 3.8, where both the large and small versions are shown.
Subscript-sized expressions that appear above and below them are typed as
ordinary subscripts and superscripts.

Table 3.4: Binary Operation Symbols. (Shaded ones require latexsym package.)

3.3 Mathematical Formulas 43

Table 3.5: Relation Symbols. (Shaded ones require latexsym package.)

t \leftarrow
+ \Leftarrow
--t \rightarrow
+ \Rightarrow
* \lef trightarrow
* \Lef trightarrow
H \mapsto
t. \hooklef tarrow - \lef tharpoonup - \leftharpoondown
+ \rightleftharpoons

- \longleftarrow
+== \Longlef tarrow - \longrightarrow
=$ \Longrightarrow - \longleftrightarrow
(3 \Longleftrightarrow - \longmapsto
'-+ \hookrightarrow - \rightharpoonup

poondown

i

Table 3.6: Arrow Symbols. (Shaded ones require latexsym package.)

Table 3.7: Miscellaneous Symbols. (Shaded ones require latexsym package.)

Table 3.8: Variable-sized Symbols.

Here's how they look when displayed: Here's how they look when displayed:
\[\sum-Ci=l)"{n) x-xi) = \int-(Ol^Cl) f \I
and in the text:
\(\sum-(i=l)-{n) x-xi) = \int-CO)-{I) f \).

i=l

Section 3.3.8 tells how to coerce 'I)$ into producing Cr=l in a displayed formula
n

and in an in-text formula.
i=l

Log-like Functions

In a formula like log(x + y), the "log", which represents the logarithm function,
is a single word that is usually set in roman type. However, typing log in a
formula denotes the product of the three quantities 2 , o, and g , which is printed
as log. The logarithm function is denoted by the \log command.

Logarithms obey the law: log xy = logx + log y. ... \ (\log xy = \log x + \log y \) .

Other commands like \log for generating function names are listed in Table 3.9.
Two additional commands produce the "mod" (modulo) function: \bmod for a
binary relation and \pmod for a parenthesized expression. (Remember b as in
binary and p as in parenthesized.)

Table 3.9: Log-like Functions.

3.3 Mathematical Formulas 45

gcd(m, n) = a mod b
x = y (mod a + b)

Note that \pmod has an argument and produces parentheses, while \bmod pro-
duces only the "mod".

Some log-like functions act the same as the variable-sized symbols of Table 3.8
with respect to subscripts.

As a displayed formula:

lim x = 0
n-00

As a displayed formula:
\ [\lim-(n \rightarrow \infty) x = 0 \I

but in text:
\ (\lira-{ ... 3 x = 0 \) .

but in text: lim,,, x = 0.

3.3.3 Arrays

The array Environment

Arrays are produced with the array environment. It has a single argument that
specifies the number of columns and the alignment of items within the columns.
For each column in the array, there is a single letter in the argument that specifies
how items in the column should be positioned: c for centered, 1 for flush left,
or r for flush right. Within the body of the environment, adjacent rows are
separated by a \\ command and adjacent items within a row are separated by
an & character.

a + b + c uv x-y 27
a + b u + v z 134

a 3u + vw xyz 2,978

\ (\beginCarray3Cclcr3
a+b+c & uv & x-y & 27 \\
a+b & u + v & z & I 3 4 \\
a & 3u+vu & xyz & 2,978

\endCarrayl \)

*
There must be no & after the last item in a row and no \\ after the last row.

is in math mode when processing each array element, so it ignores spaces.
Don't put any extra space in the argument.

In mathematical formulas, array columns are usually centered. However, a
column of numbers often looks best flush right. Section 3.3.4 describes how
to put large parentheses or vertical lines around an array to make a matrix or
determinant.

Each item in an array is a separate formula, just as if it were in its own
math environment. A declaration that appears in an item is local to the item;
its scope is ended by the &, \\, or \endCarray) that ends the item. The \\
command is fragile.

46 Carrying On

Vertical Alignment

draws an imaginary horizontal center line through every formula, at the
height where a minus sign at the beginning of the formula would go. An indi-
vidual array item is itself a formula with a center line. The items in a row of an
array are positioned vertically so their center lines are all at the same height.

Normally, the center line of an array lies where you would expect'it, halfway
between the top and bottom. You can change the position of an array's center
line by giving an optional one-letter argument to the a r r a y environment: the
argument t makes it line up with the top row's center line, while b makes it line
up with the bottom row's center line.

The box around each array in the following formula . . . \ [x - \beginCarray)(c)
is for clarity; it is not produced by the input: a-<I) \\ \vdots \\ a-Cn)

\end{array)
- \beginfarray) [tl Ccl)

More Complex Arrays

Visual formatting is sometimes necessary to get an array to look right. Sec-
tion C.1.6 explains how to change the vertical space between two rows; Sec-
tions 3.3.7 and 6.4.2 describe commands for adding horizontal space within an
item; and Section C.10.2 tells how to add horizontal space between columns.
The a r r a y environment has a number of additional features for making more
complex arrays; they are described in Section C.10.2. The &$'I)$ Companion
describes packages that provide additional features for the a r r a y environment.

The a r r a y environment can be used only in math mode and is meant for
arrays of formulas; Section 3.6.2 describes an analogous t a b u l a r environment
for making arrays of ordinary text items. The a r r a y environment is almost
always used in a displayed formula, but it can appear in an in-text formula as
well.

3.3.4 Delimiters

A delimiter is a symbol that acts logically like a parenthesis, with a pair of de-
limiters enclosing an expression. Table 3.10 lists every symbol that !I)$ regards
as a delimiter, together with the command or input character that produces it.
These commands and characters produce delimiters of the indicated size. How-
ever, delimiters in formulas should be big enough to L'fit around'' the expressions

3.3 Mathematical Formulas 47

Table 3.10: Delimiters.

that they delimit. To make a delimiter the right size, type a \left or \right
command before it.

Big delimiters are most often used with arrays. . . . \ C \left (\beginCarray3Cc3
\left I \beginCarray>Icc3

. . . \endCarray)
\right l \\
y \\

\endCarray) \right) \I

The \left and \right commands must come in matching pairs, but the match-
ing delimiters need not be the same.

Some formulas require a big left delimiter with no matching right one, or vice
versa. The \left and \right commands must match, but you can make an
invisible delimiter by typing a ". " after the \left or \right command.

i f y > O \ [x = \left\(\begin(array)<ll)

= { !: + y otherwise y & \mboxCif Sy>O$3 \\
z+y & \mbox(otherwise>
\endCarray)

\right. \I

3.3.5 Multiline Formulas

The displaymath and equation environments make one-line formulas. A for-
mula is displayed across multiple lines if it is a sequence of separate formulas
or is too long to fit on a single line. A sequence of equations or inequalities is
displayed with the eqnarray environment. It is very much like a three-column
array environment, with consecutive rows separated by \\ and consecutive items

48 Carrying On

within a row separated by & (Section 3.3.3). However, an equation number is
put on every line unless that line has a \nonumber command.

The middle column can be anything, not just a '='. . . . \beginCeqnarray)
x & = & 17y \ \

x = 17y (2) y & > & a + . . . + j + \nonytber \\

Section 4.2 describes how to let I 4 W handle references to equations so you
don't have to remember equation numbers.

The eqnarray* environment is the same as eqnarray except it does not
generate equation numbers.

A + or - that begins a formula (or certain subformulas) is assumed to be a
unary operator, so typing $-x$ produces -x and typing $\sum -x,(i3$ pro-
duces C -xi, with no space between the "-" and the "x". If the formula is part
of a larger one that is being split across lines, T)$ must be told that the + or
- is a binary operator. This is done by starting the formula with an invisible
first term, produced by an \mbox command with a null argument.

A formula can often be split across lines using a \ lefteqn command in an
eqnarray or eqnarray* environment, as indicated by the following example:

The \ lefteqn command works by making think that the formula it pro-
duces has zero width, so the left-most column of the eqnarray or eqnarray*
environment is made suitably narrow. The indentation of the following lines can
be increased by adding space (with the commands of Section 6.4.2) between the
\ lefteqn command and the \\.

3.3 Mathematical Formulas 49

Breaking a single formula across lines in this way is visual formatting, and I
wish I4W could do it for you. However, doing it well requires more intelligence
than I 4 W has, and doing it poorly can make the formula hard to understand, so
you must do it yourself. This means that the formula may have to be reformatted
if you change notation (changing the formula's length) or if you change the style
of your document (changing the line length).

3.3.6 Putting One Thing Above Another
Symbols in a formula are sometimes placed one above another. The array
environment is good for vertically stacking subformulas, but not smaller pieces-
you wouldn't use it to put a bar over an x to form 5. l3w provides special
commands for doing this and some other common kinds of symbol stacking.

Over- and Underlining

The \overline command puts a horizontal line above its argument.

You can have nested overlining: 32 + 1. . . . \(\overline(\overlineCx~~~21 + 11 \) .

There's an analogous \underline command for underlining that works in para-
graph and LR mode as well as math mode, but it's seldom used in formulas.

The value is &. - \underline(The) value is $\underline(3x)$.

The \underline command is fragile.
Horizontal braces are put above or below an expression with the \overbrace

and \underbrace commands.

In a displayed formula, a subscript or superscript puts a label on the brace.

Accents

The accent commands described in Section 3.2.1 are for ordinary text and cannot
be used in math mode. Accents in formulas are produced with the commands
shown in Table 3.11. The letter a is used as an illustration; the accents work
with any letter.

Wide versions of the \hat and \ t i l d e accent are produced by the \widehat
and \widetilde commands. These commands try to choose the appropriate-
sized accent to fit over their argument, but they can't produce very wide accents.

50 Carrying On

Table 3.11: Math Mode Accents.

A h

Here are two sizes of wide hat: 1 - x = - y. . . . \(\widehat{l-x) = \widehat<-y3 \) .

The letters i and j should lose their dots when accented. The commands \imath
and \jmath produce a dotless i and j, respectively.

There are no dots in i+ j; . . . \(\vecC\imath> + \tilde{\jmath) \) .

Stacking Symbols

The \stackre1 command stacks one symbol above another.

See Section 3.3.8 for an explanation of the \ m a t h command. The \stackre1
command's first argument is printed in small type, like a superscript; use the
\ texts ty le declaration of Section 3.3.8 to print it in regular-size type.

3.3.7 Spacing in Math Mode

In math mode, '&X ignores the spaces you type and formats the formula the way
it thinks is best. Some authors feel that T@ cramps formulas, and they want
to add more space. TEX knows more about typesetting formulas than many
authors do. Adding extra space usually makes a formula prettier but harder
to read, because it visually "fractures" the formula into separate units. Study
how formulas look in ordinary mathematics texts before trying to improve W's
formatting.

Although fiddling with the spacing is dangerous, you sometimes have to do it
to make a formula look just right. One reason is that T)$ may not understand
the formula's logical structure. For example, it interprets y dx as the product
of three quantities rather than as y times the differential dx, so it doesn't add
the little extra space after the y that appears in ydx. Section 3.4 explains how
to define your own commands for expressing this kind of logical structure, so
you need worry about the proper spacing only when defining the commands, not
when writing the formulas.

Like any computer program that makes aesthetic decisions, TjjX sometimes
needs human assistance. You'll have to examine the output to see if the spacing

3.3 Mathematical Formulas 51

needs adjustment. Pay special attention to square root signs, integral signs, and
quotient symbols (/).

The following five commands add the amount of horizontal space shown
between the vertical lines:

11 \, thin space 1 \ : medium space I I \,, interword space
11 \ ! negative thin space I I \ ; thick space

The \! acts like a backspace, removing the same amount of space that \, adds.
The \, command can be used in any mode; the others can appear only in math
mode. Here are some examples of their use, where the result of omitting the
spacing commands is also shown.

f i x \sqrt(2) \, x instead of f i x
n/logn n / \ ! \log n instead of n/ log n

JJ z d x d y \ int \ ! \ ! \ int z\ , dx\ , dy instead of J $ zdxdy

As with all such fine tuning, you should not correct the spacing in formulas until
you've finished writing the document and are preparing the final output.

3.3.8 Changing Style in Math Mode
Type Style

I4-rn provides the following commands for changing type style in math mode:

italic + 2jt !P log[$] $\mathit(italic + 2-(f t) \Psi \log [\psi1)$
roman + 2" \k log[$] $\mathdroman + 2-(f t) \Psi \log [\pail I$
bold + 2R e log[+] $\mathbf (bold + 2̂ (ft) \Psi \logC\psil)$
sans serif + 2% log[$] $\mathsfisam\ serif + ... I$
typewriter + 2ft9 log[+] $\mathttCtypewriter + ...)$
CAL UPPE'RCASE L E ' i r T E ~ ONLY $\mathcal(CAL\ UPPERCASE\ LETTERS\ ONLY)$

They change the style only of letters, numbers, and uppercase Greek letters.
Nothing else is affected. BT)$ normally uses an italic type style for letters
in math mode. However, it interprets each letter as a separate mathematical
symbol, and .it produces very different spacing than an ordinary italic typestyle.
You should use \mathit for multiletter symbols in formulas.

Is different any dzflerent from di f 2 e 2 ~ n t ? Is $different$ any $\mathit(different)$...

As is evident from this example, you should not use $. . . $ as a shorthand for
\emphi.. . I or \ text i t (. . . I .

The \boldmath declaration causes everything in a formula to be bold, in-
cluding the symbols.

52 Carrying On

This declaration cannot be used in math mode. To produce a bold subformula,
put the subformula in an \mbox.

The \boldmath command generates a warning if any font (size and style of type)
that you might use in a formula isn't available. For example, it might issue a
warning that Bm does not have the font needed to produce a bold sans serif
subsubscript, even though you never dreamed of producing such a subsubscript.
You should examine your output to make sure that the fonts you do use are the
right ones.

M a t h Style

l$jK uses the following four math styles when typesetting formulas:

display For normal symbols in a displayed formula.

text For normal symbols in an in-text formula.

script For subscripts and superscripts.

scriptscript For further levels of sub- and superscripting, such as sub-
scripts of superscripts.

Display and text math styles are the same except for the size of the variable-
sized symbols in Table 3.8 on page 44 and the placement of subscripts and
superscripts on these symbols, on some of the log-like functions in Table 3.9 on
page 44, and on horizontal braces. l$jK uses small type in script style and even
smaller type in scriptscript style. The declarations \displaystyle, \ tex ts ty le ,
\ scr ip ts ty le , and \ scr ip tscr ip ts ty le force 'I)$ to use the indicated style.

Compare the small superscript in ex(i) with the . . . small superscript i n \(e^<x(i)) \)
large one in e ~ (~) large one in \(e^<\textstyle y(i)3 \).

3.3.9 When All Else Fails

If you write a lot of complicated formulas, sooner or later you'll encounter one
that can't be handled with the commands described so far. When this happens,
the first thing to do is look at the advanced IKQX features described in Sections
C.7 and C.10.2. If you don't find what you need there, consider using the
amstex package, described in the I4W Companion. This package was created
for mathematicians by the American Mathematical Society.

If you are not a mathematician and don't write many complicated formulas,
you may be satisfied with an ad hoe solution to your problem that uses visual
formatting. Try the commands in Section 6.4.3 that move text around and
change how big l$jK thinks it is. I4'I)$lys picture environment, described in

3.4 Defining Commands and Environments 53

Section 7.1, allows you to put a symbol anywhere you want, and to draw lines
and arrows. The graphics package described in Section 7.2 contains commands
to shrink, stretch, and rotate text. With a little effort, you can handcraft just
about any kind of formula you want.

3.4 Defining Commands and Environments
The input file should display as clearly as possible the logical structures in your
document. Any structure, such as a special mathematical notation, that ap-
pears several times in the document should be expressed with its own command
or environment. The following two sections explain how to define commands
and environments. Section 3.4.3 describes how to type theorems and similar
structures.

3.4.1 Defining Commands

The simplest type of repeated structure occurs when the same text appears
in different places. The \newcommand declaration defines a new command to
generate such text; its first argument is the command name and its second
argument is the text.

Let I?, be the number of gnats per cubic meter, ~~~~~~~~~~~~~~~~~~~~~Ci>$>
where ri is normalized with respect to ~ (s)

Let \gn\ be the ... where \gn\ is ...

The \,, commands are needed because ignores space characters following
the command name \gn.

This example illustates a common problem in defining commands to produce
mathematical formulas. The \Gamma command can be used only in math mode,
which is why the $'s are needed in the \newcommand argument. However, the
command \gn cannot be used in math mode because the first $ would cause
to leave math mode and encounter the \Gamma while in paragraph mode. To
solve this problem, I+" provides the \ensuremath command, which ensures
that its argument is typeset in math mode, regardless of the current mode.
Thus, \ensuremath(x^C233 is equivalent to $xAC23$ if it appears in LR or
paragraph mode, and it is equivalent to xeC23 if it appears in math mode. With
\ensuremath, we define \gn so it can be used in any mode.

Let I'i be the number of gnats per cubic meter, \newcommand~\gn>I\ensuremath~\Gamma-Ci3))
where eri = v(s)

Let \gn\ be the . . . where $ê I\gn)=\nu(s)$.

You should use \ensuremath when defining a command to be used both in and
out of math mode.

54 Carrying On

In addition to making the input more readable, defining your own commands
can save typing. B w ' s command and environment names have generally been
chosen to be descriptive rather than brief. You can use \newcommand to define
abbreviations for frequently used commands. For example, the declarations

define \be . . . \ee to be equivalent to

For repetitive structures having components that vary, you can define com-
mands with arguments by giving \newcommand an optional argument.

Since gnu(5x; y) and gnu(5x-1; y+l) represent ad- \newcommandC\gnav) [21 C\ensuremathC\mathit
jacent populations, they are approximately equal. {gnu) (#I; W2)))

Since \gnawCSx)Cy) an4 \gnau{5x-l){y+l) . . .
The optional argument 2 (in square brackets) specifies that \gnaw has two ar-
guments. The #I and #2 in the last argument of \newcommand are called pa-
rameters; they are replaced by the first and second arguments, respectively, of
\gnaw when that command is used. A command may have up to nine arguments.
Section C.8.1 explains how to define a command that has an optional argument.

When you define a command like \gnaw, the definition is saved exactly as it
appears in the \newcommand declaration. When QX encounters a use of \gnaw,
it replaces \gnaw and its arguments by the definition, with the arguments substi-
tuted for the corresponding parameters-the #I replaced by the first argument
and the #2 replaced by the second. 'l&X then processes this text pretty much
as if you had typed it instead of typing the \gnaw command. However, defining
a command to have space at the end is usually a bad idea, since it can lead to
extra space in the output when the command is used.

One command can be defined in terms of another.

The definition above of gnu(0; 1) gives gnu(5x; y) \neucommand(\usepaw)C\gnauC5x)Cy))
the expected value. ... of \gnaw(O)Cl) gives \usegnaw\ the ...

It doesn't matter whether the \newcommand declaration defining \usegnaw comes
before or after the one defining \gnaw, so long as they both come before any
use of \usegnaw. However, a command cannot be defined in terms of itself,
since w&ld chase its tail forever trying to figure out what such a definition

When 'I)& encounters a command, it looks for that command's arguments
before interpreting it or any subsequent commands. Thus, you can't type

2This kind of recursive definition is possible using more advanced commands, but it
cannot be done with the UT@ commands described in this book.

56 Carrying On

Here is an example of a user-defined environment: \newenvironment{emphit){\begin{itemize}

This environment produces items that are \em){\end{itekize)) -
emphasized. ... example of a user-defined environment:

\begin{emphit)
It is defined in terns of I 4 W s itemize en- \item This produces .. .
vironment and \em command. \end{emphit)

An optional argument of the \newenvironment command allows you to define
an environment that has arguments; it works the same as described above for
\new command.

Observe how a new logical structure--in this ex- \newenvironment{descit) Cll C\begin{quote)
ample, a labeled description of a single item--can \textitW) :)i\end€quote))
be defined in terms of existing environments. . . .

Armadillos: This witty description of defined in terms of existing environments.

the armadillo was produced by the \begin{descit3iArmadillos3

descit environment. This witty description of the armadillo ...
\end{descit)

The parameters (the #1, #2, etc.) can appear only in the begin t e d . The com-
ments made above about the scope of declarations that appear inside arguments
of a command defined with \newcommand apply to the arguments of environ-
ments defined with \newenvironment. Section C.8.2 explains how to define an
environment with an optional argument.

The \newenvironment command produces an error if the environment is
already defined. Use \renewenvironment to redefine an existing environment. If
\newenvironment complains that an environment you've never heard of already
exists, choose a different environment name. Use \renewenvironment only when
you know what you're doing; don't try redefining an environment that you don't
know about.

3.4.3 Theorems and Such

Mathematical text usually includes theorems and/or theorem-like structures
such as lemmas, propositions, axioms, conjectures, and so on. Nonmathemat-
ical text may contain similar structures: rules, laws, assumptions, principles,
etc. Having a built-in environment for each possibility is out of the question,
so B"QX provides the \newtheorem declaration to define environments for the
particular theorem-like structures in your document.

The \newtheorem command has two arguments: the first is the name of the
environment, the second is the text used to label it.

3.4 Defining Commands and Environments 5 7

Conjectures are numbered consecutively from the \newtheorem(guess)(Conjecture)
beginning of the document; this is the fourth one: . . .

document; this is the fourth one:
Conjecture 4 A11 conjectures are interesting, but \begin(guess)
some conjectures are more interesting than others. All conjectures ... than others.

\endCguessI

The \newtheorem declaration is best put in the preamble, but it can go anywhere
in the document.

A final optional argument to \newtheorem causes the theorem-like environ-
ment to be numbered within the specified sectional unit.

This is the first Axiom of Chapter 3:

Axiom 3.1 All axioms are very dull.

\newtheorem~axiom)~Axiom~ [chapter]
. . .
\begidaxiom)
All axioms are very dull.

\end{axiom)

Theorem-like environments can be numbered within any sectional unit; using
section instead of chapter in the example above causes axioms to be numbered
within sections.

Sometimes one wants different theorem-like structures to share the same
numbering sequence-so, for example, the hunch immediately following Conjec-
ture 5 should be Hunch 6.

Conjecture 5 Some good conjectures are num- \newtheorem(guess)(Conjecture)
kered. \newtheorem(hunch) [guess] (~unch)

. a .

Hunch 6 There are no sure-fire hunches. \begin{guess) Some good . . . \end(guess)
\begin(hunch) There are . . . \end(hunch)

The' optional argument guess in the second \newtheorem command specifies
that the hunch environment should be numbered in the same sequence as the
guess environment.

A theorem-like environment defined with \newtheorem has an optional argu-
ment that is often used for the inventor or common name of a theorem, definition,
or axiom.

Conjecture 7 (Wiles, 1985) There do edst in- \begin(guess) [Wiles, 19851
tegers n > 2 , x, y, and z such that xn + yn = zn. There do exist integers $n>2$, I, . . .

\endCguess)

See Section C. l . l if the body of a theorem-like environment begins with a C.

58 Carrying On

3.5 Figures and Other Floating Bodies

3.5.1 Figures and Tables

'lJ$ will break a sentence across pages to avoid a partially filled page. But
some things, such as pictures, cannot be split; they must be "floated" to con-
venient places, like the top of the following page, to prevent half-empty pages.
&TEX provides two environments that cause their contents to float in this way:
figure and table. There are packages that define or allow you to define other
environments for floating objects, such as a program environment for computer
programs. B ' doesn't care what you use any of these environments for; so far
as it's concerned, the only difference between them is how they are captioned.

The caption on a figure or table is made with a \caption command hav-
ing the caption's text as its argument. This is a moving argument, so fragile
commands must be \protect'ed (see Section 2.2.3). The figure or table envi-
ronment is placed in with the text, usually just past the point where the figure
or table is first mentioned.

The body of the figure goes here. This figure hap This is the place i n the running text that
pened to float to the top of the current page. mentions Figure-7 for the f i r s t time.

Figure 7: The caption goes here.
\begidfigure)

The body of the figure goes here.
This figure ... the current page.
\caption{The caption goes here. 3

\end{figure)
This is the place in the running text that mentions The figure w i l l not be put on an . . .
Figure 7 for the first time. The figure will not be
put on an earlier page than the text preceding the
figure environment.

Tables are numbered separately from figures, using the same numbering scheme.
Section 4.2 explains how to number cross-references automatically, so you never
have to type the actual figure numbers.

You can put anything you want in the body of a figure or table; I4W
processes it in paragraph mode just like any other text. The figure environment
is generally used for pictures and the table environment for tabular information.
Simple pictures can be drawn with the picture environment of Section 7.1. You
can insert pictures prepared with other programs using the graphics package,
described in Section 7.2. You can also use the \vspace command of Section 6.4.2
to leave room for a picture to be pasted in later. Tabular material can be
formatted with the tabular environment of Section 3.6.2. Section 6.5 explains
how to center the figure or table.

The body of a figure or table is typeset as a paragraph the same width as
in the ordinary running text. Section 6.4.3 explains how to make paragraphs
of different widths, position two half-width figures side by side, and do other

3.5 Figures and Other Floating Bodies 59

formatting within a figure or table environment. More than one \caption
command can appear in the same figure or table environment, producing a
single floating object with multiple numbered captions. The \caption command
can be used only in a figure or table environment.
BX)$ ordinarily tries to place a figure or table either above the text at the

top of a page, below the text at the bottom of a page, or on a separate page
containing nothing but figures and tables. Section C.9.1 describes the rules
by which E Q X decides where a floating object should float and how you can
influence its decision; read that section if you don't understand why BT)$ put
a figure or table where it did.

3.5.2 Marginal Notes

A marginal note is made with the \marginpar command, having the text as its
argument. The note is placed in the margin, its first line even with the line of This is a mar-
text containing the command. X)$ is in paragraph mode when processing the ginal note.
marginal note. The following example shows how I typed this paragraph:

and, having the text as its ... placed in the margin,
line even with the line of This i s a mar- \marginpar{\em This is a marginal note .)

mode when processing the ginal note. its first line even with the line of
yped this paragraph. ... how I typed this paragraph.

The standard styles put notes in the right margin for one-sided printing (the
default), in the outside margin for two-sided printing (specified by the twoside
document-class option), and in the nearest margin for two-column formatting
(the twocolumn option). Section (2.9.2 describes commands for getting I 9 ' to
put them in the opposite margin.

You may want a m&rginal note to vary depending upon which margin it's in.
For example, to make an arrow pointing to the text, you need a left-pointing
arrow in the right margin and a right-pointing one in the left margin. If the
\marginpar command is given an optional first argument, it uses that argument
if the note goes in the left margin and uses the second (mandatory) argument if
the note goes in the right margin. The command

makes an arrow that points towards the text, whichever margin the note appears
in.3

A marginal note is never broken across pages; a note that's too long will
extend below the page's bottom margin. BX)$ moves a marginal note down on
the page to keep it from bumping into a previous one, warning you when it does

3 ~ h e arrows won't be symmetrically placed, since both will be at the left of the space
reserved for marginal notes. The \hf ill command of Section 6.4.2 can be used to adjust their
horizontal position.

60 Carrying On

so. When using notes more than two or three lines long, you may have to adjust
their placement according to where they happen to fall on the page. The vertical
position of a note is changed by beginning it with a vertical spacing command
(Section 6.4.2). You may also have to use the commands of Section 6.2.2 to
control where l#m starts a new page. This is visual design, which means
reformatting if you make changes to the document. Save this job until the very
end, after you've finished all the writing.

Marginal notes are not handled efficiently by U r n ; it may run out of space if
you use too many of them. How many you can use before this happens depends
upon what computer you're running on and how many figures and tables
you have.

3.6 Lining It Up in Columns
The tabbing and tabular environments both can align texi in columns. The
tabbing environment allows you to set tab stops similar to the ones on a type-
writer, while the tabular environment is similar to the array environment de-

i
scribed in Section 3.3.3, except that it is for ordinary text rather than formulas.
The tabbing and tabular environments differ in the following ways:

The tabbing environment can be used only in paragraph mode and makes
a separate paragraph. The tabular environment can be used in any mode;
it can put a table in the middle of a formula or line of text.

'I)jX can start a new page in the middle of a tabbing environment, but
not in the middle of a tabular environment. Thus, a long tabbing envi-
ronment can appear in the running text, but a long tabular environment
should go in a figure or table (Section 3.5.1).

?I)$ automatically determines the widths of columns in the tabular en-
vironment; you have to do that yourself in the tabbing environment by
setting tab stops.

A change of format in the middle of the environment is easier in the
tabbing than in the tabular environment. This makes the tabbing en-
vironment better at formatting computer programs.

If neither the tabbing nor the tabular environment does what you want, consult
the B m Companion. It describes several packages that provide very powerful
commands to format tabular material.

3.6.1 The tabbing Environment

In the tabbing environment, you align text in columns by setting tab stops and
tabbing to them, somewhat as you would with an ordinary typewriter. Tab

3.6 Lining It Up in Columns 6 1

stops are set with the \= command, and \> moves to the next tab stop. Lines
are separated by the \\ command.

The tabbing environment starts a new line. ... environment starts a new l i n e .
\begin{tabbing)

If it's raining If \= i t 's raining \\
then put on boots, \> then \= put on boots , \ \

take hat; \> \ > t a k e h a t ; \\
else smile. \> e l s e \> smile. \\

Leave house. Leave house.

The text that follows starts on a new line, begin- \endCtabbing)
The t e x t t h a t follows s t a r t s on a new ...

ning a new paragraph if you leave a blank line after
the \endItabbing) command.

Unlike a typewriter's tabbing key, the \> command tabs to the logically next
tab stop, even if that means tabbing to the left.

A short column
This is t$dl#Dk;/ / /

\begin(tabbing)
A short \= column. \\
This i s too long. \> / / / / / / /

\endCtabbing)
\mboxO

Remember that the input file's format doesn't matter; one space is the same as
a hundred.

The \= command resets the logically next tab stop.

Old Column 1 Old Col 2 Old Col 3
Col 1 Col2 "
New Col 1 New 2 Same Col3
Col 1 Col 2 Col 3

\begin<tabbing)
Old Column I \= Old Col 2 \= Old Col 3 \\
Col I \> Col 2 \\
New Col I \= New 2 \> Same Col 3 \\
Col I \> Col 2 \> Col 3
\end(tabbing)

Spaces in the input are ignored after a \= or \> command, but not before it.
A line that ends with a \ k i l l command instead of a \\ produces no output,

but can be used for setting tabs.

Gnat Gnu Gnome
Armadillo Armament Armorer

\begidtabbing1
Armadillo \= Armament \= \ k i l l
Gnat \> Gnu \> Gnome \\
Armadillo \> Armament \> Armorer
\endCtabbingl

A declaration made in a tabbing environment is Iocal to the current item; its
scope is ended by the next \=, \>, \\, \ k i l l , or \end(tabbing) command.

62 Carrying On

A lively gnat A dull gnu A lively \em gnat \> A dull gnu \\

The tabbing environment has a number of additional features that are described
in Section C.lO.l.

3.6.2 The tabular Environment

The tabular environment is similar to the array environment, so you should
read Section 3.3.3 before reading any further here. It differs from the array
environment in two ways: it may be used in any mode, not just in math mode,
and its items are processed in LR mode instead of in math mode. This makes
tabular better for tabular lists and array better for mathematical formulas.
This section describes some features used mainly with the tabular environ-
ment, although they apply to array as well. Many additional features of these
environments are described in Section C. 10.2.

A I in the tabular environment's argument puts a vertical line extending the
full height of the environment in the specified place. An \hline command after
a \\ or at the beginning of the environment draws a horizontal line across the
full width of the environment. The \cline+ j3 command draws a horizontal
line across columns i through j , inclusive.

\beginCtabular)(l I1 l lr l I) \hline
gnats gnats & gram &\$13.65 \\ \clineC2-3)

& each & .Oi \\ \hline
stuffed 92.50 gnu & stuffed & 92.50

emu 33.33 \\ \clineCl-11 \clineC3-3)
armadillo frozen 8.99 emu & & 33.33 \\ \hline

armadillo & frozen & 8.99 \\ \hline
\end€tabular)

This is the only situation in which a \\ goes after the last row of the environment.
Single (not doubled) I specifiers in the argument of a tabular (or array)

environment do not change the width of the table. Tables not enclosed by
vertical lines therefore have extra space around them. Section C.10.2 explains
how to remove this space.

A single item that spans multiple columns is made with a \multicolumn
command, having the form

where n is the number of columns to be spanned, pos specifies the horizontal
positioning of the item-just as in the environment's argument-and item is
the item's text. The pos argument replaces the portion of the environment's
argument corresponding to the n spanned columns; it must contain a single 1,
r , or c character and may contain I characters.

3.7 Simulating Typed Text 63

Note the placement of "ITEM" and "PRICE": ... \beginCtabular)(llr)
\multicolumnC2Hc3CITEM3 &

ITEM PRICE \multicolumnCl3Cc~CPRICE~ \\
gnat (dozen) 3.24 gnat & (dozen) & 3.24
gnu (each) 24,985.47

\\
gnu & (each) & 24,985.47

\endCtabular)

A \multicolumn command spanning a single column serves to override the item
positioning specified by the environment argument.

When the environment argument has I characters, it's not obvious which of
them get replaced by a \multicolumn's positioning argument. The rule is: the
part of the environment argument corresponding to any column other than the
first begins with an 1, r, or c character. By this rule, the argument I1 I1 l r l is
split into parts as Llllrlllllrl,.

style
smart

\beginCtabular)CIllllrl) \hline\hline
\emphCtype) 8
\multicolumn~2~~c I3C\emphCstyle)3 \\ \hline
smart & red & short \\
rather silly & puce & tall \\ \hline\hline
\end{tabular)

The tabular environment produces an object that 'I)$ treats exactly like
a single, big letter. You could put it in the middle of a paragraph, or in the
middle of a word-but that would look rather strange. A tabular environment
is usually put in a figure or table (Section 3.5.1), or else displayed on a line by
itself, using the center environment of Section 6.5.

The tabular environment makes it easy to draw tables with horizontal and
vertical lines. Don't abuse this feature. Lines usually just add clutter to a table;
they are seldom helpful. The numbered tables in this book do not contain a
single line.

3.7 Simulating Typed Text

A printed document may contain simulated typed text-for example, the in-
struction manual for a computer program usually shows what the user types.
The \ttfamily declaration causes w to produce text in a typewriter type
style (Section 3.1), but it doesn't stop l3$ from breaking the text into lines as
it sees fit. The verbatim environment allows you to type the text exactly the
way you want it to appear in the document.

64 Carrying On

The verbatim environment is the one place where . . . t o how the input f i l e is formatted.
BT@ pays attention to how the input file is for- \beginCverbatim)
matted. What the #%I&$-\^" is ' 'going' ' Con)

here \today \\\\????
What the #%I$$-\^" is "going" Con) \endiverbat i m)

here \today \\\\????

Each space you type produces a space in the output, and new lines are begun just
where you type them. Special characters such as \ and C are treated like ordinary
characters in a verbatim environment. In fact, you can type anything in the
body of a verbatim environment except for the fourteen-character sequence
\endCverbatim) .

The verbatim environment begins on a new line of output, as does the text
following it. A blank line after the \endCverbatim) starts a new paragraph as
usual.

The \verb command simulates a short piece of typed text inside an ordinary
paragraph. Its argument is not enclosed in braces, but by a pair of identical
characters.

The %\) I@& gnat and --#$ gnus are silly. The \verb+%\> <Q&+ gnat and \verb2--#$2 . . .

The argument of the first \verb command is contained between the two + char-
acters, the argument of the second between two 2 characters. Instead of + or 2,
you can use any character that does not appear in the argument except a space,
a letter, or a *.

There are also a verbatim* environment and a \verb* command. They
are exactly like verbatim and \verb except that a space produces a symbol
instead of a blank space.

You can type $xu=,,y$ or u$x=y$u. . . . \verb* l $x = y$1 or \verb*/ $x=y$ /.

The verbatim environment and \verb command are inherently anomalous, since
characters like $ and 1 don't have their usual meanings. This results in the
following restrictions on their use:

A verbatim environment or \verb command may not appear within an ar-
gument of any other command. (However, they may appear inside another
environment.)

There may be no space between a \verb or \verb* command and its
argument. The command and its argument must all appear on a single
line of the input file.

0 There may be no space between \end and C in \endCverbatim).

The verbatim environment is for simulating typed text; it is not intended to
turn I # ' into a typewriter. If you're tempted to use it for visual formatting,
don't; use the tabbing environment of Section 3.6.1 instead.

CHAPTER 4

Around

66 Moving Information Around

@TJ$ often has to move information from one place to another. For example, the
information contained in a table of contents comes from the sectioning commands
that are scattered throughout the input file. Similarly, the U ' command
that generates a cross-reference to an equation must get the equation number
from the equation environment, which may occur several sections later. This
chapter describes the features that cause L 4 ' to move information around.
You also move information around when you send your document to friends and
colleagues. Section 4.7 describes commands that make this easier.

requires two passes over the input to move information around: one
pass to find the information and a second pass to put it into the text. (It
occasionally even requires a third pass.) To compile a table of contents, one
pass determines the titles and starting pages of all the sections and a second
pass puts this information into the table of contents. Instead of making two
passes every time it is run, BTj$ reads your input file only once and saves the
cross-referencing information in special files for use the next time. For example,
if sample2e.tex had a command to produce a table ~f contents, then
would write the necessary information into the file sample2e. toc. It would use
the information in the current version of sample2e. toc to produce the table
of contents, and would write a new version of that file to produce the table of
contents the next time is run with sample2e. tex as input.

B'QX's cross-referencing information is therefore always "old", since it was
gathered on a previous execution. This will be noticeable mainly when you are
first writing the document-for example, a newly added section won't be listed
in the table of contents. However, the last changes you make to your document
will normally be minor ones that polish the prose rather than add new sections
or equations. The cross-referencing information is unlikely to change the last few
times you run I4TJ$ on your file, so all the cross-references will almost always
be correct in the final version. In any case, if the cross-referencing is incorrect,
I4w will type a warning message when it has finished. (But, I4' won't warn
you about changes to table-of-contents entries.) Running it again on the same
input will correct any errors.'

An error in your input file could produce an error in one of the special cross-
referencing files. The error in the cross-referencing file will not manifest itself
until that file is read, the next time you run @ ' . Section 8.1 explains how to
recognize such an error.

4.1 The Table of Contents
A \tableof contents command produces a table of contents. More precisely, it
does two things:

'If you're a computer wizard or are very good at mathematical puzzles, you may be able
to create a file in which a reference to a page number always remains incorrect. The chance
of that happening by accident is small.

4.2 Cross-References 6 7

* It causes BTj$ to write a new toc f i l e t h a t is, a file with the same first
name as the input file and the extension toc-with the information needed
ta generate a table of contents.

It reads the information from the previous version of the toc file to produce
a table of contents, complete with heading.

The commands \ l i s to f f igures and \ l i s to f t ab les produce a list of figures
and a list of tables, respectively. They work just like the \tableofcontents
command, except that BlJ$ writes a file with extension lof when making a
list of figures and a file with extension l o t when making a list of tables.

Occasionally, you may find that you don't like the way B ' prints a table
of contents or a list of figures or tables. You can fine-tune an individual entry by
using the optional argument to the sectioning command or \caption command
that generates it; see Sections C.4.1 and C.9.1. Formatting commands can also
be introduced with the \addtocontents command described in Section C.4.3.
If all else fails, you can edit the toc, lof , and l o t files yourself. Edit these files
only when preparing the final version of your document, and use a \nof i l e s
command (described in Section C . l l . l) to suppress the writing of new versions
of the files.

4.2 Cross-References

One reason for numbering things like figures and equations is to refer the reader
to them, as in: "See Figure 3 for more details." You don't want the "3" to
appear in the input file because adding another figure might make this one
become Figure 4. Instead, you can assign a key of your choice to the figure
and refer to it by that key, letting BT$jX translate the reference into the figure
number. The key is assigned a number by the \ label command, and the number
is printed by the \ref command. A \ label command appearing in ordinary
text assigns to the key the number of the current sectional unit; one appearing
inside a numbered environment assigns that number to the key.

Equation 4.12 in Section 2.3 below is Euler's f+
mous result.

2.3. Early Results

Euler's e&ation

combines the five most important numbers in
mathematics in a single equation.

Equation"\ref(eq:euler) i n
Section'\refi-sec-early) below
. . .
\subsect ionCEarly Results)
\labelCsec-early)
Euler's equation
\beginCequation)

eaCi\pi> + 1 = 0 \labelCeq:euler)
\end(equation)
combines the five most important ...

68 Moving Information Around

In this example, the \labelCeq: euler3 command assigns the key eq: euler to
the equation number, and the command \refCeq: euler3 generates that equa-
tion number.

A key can consist of any sequence of letters, digits, or punctuation charac-
ters (Section 2.1). Upper- and lowercase letters are different, so gnu and Gnu are -

distinct keys. In addition to sectioning commands, the following environments
also generate numbers that can be assigned to keys with a \ label command:
equation, eqnarray, enumerate (assigns the current item's number), figure,
table, and any theorem-like environment defined with the \newtheorem com-
mand of Section 3.4.3.

The \ label command can usually go in any natural place. To assign the
number of a sectional unit to a key, you can put the \ label commmd anywhere
within the unit except within a command argument or environment in which
it would assign some other number, or you can put it in the argument of the
sectioning command. To refer to a particular equation in an eqnarray environ-
ment, put the \ label command anywhere between the \\ or \beginCeqnarray)
that begins the equation and the \\ or \endCeqnarray)! that ends it. The posi-
tion of the \ label command in a figure or table is less obvious: it must go after
the \caption command or in its argument.

Figure 17 shows the evolution of the salamander Figure"\ref If ig : newt3 shows the evolution
(order Urodela) from its origin in the Jurassic . . . \beginCf igure3

\centering Body of Figure
Body of Figure \captionCNewts on parade.) \label(fig:nevt)

Figure 17: Newts on parade. \end€figure)
of the salamander...

(See Section 2.2.1 for an explanation of the " command.) A \caption command
within its figure or table environment acts like a sectioning command within
the document. Just as a document has multiple sections, a figure or table can
have multiple captions.

The \pageref command is similar to the \ref command except it produces
the page number of the place in the text where the corresponding \ label com-
mand appears.

See page 42 for more details. See pagem\pageref {'meaning') for more
...
The \labelI'meaning') meaning of life, ...

Text on page 42:
The meaning of life, the universe, and . . .

A \ref or \pageref command generates only the number, so you have to type
the page to produce "page 42".

The numbers generated by \ref and \pageref were assigned to the keys
the previous time you ran B'QX on your document. Thus, the printed output

4.3 Bibliography and Citation 69

will be incorrect if any of these numbers have changed. Bm will warn you
if this may have happened, in which case you should run it again on the input
file to make sure the cross-references are correct. (This warning will occur if
any number assigned to a key by a \ label command has changed, even if that
number is not referenced.) Each \ref or \pageref referring to an unknown key
produces a warning message; such messages appear the first time you process
any file containing these commands.

A \ label can appear in the argument of a sectioning or \caption command,
but in no other moving argument.

Using keys for cross-referencing saves you from keeping track of the actual
numbers, but it requires you to remember the keys. You can produce a list of
the keys by running BTjijX on the input file l a b l s t . tex. (You probably do this
by typing "latex lablst"; check your Local Guide to be sure.) BQX will then
ask you to type in the name of the input file whose keys you want listed, as
well as the name of the document class specified by that file's \documentclass
command.

4.3 Bibliography and Citation

A citation is a cross-reference to another publication, such as a journal article,
called the source. The modern method of citing a source is with a cross-reference
to an entry in a list of sources at the end of the document. With UQX, the
citation is produced by a \ c i t e command having the citation key as its argu-
ment.

Knudson [67] showed that, in the Arctic . . . Knudson"\citeCkn:gnusl shoved ..

You can cite multiple kources with a single \c i te , separating the keys by com-
mas. The \ c i t e command has an optional argument that adds a note to the
citation.

Although they had disappeared from Fiji [4,15,36], . . . Fiji-\cite{tom-ix,dick: ens ,harry+d),
Fudson [67, pages 222-3331 showed that . . . Knudson"\citeCpages 222--3331Ckn:gnus) ...

A citation key can be any sequence of letters, digits, and punctuation characters,
except that it may not contain a comma. As usual in BQX, upper- and lowercase
letters are considered to be different.

In the preceding examples, Bm has to determine that citation key kn: gnus
corresponds to source label 67. How UT)$ does this depends on how you produce
the list of sources. The best way to produce the source list is with a separate
program called BIBTS, described in Section 4.3.1. You can also produce it
yourself, as explained in Section 4.3.2.

70 Moving Information Around

4.3.1 Using BIBT~X

BIBTS is a separate program that produces the source list for a document,
obtaining the information from a bibliographic database. To use BIBTE;X, you
must include in your U w input file a \bibliography command whose argu-
ment specifies one or more files that contain the database. The names of the
database files must have the extension bib. For example, the command

specifies that the source list is to be obtained from entries in the files insect. bib
and animal. bib. There must be no space following the comma. Appendix B
explains how to make bibliographic database files.

BIBTS creates a source list containing entries for all the citation keys spec-
ified by \cite commands. The data for the source list is obtained from the
bibliographic database, which must have an entry for every citation key. A
\nocite command in the h$" input file causes the specified entries to appear
in the source list, but produces no output. For example, \nocite{g : nu, g: nat)
causes BIBTS to put bibliography database entries having keys g : nu and g : nat
in the source list. The command \nocite{*) causes aU entries in the biblio-
graphic database to be put in the source list. A \nocite command can go
anywhere after the \begin{document) command, but it is fragile.

To use BIBTS, your BT)iJC input file must contain a \bibliographystyle
command. This command specifies the bibliography style, which determines the
format of the source list. For example, the command

specifies that entries should be formatted as specified by the plain bibliog-
raphy style. The \bibliographystyle command can go anywhere after the
\begin{document) command. I4.w'~ standard bibliography styles are:

plain Formatted more or less as suggested by van Leunen in A Handbook for
Scholars [7]. Entries are sorted alphabetically and are labeled with num-
bers.

unsrt The same as plain except that entries appear in the order of their first
citation.

alpha The same as plain except that source labels like "Knu66", formed from
the author's name and the year of publication, are used.

abbrv The same as plain except that entries are more compact because first
names, month names, and journal names are abbreviated.

Dozens of other bibliography styles exist, including ones that produce source
lists in the formats used by a number of scientific journals. Consult the I4.W

4.3 Bibliography and Citation 71

Companion and the Local Guide to find out what styles are available. Documen-
tation for the BIBT* program explains how to create your own bibliography
style.

The source list is normally formatted in what van Leunen calls a compressed
style. The openbib document-class option causes it to be formatted in an open
style. (Document-class options are specified by the \documentclass command;
see Section 2.2.2.)

Once you've created an input file containing the appropriate B ' com-
mands, you perform the following sequence of steps to produce the final output:

0 Run B7&X on the input file, which I assume is called myf ile . tex.
will complain that all your citations axe undefined, since there is no source
list yet.

0 Run B ~ f l f i by typing something like bibtex myfile. (Consult your
Local Guide to find out what you actually type.) BIBTS will generate the
file myf ile . bbl containing U w commands to produce the source list.

0 Run @T@ again on myf ile. tex. B w ' s output will now contain the
source list. However, B ' will still complain that your citations are
undefined, since the output produced by a \cite command is based on
information obtained from the source list the last time was run on
the file.

0 Run Ii$w one more time on myf ile . t ex.
If you add or remove a citation, you will have to go through this whole procedure
again to get the citation labels and source list right. But they don't have to be
right while you're writing, so you needn't do this very often.

B I B T ' almdst always produces a perfectly fine source list. However, it is
only a computer program, so you may occasionally encounter a source that
it does not handle properly. When this happens, you can usually correct the
problem by modifying the bibliographic databaseperhaps creating a special
database entry just for this document. As a last resort, you can edit the bbl
@e that BIBTS generated. (Of course, you should do this only when you are
producing the final output.)

4.3.2 Doing It Yourself

A source list is created with the thebibliography environment, which is like
the enumerate environment described in Section 2.2.4 except that:

0 Each list item is begun with a \bibitem command whose argument is the
citation key. (The \bibitem and \cite commands work much like the
\label and \ref commands of Section 4.2.)

72 Moving Information Around

The thebibliography environment has an argument that should be a
piece of text the same width as or slightly wider than the widest item
label in the source list.

Knudson [67] showed that, in the Arctic . . . Knudson'\cite<kn:gnus) shoved ...
* . .
\begin<thebibliography><99>

References . . .
\bibitem<kn:gnus) D. E. Knudson.
\emph<l966 World Gnus Almanac. 1

[67] D. E. Knudson. 1966 World Gnus Almanac. ...
Permafrost Press, Novosibirsk. \endCthebibliography)

In most type styles, "99" is at least as wide as all other two-digit numbers.
Instead of using numbers, you can choose your own labels for the sources by

giving an optional argument to the \b ib i t em command.

Knudson [Knud 661 showed that, in the Arctic . . . Knudson'\cite<kn:gnus) shoved . . .
. . .
\begin<thebibliography)CDillo 83)

References . . .
\bibitem[Knud 66]Ckn:gnus) D. E. Knudson.
\emph<1966 World Gnus Almanac.3

[Knud 661 D. E. Knudson. 1966 World Gnus Al- . . .
manac. Permafrost Press, Novosibirsk. \ehd<thebiblioGaphy3

In this example, "[Dillo 831" should be the longest label. The optional argument
of \bibitem is a moving argument.

As in any kind of cross-reference, citations are based upon the information
gathered the previous time U w was run on the file. So, when you change the
source list, you have to run @" two more times to change the citations.

4.4 Splitting Your Input

A large document requires a lot of input. Rather than putting the whole input
in a single large file, you may find it more convenient to split the input into
several smaller files. Regardless of how many separate files you use, there is one
that is the root file; it is the one whose name you type when you run WQX.

The \input command provides the simplest way to split your input into sev-
eral files. The command \input(gnu) in the root file causes @'I)$ to insert the
contents of the file gnu. t ex right at the current spot in your manuscript-just
as if the \input(gnu) command were removed from the root file and replaced
by the contents of the file gnu. tex. (However, the input files are not changed.)
The file gnu. tex may also contain an \input command, calling another file that
may have its own \input commands, and so on.

4.4 Splitting Your Input 73

Besides splitting your input into conveniently sized chunks, the \input com-
mand also makes it easy to use the same input in different documents. While
text is seldom recycled in this way, you might want to reuse declarations. You
can keep a file containing declarations that are used in all your documents, such
as the definitions of commands and environments for your own logical structures
(Section 3.4). You can even begin your root file with an \input command and
put the \documentclass command in your declarations file.

Another reason for splitting the input into separate files is to run @7&X on
only part of the document so, when you make changes, only the parts that have
changed need to be processed. For this, you must use the \include command
instead of \input. The two commands are similar in that \include(gnu) also
specifies that the contents of the file gnu.tex should be inserted in its place.
However, with the \include command, you can tell @ ' either to insert the
file or to omit it and process all succeeding text as if the file had been inserted,
numbering pages, sections, equations, etc., as if the omitted file's text had been
included.

To run on only part of the document, the preamble must contain an
\includeonly command whose argument is a list of files (first names only).
The file specified by an \include command is processed only if it appears in
the argument of the \includeonly command. Thus, if the preamble contains
the command

\includeonly(gnu, gnat, gnash)

then an \include(gnat) command causes the file gnat .tex to be included,
while the command \include~madlo) causes BT)-$ not to include the file
rmadlo. tex, but to process the text following it as if the file had been included.
More precisely, it causes J4W to process the succeeding text under the as-
sumption that the omitted file is exactly the same as it was the last time it was
included. @7&X does not read an omitted file and is unaware of any changes
made to the file since it was last included.

The entire root file is always processed. If the preamble does not contain an
\includeonly command, then every \include command inserts its file. The
cpmmand \includeonlyC) (with a null argument) instructs I4.W to omit all
\include'd files. An \include can appear only after the \begin(document)
command.

The \include command has one feature that limits its usefulness: the in-
cluded text always starts a new page, as does the text immediately following
the \include command. It therefore works right only if the \include'd text
and the text following it should begin on a new page-for example, if it consists
of one or more complete chapters. While writing a chapter, you might want
to split it into smaller files with \include commands. When you've finished
writing that chapter, you can combine those files into a single one.

Another difficulty with the \include mechanism is that changing the docu-

74 Moving Information Around

ment may require reprocessing some unchanged \includeld files in order to get
the correct numbering of pages, sections, etc. When skipping an \includeld
file, the numbering in the succeeding text is based upon the numbering in the
file's text the last time it was processed. Suppose that the root file contains the
commands

and an \includeonly in the preamble causes the \include command to omit
file gnu.tex. If the text in gnu.tex ended in Chapter 5 on page 56 the last
time it was processed, even if you've added seven more chapters and sixty pa&
of text before the \include command since then, the \chapter command will
produce Chapter 6 starting on page 57. In general, to make sure everything is
numbered correctly, you must reprocess an \include7d file if a change to the
preceding text changes the numbering in the text produced by that file.

When writing a large document, you should probably make each chapter a
separate \include'd file. (You may find it convenient to enter the \includeonly
command from the terminal, using the \typein command described in Sec-
tion 4.6.) Process each file separately as you write or revise it, and don't worry
about numbers not matching properly. If the inconsistent numbering gets too
confusing, generate a coherent version by processing all the files at once. (You
can do this by removing the \includeonly command before running B ' .)
When you've finished making changes, run B ' on the entire document. You
can then produce the final output either all at once by running L m again on
the entire document, or a few chapters at a time by using the \includeonly
command.

4.5 Making an Index or Glossary

There are two steps in making an index or glossary: gathering the information
that goes in it, and generating the input to produce it. Section 4.5.1
describes the first step. The easiest way to perform the second step is with the
MakeIndex program, described in Appendix A. Section 4.5.2 describes how to
produce an index or glossary if you don't use MakeIndex.

4.5.1 Compiling the Entries
Compiling an index or a glossary is not easy, but can help by writing the
necessary information onto a special file. If the root file is named myf i l e . tex,
index information is written on the "idx file" myf i l e . idx. I+" makes an idx
file if the preamble contains a \makeindex command. The information on the
file is written by \index commands; the command \index(gnu) appearing with
the text for page 42 causes to write

4.5 Making an Index or Glossary 75

on the idx file. If there is no \makeindex command, the \index command does
nothing. The showidx package causes Bl&X to print the arguments of all index
commands in the margin.

The \index command produces no text, so you type

A gnat\indexIgnat) with gnarled wings gnashed ...
to index this instance of "gnat". It's best to put the \index command next to
the word it references, with no space between them; this keeps the page number
from being off by one if the word ends or begins a page. I find it best to put
index entries on a separate line, as in

When in the Course of
\indexihuman events)%
\indexCevents, human)%

human events, it becomes necessary for one people

This use of the % character is explained on page 19.
The procedure for making a glossary is completely analogous. In place of

\index there is a \glossary command. The \makeglossary command pro-
duces a file with the extension glo that is similar to the idx file except with
\glossaryentry entries instead of \indexentry entries.

The argument of \index or \glossary can contain any characters, including
special characters like \ and $. However, curly braces must be properly balanced,
each C having a matching). The \index and \glossary commands are fragile.
Moreover, an \index or \glossary command should not appear in the argument
of any other command if its own argument contains any of U r n ' s ten special
characters (Section 2.1).

4.5.2 Producing an Index or Glossary by Yourself
If you don't use the Makelndez program, you can use the theindex environment
to produce an index in two-column format. Each main index entry is begun by
ail \item command. A subentry is begun with \subitem, and a subsubentry
is begun with \subsubitem. Blank lines between entries are ignored. An extra
vertical space is produced by the \indexspace command, which is usually put
before the first entry that starts with a new letter.

gnats 13, 97
gnus 24, 37; 233

bad, 39, 236
very, 235

good, 38, 234

harmadillo 99, 144

\item gnats 13, 97
\item gnus 24, 37, 233
\subitem bad, 39, 236

\subsubitem very, 235
\subitem good, 38, 234

\indexspace
\item harmadillo 99, 144

3.4 Defining Commands and Environments 55

because T)$ expects the \gnaw command to be followed by two arguments
enclosed in braces, not by another command.

The braces surrounding the last argument of the \newcommand declaration
do not become part of the command's definition, and the braces surrounding
an argument are thrown away before substituting the argument for the corre-
sponding parameter. This means that the braces delimiting an argument do
not delimit the scope of declarations in the argument. To limit the scope of
declarations contained within an argument, you must add explicit braces in the
command definition.

gnus(x; 54) is fine, but in gnw(x; 54), the scope of \nevcommand(\good) 131 ((#I)$ ((#2) ; (#3)) $3
the emphasis declaration extends into the following \nevcommand(\bad) [31 (#I$ (#2 ;#3) $3
text. . . .

\good(\em gnus)Cx)C54) is fine, but in
\badC\em gnus)Cx)(54), the scope ...

Using \newcommand to define a command that already exists produces an
error. The \renewcommand declaration redefines an already defined command;
it has the same arguments as \newcommand. Don't redefine an existing command
unless you know what you're doing. Even if you don't explicitly use a command,
redefining it can produce strange and unpleasant results. Also, never define or
redefine any command whose name begins with \end.

The \newcommand and \renewcommand commands are declarations; their
scopes are determined by the rules given in Section 2.2.1. It's best to put
all command definitions together in the preamble, with comments describing
what the commands do. You're likely to re-use many of them in subsequent
documents.

3.4.2 Defining Environments

The bewenvironment command is used to define a new environment. A com-
mand of the form

defines a cozy environment for which 7&X replaces a \begin{cozyl command by
the begin text and an \endCcozy) command by the end text. A new environment
is usually defined in terms of an existing environment such as itemize, with the
begin text beginning the itemize environment and the end text ending it.

76 Movine Information Around

There is no environment expressly for glossaries. However, the description
environment of Section 2.2.4 may be useful.

4.6 Keyboard Input and Screen Output

When creating a large document, it's often helpful to leave a reminder to yourself
in the input file-for example, to note a paragraph that needs rewriting. The use
of the % character for putting comments into the text is described in Section 2.2.1.
However, a passive comment is easy to overlook, so BT)$ provides the \typeout
command for printing messages on the terminal. In the examples in this section,
the left column shows what is produced on the terminal by the input in the right
column; the oval represents the terminal.

f Don't forget to revise this! \ \typeout(DonJt forget to revise this!}

Remember that everything I+" writes on the terminal is also put in the log
file.

It is sometimes useful to type input to WQX directly from your keyboard-
for example, to enter an \includeonly command. This is done with a \typein
command, such as the following:

Enter 'includeonlyp, boss! \ \typein (Enter ' includeonlyp , boss !)

\@typein= I

When this appears on your terminal, B m is waiting for you to enter a line of
input, ended by pressing the return key. B w then processes what you typed
just as if it had appeared in the input file in place of the \typein command.

The \typein command has an optional first argument, which must be a
command name. When this optional argument is given, instead of processing
your typed input at that point, B W defines the specified command to be
equivalent to the text that you have typed.

Typing Chris and pressing the return key causes the \typein command to define
the command \lover to be equivalent to Chris-just like the \newcommand
or \renewcommand commands of Section 3.4. Thus, the input following this
\typein command would produce

f Enter lover's name. \ \typein [\lover1 {Enter lover's name. 1

\lover=
I love \lover\ very much.

4.7 Sending Your Document 77

I love Chris very much.

The argument of the \typeout or \typein command is a moving argument.
Both of these commands are fragile.

4.7 Sending Your Document

Today, you are likely to send a document electronically-by e-mail or on a
disketterather than on paper. Putting a file in an e-mail message or on a
diskette is no problem. However, to process your document, Bm must read a
number of files in addition to the main input file. Some files, such as the toc file
(Section 4.1), are generated by BT@ itself. The rest must be sent if the recipient
does not already have them. These files include the bbl file (Section 4.3.1), files
required by any nonstandard packages the document uses, and files that are read
by \input or \include commands. You can combine all these files into a single
W&X input file by using the f i lecontent s environment. Instead of sending
the file name. tex separately, put the environment

\begin(filecontentsl(name.tex)
contents of file
\endCfilecontents)

at the beginning of your input file. When BT@ is run on this input file, it writes
the file name. tex if no file by that name already exists. If such a file does exist,
B ' prints a warning message. You can put any number of f i lecontents
environments in an input file, but they must all precede the \documentclass
command.

To find out what files you need to send, put a \ l i s t f i l e s command in the
preamble. UT&$ will then print out a list of the files it reads when processing
the document. The list will not include files generated by Bw, and it will
identify standard files that are always present on a computer that runs Bw.
However, the list may not tell you in what directories the files are. The terminal
output might include complete file names. (As explained in Section 8.1, when
I4' starts to read a file, it writes the file's name on the terminal and in the
log file.) You can also consult the Local Guide to find out what directories
contain the files read by packages.

When sending files by e-mail, don't forget about the problem of lines begin-
ning with Fro& that is discussed in Section 2.4.

CHAPTER 5

Other

Classes

80 Other Document Classes

Books

Books differ from reports mainly in their front and back matter. The front mat-
ter of a book usually includes a half-title page, a main title page, a copyright
page, a preface or foreword, and a table of contents. It may also contain ac-
knowledgements, a dedication, a list of figures, a list of other books in the same
series, and so on. The back matter usually includes an index and may contain
an afterword, acknowledgements, a bibliography, a colophon, etc.

The book document class does not attempt to provide commands for all the
logical structures that could appear in a book's front and back matter. It is
just the same as the report class except for the differences described below.
Individual publishers might have packages with additional commands for the
particular structures they want in their books.

The front matter, main matter (the main body of the book, including a p
pendices), and back matter are begun with the three commands \frontmatter,
\mainmatter, and \backmatter, respectively. In the standard book class, front
matter pages are numbered with roman numerals; main and back matter pages
are numbered with arabic numerals. In the front and back matter, the \chapter
command does not produce a chapter number, but it does make a table of con-
tents entry. Thus, you can begin a preface with

Only the * forms of other sectioning commands should be used in the front and
back matter (see Section C.4.1).

Two-sided printing is the norm for books, so the twoside option is the default
in the book class. Another default option is openright, which causes new
chapters to begin on a right-hand page. The contrary option, openany, is the
default for the report class.

A book can have more than one title page, and each title page can contain a
variety of information besides the title and author-for example, the publisher,
series, and illustrator. The \maketitle command is therefore of little use in a
book.

You will probably have to do a considerable amount of customizing of the
style parameters for a book-especially of the page-style parameters, described
in Section C.5.3. The time this takes should be infinitesimal compared with the
time you spend writing the book.

5.2 Slides

The s l ides document class is used for making slides. Slides are usually printed
or photocopied onto transparencies for projection on a screen.

5.2 Slides 8 1

Producing good slides requires visual formatting, which means that Ul&X is
not well suited for the task. Here are a few reasons why you may want to use
I4m anyway:

Your slides are based on material from a I4w document.

Your slides have a lot of mathematical formulas.

0 You don't make slides often enough to bother learning how to use another
system.

The slides document class's default fonts were specially designed to be easy
to read from a distance. To my knowledge, no other system makes slides that
are so readable. The slides class's fonts are much larger than the usual ones;
\normalsize produces roughly the same size characters as \LARGE in other doc-
ument classes (Section 6.7.1). Moreover, the roman family is similar to the ordi-
nary sans serif family. The only type families generally available are roman and
typewriter, and the only type shapes are upright and italic. (See Section 3.1.)
The \emph command works as usual.

5.2.1 Slides and Overlays

An individual slide is produced with a slide environment:

GNATS and GNUS

Gnats are very small and have
a bad temper.

Gnus are big.

\beginIslide)
\begin{center)

GNATS and GNUS
\endCcenter)

Gnats are very small and have a bad
temper.

Gnus are big.
\endCslide)

The text appearing on a slide is produced with ordinary WI@ commands. Any
commands'that make sense for slides can be used. Commands that don't make
sense include sectioning commands, figure and table environments, and page-
breaking commands. The latter make no sense in a slide because each slide must
fit on a single page. To make colored slides, use the color package described in
Section 7.3.

82 Other Document Classes

The overlay environment is used for an overlay-a slide that is meant to
be put on top of another slide. It is the same as the slide environment except
for the numbering; the first overlay following slide number 3 is numbered "3-a",
the second one is numbered "3-b", and so on. The best way to get the text on
the slide and the overlay to line up properly is to have all the text on both of
them and make text that isn't supposed to appear invisible by coloring it white
(Section 7.3).

Gnats are very small and have
a bad temper.

3

I Gnus are big.

and GNUS

\begin{slide)
\beginCcenter)
GNATS \textcolorCwhite)(and GNUS)

\endCcenter)

Gnats are very small
and have a bad temper.

\textcolor~white){Gnus are big.)
\end{slide)

\begin{overlay)
\begin<center)
\textcolorCwhiteHGNATS) and GNUS

\end{center)

\textcolor{white)~Gnats are very small
and have a bad temper .)

Gnus are big
\end{overlay)

Superimposing this slide and overlay yields the preceding slide (plus an extra
"-a" next to the slide number). If the color package is not available on your
computer, you can use the commands of Section 6.4.2 to produce the blank
spaces.

5.2 Slides 83

5.2.2 Notes

When giving a lecture, it helps if you put notes to yourself in with the slides to
remind you of what to say. The note environment produces a one-page note.
Notes that follow slide number 3 are numbered "3-I", "3-2", etc. I always make
a note to accompany each slide. (You can print the slides and notes separately
by using the \only s l ides and \onlynot e s commands described below.)

A good lecturer plans a talk carefully and does not run out of time. The
s l ides document class's clock option helps you keep track of time during your
lecture. Right before or after each slide, put an \addtime command giving the
number of seconds you should spend on that slide. The total amount of time
(in minutes) that you should have taken so far will be printed at the bottom of
each note.

\documentclass [clock] (slides)

Don't forget to swat those
gnats.

. . .
\addtime(l803 % Slide I: 3 minutes
. . .
\addtime(l50) % Slide 2: 2-1/2 minutes
. . .
\addtimeIl203 % Slide 3: 2 minutes

\begidnot e)
Don't forget to swat those gnats.
\end(note)

B W will also type out on your terminal the total elapsed time at the end of
the document.

You can reset the elapsed time with the \settime command. The command
\settime(l20) sets the total elapsed time to 120 seconds (2 minutes). Do not
put an \addtime or \resettime command inside a s l ide , overlay, or note
environment.

5.2.3 Printing Only Some Slides and Notes

For making corrections, it's convenient to generate only some of the slides and
notes from your input file. The command

in the preamble will cause HTJ$ to generate only slides numbered 4, 7-13 (in-
clusive), and 23, plus all of their overlays. The slide numbers in the argument

84 Other Document Classes

must be in ascending order, and can include nonexistent slides-for example,
you can type

to produce all but the first nine slides. The argument of the Lonlyslides
command must be nonempty.

There is also an analogous \onlynotes command to generate a subset of
the notes. Notes numbered 11-1, 11-2, etc. will all be generated by specifymg
page 11 in the argument of the \onlynotes command. If the input file has
an \onlyslides command but no \onlynotes command, then no notes are
produced, and vice versa. Including both an \onlyslides and an \onlgnotes
command has the expected effect of producing only the specified slides and notes.

5.2.4 Other Text
i

Your input file can include text that appears outside a slide, overlay, or note
environment. Such other text is formatted like a slide, but without a slide
number. It can be used to make a title page. This other text is always printed,
even when an \onlyslides or \onlynotes command is given.

Text outside a slide or note differs from text inside one only in that page-
breaking commands are allowed. Use a \pagebreak command if you want to
tell where to start a new page in the middle of the text.

5.3 Letters

For making letters-the kind that are put in an envelope and mailed-urn
provides the letter document class. To use this class, begin your input file with
a \documentclass command having letter as its main (nonoptional) argument
(Section 2.2.2).

You can make any number of letters with a single input file. Your name
and address, which are likely to be the same for all letters, are specified by
declarations. The return address is declared by an \address command, with
multiple output lines separated by \\ commands.

\addressC1234 Ave.\ of the Armadillos\\
Gnu York, G.Y. 56789)

The \signature command declares your name, as it appears at the end of the
letter, with the usual \\ commands separating multiple lines.

\signature(R. (Ma) Dillo \\ Director of Cuisine)

5.3 Letters 85

These declarations are usually put in the preamble, but they are ordinary dec-
larations with the customary scoping rules and can appear anywhere in the
document.

Each letter is produced by a separate l e t t e r environment, having the name
and address of the recipient as its argument. The argument of the l e t t e r
environment is a moving argument. The letter itself begins with an \opening
command that generates the salutation.

1234 Ave. of the Armadillos \begin{letter){Dr . \ G. Nathaniel Picking \\
Gnu York, G.Y. 56789 Acme Exterminators\\ 33 Swat Street \\

Hometown, Illinois 62301)
July 4, 1996

Dr. G . Nathaniel Picking
Acme Exterminators
33 Swat Street
Hometown, Illinois 62301

\opening{Dear Nat , 3

I'm afraid that the armadillo problem
is still with us. I did everything

Dear Nat,

I'm afraid that the armadillo problem is still with
us. I did everything . . .

The return address is determined by the \address declaration; I4w supplies
the date. An \address and/or \signature command that applies just to this
letter can be put between the \ b e g i d l e t t e r) and the \opening command.

The main body of the letter is ordinary I4w input, but commands like
\ s ec t ion that make no sense in a letter should not be used. The letter closes
with a \ c los ing command.

. . . and I hope you can get rid of the nasty beasts . . . and I hope you can get rid of the nasty
this time. beasts this time.

Best regards, \closing{Best regards ,)

R. (Ma) Dillo
Director of Cuisine

The name comes from the \s ignature declaration.
The \cc command can be used after the closing to list the names of people

to whom you are sending copies.

cc: Bill Clinton
George Bush

\cc {Bill Clinton \\ George Bush)

There's a similar \ e n d command for a list of enclosures.

86 Other Document Classes

Additional text after the closing must be preceded by a \ps command. This
command generates no text-you'll have to type the "P.S." yourself-but is
needed to format the additional text correctly.

You can change the date on your letters by using \renewcommand (Sec-
tion 3.4.1) to redefine \today. Put the \renewcommand in the preamble to
change the date on all letters; put it right before the \opening command to
change the date on a single letter.

1234 Ave. nf the Armadillos \beginIletter)CMr.\ A. Oop \\
Gnu York, G.Y. 56789 Kingdom of Moo)

Thursday, 15842 B.C.
\reneucommand~\today~CThursday, 15842 B . C -1

Mr. A. Oop
Kingdom of Moo

Dear Mr. Oop:

\opening{Dear Mr. \ Oop : 1
In your last shipment of stegosaur steaks,

In your last shipment of stegosaur steaks, . . .

Redefining \today will not alter the postmark printed on the envelope by the
post office.

A \makelabels command in the preamble will cause ~~ to print a list of
mailing labels, one for each letter environment, in a format suitable for xero-
graphic copying onto "peel-off" labels. A mailing label without a corresponding
letter is produced by an empty letter environment--one with nothing between
the argument and the \endClett er) command.

There may be other features for making letters--especially if you are using
HT)$ at a company or university. For example, you may be able to format
letters for copying onto the company letterhead. Consult the Local Guide for
more information.

Designing
It Yourself

88 Designing It Yourself

The preceding chapters describe I & ' commands and environments for specify-
ing a document's logical structure. This chapter explains how to specify its visual
appearance. Before reading it, you should review the discussion in Section 1.4 of
the dangers of visual design. Commands specifying the visual appearance of the
document are usually confined to the preamble, either as style declarations or in
the definitions of commands and environments for specifying logical structures.
The notable exceptions are the line- and page-breaking commands of Section 6.2
and the picture-drawing commands of Section 7.1.

6.1 Document and Page Styles

6.1.1 Document-Class Options

The style of the document can be changed by using the optional argument of the
\documentclass command to specify style options. The l l p t , 12pt, twoside,
and twocolumn options are described in Section 2.2.2.! Three other standard
options are:

t i t lepage Causes the \maketitle command to generate a separate title page
and the abstract environment to make a separate page for the abstract.
This option is the default for the report document class.

leqno Causes the formula numbers produced by the equation and eqnarray
environments to appear on the left instead of the right.

f leqn Causes formulas to be aligned on the left, a fixed distance from the left
margin, instead of being centered.

A complete list of the standard options appears in Section C.5.1. The Local
Guide will tell you if there are any other options available on your computer.

The twocolumn option is used for a document that consists mostly of double-
column pages. It sets various style parameters, such as the amount of paragraph
indentation, to values appropriate for such pages. You may want double-column
pages for just part of the document, such as a glossary. The \twocolumn decla-
ration starts a new page and begins producing two-column output. It does not
change any style parameters except the ones required to produce two-column
output. The inverse \onecolumn declaration starts a new page and begins pro-
ducing single-column output.

In books, it is conventional for the height of the text to be the same on
all full pages. The \flushbottom declaration makes all text pages the same
height, adding extra vertical space when necessary to fill out the page. The
\raggedbottom declaration has the opposite effect, letting the height of the
text vary a bit from page to page. The default is \raggedbottom except when
the twoside option is in effect. You can change the default by putting the
appropriate declaration in the preamble.

6.1 Document and Page Styles 89

6.1.2 Page Styles

A page of output consists of three units: the head, the body, and the foot. In
most pages of this book, the head contains a page number, a chapter or section
title, and a horizontal line, while the foot is empty; but in the table of contents
and the preface, the page head is empty and the foot contains the page number.
The body consists of everything between the head and foot: the main text,
footnotes, figures, and tables.

The information in the head and foot, which usually includes a page number,
helps the reader find his way around the document. You can specify arabic
page numbers with a \pagenumbering(arabicI command and roman numerals
with a \pagenumbering(roman) command, the default being arabic numbers.
The \pagenumbering declaration resets the page number to one, starting with
the current page. To begin a document with pages i, ii, etc. and have the
first chapter start with page 1, put \pagenumberingCroman) anywhere before
the beginning of the text and \pagenumbering(arabic) right after the first
\chapter command.

Page headings may contain additional information to help the reader. They
are most useful in two-sided printing, since headings on the two facing pages
convey more information than the single heading visible with one-sided printing.
Page headings are generally not useful in a short document, where they tend to
be distracting rather than helpful.

The page style determines what goes into the head and foot; it is specified
with a \pagestyle declaration having the page style's name as its argcment.
There are four standard page styles:

plain The page number is in the foot and the head is empty. It is the default
page style for the article and report document classes.

empty The head and foot are both empty. HQX still assigns each page a num-
ber, but the number is not printed.

headings The page number and other information, determined by the document
style, is put in the head; the foot is empty.

myheadings Similar-to the headings page style, except you specify the "other
information" that goes in the head, using the \markboth and \markright
commands described below.

The \pagestyle declaration obeys the normal scoping rules. What goes into
a page's head and foot is determined by the page style in effect at the end
of the page, so the \pagestyle command usually comes after a command like
\chapter that begins a new page.

The \thispagestyle command is like \pagestyle except it affects only the
current page. Some commands, such as \chapter, change the style of the current

90 Designing It Yourself

page. These changes can be overridden with a subsequent \thispagestyle
command.

The contents of the page headings in the headings and myheadings styles
are set by the following commands:

The l e f ihead and right-head arguments specify the information to go in the page
heads of left-hand and right-hand pages, respectively. In two-sided printing,
specified with the twoside document-class option, the even-numbered pages are
the left-hand ones and the odd-numbered pages are the right-hand ones. In
one-sided printing, all pages are considered to be right-hand ones.

In the headings page style, the sectioning commands choose the headings for
you; Section C.5.3 explains how to use \markboth and \markright to override
their choices. In the myheadings option, you must use these commands to set the
headings yourself. The arguments of \markboth and \markright are processed
in LR mode; they are moving arguments.

6.1.3 The Title Page and Abstract

The \maketitle command produces a title page when the t i t lepage document-
class option is in effect; it is described in Sections 2.2.2 and (3.5.4. You can also
create your own title page with the t i t lepage environment. This environment
creates a page with the empty page style, so it has no printed page number or
heading. It causes the following page to be numbered 1.

You are completely responsible for what appears on a title page made with
the t i t lepage environment. The following commands and environments are
useful in formatting a title page: the type-size-changing commands of Sec-
tion 6.7.1, the type-style-changing commands of Section 3.1, and the center
environment of Section 6.5. Recall also that the \today command, described in
Section 2.2.1, generates the date. You will probably produce several versions of
your document, so it's important to include a date on the title page.

An abstract is made with the abstract environment.

Abstract \beginCabstractl

The mating habits of insects are The mating habits of insects are quite

quite different from those of large different from those of large mammals.

mammals. \end(abstract)

The abstract is placed on a separate page if the t i t lepage document-class
option is in effect; otherwise, it acts like an ordinary displayed-paragraph envi-
ronment.

6.1 Document and Page Styles 9 1

6.1.4 Customizing the Style

If you don't like the style of the output produced by I4- with the standard
style options, you should check the I4w Companion and the Local Guide to
see if there are other options available. If there aren't, you must change the
style of your document yourself. Changing the style means changing the way
the standard structures such as paragraphs and itemized lists are formatted,
not creating liew structures. Section 3.4 describes how to define new logical
structures.

Before changing your document's style, remember that many authors make
elementary errors when they try to design their own documents. The only way
to avoid these errors is by consulting a trained typographic designer or reading
about typographic design. All I can do here is warn you against the very common
mistake of making lines that are too wide to read easily-a mistake you won't
make if you follow this suggestion: Use lines that contain n o more than 75
characters, including punctuation and spaces.

The style of a particular document can be customized by adding declarations
to its preamble. If the same style modifications are used in several documents,
it is more convenient to put them in a separate package. A package is created
by writing the appropriate declarations in a s t y file--a file whose first name is
the package name and whose extension is s ty . For example, to define a pack-
age named vacation, you would create the file vacation. sty. The command
\usepackage(vacatiod would then cause U w to read the file vacation. sty.

When reading a package's sty file, T@C regards an Q character as a letter,
so it can be part of a command name like \ @ l i s t i . Such a command name
cannot be used in your document, since T)$ would interpret it as the command
\@ followed by the text characters l is t i . Many of IN)i$'s internal commands
have an dD in their name to prevent their accidental use within the document;
these include some parameters described in Appendix C that you may want to
change.

The simplest way to modify a document's style is by changing parameters
such as the ones that control the height and width of the text on the page.
@T)i$'s style parameters are described in this chapter and in Appendix C. Other
modifications require redefining I4'IjjX commands. For example, if you want to
change the style of chapter headings, you will have to redefine the \chapter
command. If the change is complicated-for example, if you want the chapter
heading to list the titles of all preceding chapters-then you will need to learn
advanced commands. However, it isn't hard to figure out how to make
most of the changes you are likely to want. To illustrate the process, I will now
describe how you would make a typical style change: printing chapter titles in
a bold sans serif type style, rather t,han in the standard bold roman style.

You have to change the definition of \chapter, so the first problem is find-
ing that definition. Commands that exist in all document classes are usually
preloaded. The file source2e. tex lists the names of the files in which the defi-

92 Designing It Yourself

nitions of preloaded commands can be found. (Consult the Local Guide to find
out in what directory these files are.) Commands like \chapter that exist only
in some document classes or are defined by a package are not preloaded. The
definitions of these commands are in files read by M(when it processes your
document. Section 4.7 explains how to find out what files BT)ijX reads.

For this example, I assume that your document uses the report. document
class. You will find that BT)ijX reads the file report . c l s . Searching this file for
"\chaptern, you will come across

\ n e w c o m m a n d \ c h a p t e r i \ i f O o p e n r i g h t \ c l e ~ e \ e l s e ...
\thispagestyleiplain)%
\global\@topnum\z@
\@afterindentf a l s e
\secdef \@chapter\@schapterl

This is where the \chapter command is defined. (Macho T)ijX programmers
sometimes remove the braces around the first argument of \newcommand; don't
do it yourself.) Looking at this definition, it's not hard to guess that the chap
ter heading is produced by \@chapter or \@chapter. Immediately below the
definition of \chapter is

This is where \@chapter is defined. (Macho 'I)$ programmers also use the 'I)$
command \def to define commands; don't you do it.) Examining this definition
will lead you to suspect that the heading is produced by the \@makechapterhead
command. The definition of \@makechapterhead contains two \bf s e r i e s com-
mands. An obvious guess is that adding \sf f amily commands right before or
after these \bf se r i e s commands will produce bold sans serif chapter headings.
So, you will create a file named sf chap. s t y containing the modified definition
of \@makechapterhead, add a \usepackage(sf chap) command to the preamble
of your document, and run I+(. You will then discover that you have guessed
right; I+w has produced the bold sans serif headings you wanted.

This detective work was good practice, but there's a way to avoid much of it.
Comments at the beginning of report . c l s indicate that this file was generated
from a source file named classes.dtx. (The file source2e. t ex also directs
you to classes. dtx.) A dtx file contains comments and additional formatting
commands. You can run a dtx file through BTjjX to produce a printed version,
or you can just read the dtx file itself. The file classes. dtx reveals that the
\@schapter command prints unnumbered chapter headings. (Such headings
are produced by the \chapter* command described in Section C.4.1.) Aided
by the comments, you should now be able to figure out how to change the way
unnumbered chapter headings are printed.

This example shows how to modify a command; modifying an environment
is similar. To find its definition, you need to know that some environments are

6.2 Line and Page Breaking 93

defined with 'I)$C1s \def command instead of \newenvironment. For example,
the equation environment is defined by defining \equation, which is executed
by the \beginCequation) command, and \endequation, which is executed by
\endCequat ion).

Remember that before creating your own package of style changes, you should
check the I4m Companion and the Local Guide to see if someone has already
created a document class or package that does what you want.

Line and Page Breaking
'I)$C usually does a good job of breaking text into lines and pages, but it some-
times needs help. Don't worry about line and page breaks until you prepare the
final version. Most of the bad breaks that appear in early drafts will disappear
as you change the text. Many users waste time formatting when they
should be writing. Don't worry about line and page breaks until you
prepare the absolutely final version.

6.2.1 Line Breaking

Let's return to the line-breaking problem that we inserted into the sample2e
input file in Section 2.3. Recall that it produced the following warning message:

Overfull \hbox (10.51814pt too wide) in paragraph at lines 195--200
[]\OTl/cmr/m/n/lO Mathematical for-mu-las may also be dis-played. A dis-played
for-mula is gnomonly

could not find a good place to break the line and left the word "gnomonly"
extending past the right margin. The first line of this warning message states
that the output line extends 10.51814 points past the right margin-a point is
about 1172"~ of an inch-and is in the paragraph generated by lines 195 through
200 of the input file. The next part of the message shows the input that produced
the offending line, except Tji$ has inserted a "-" character every place that it's
willing to hyphenate a word. The d ra f t document-class option causes 'I)$C to
put a black box next to the extra-long line, making it easy to find.

is quite good at hyphenating words; an English-language version never1
incorrectly hyphenates an English word and usually finds all correct possibilities.
However, it does miss some. For example, it does not know how to hyphenate the
word gnomonly (which isn't a very gnomonly used word), nor can it hyphenate
gnomon. ,

A \- command tells 'I)$C that it is allowed to hyphenate at that point.
We could correct our sample hyphenation problem by changing gnomonly to
gno\-monly, allowing T)@ to break the line after gno. However, it's better to
change it to gno\-mon\-ly, which also allows 'I)$C to break right before the ly.

'Well, hardly ever.

94 Designing It Yourself

While '&$ will still break this particular sample line after gno, further changes
to the text might make gnomon-ly better.

'IjEX will not hyphenate a word with a nonletter in the middle, where it
treats any sequence of nonspace characters as a single word. While it hyphenates
m-di-a-tion properly, it does not hyphenate x-mdiation-though it will break
a line after the x-. You must type x-ra\-di\-a\-tion for 'IjEX to consider all
possible hyphenation points. However, it is generally considered a bad idea to
hyphenate a hyphenated compound; you should do so only when there is no
better alternative.

When writing a paper about sundials, in which the word gnomon appears fre-
quently, it would be a nuisance to type it as gno\-mon everywhere it is used. You
can teach 7&X how to hyphenate words by putting one or more \hyphenation
commands in the preamble. The command

\hyphenation(gno-mon gno-mons gno-mon-ly)

tells '&$ how to hyphenate gnomon, gnomons, and gnorhonly-but it still won't
know how to hyphenate gnomonic.

While it's very good at hyphenating English, an English-language version of
Pl&X does not respect the hyphenation rules of other languages. For example,
it uses the English hyphenation re-sped rather than the Romanian res-pect.
If your document contains only a few phrases in Romanian, you can correct
hyphenation errors as they occur by using \hyphenation or \- commands to
tell '&$ where it can hyphenate a word. If your document contains a lot of text
in Romanian or some other language(s), use the babel package described in the
@'I)$ Companion.

Not all line-breaking problems can be solved by hyphenation. Sometimes
there is just no good way to break a paragraph into lines. Tj$ is normally very
fussy about line breaking; it lets you solve the problem rather than producing a
paragraph that doesn't meet its high standards. There are three things you can
do when this happens. The first is to rewrite the paragraph. However, having
carefully polished your prose, you may not want to change it just to produce
perfect line breaks.

The second way to handle a line-breaking problem is to use a sloppypar
environment or \sloppy declaration, which direct T$$ not to be so fussy about
where it breaks lines. Most of the time, you just enclose the entire paragraph that
contains the bad line break between \begin(sloppypar) and \endCsloppypar)
commands. However, sometimes it's easier to use a \sloppy declaration. To ex-
plain how to use this declaration, it helps to introduce the concept of a pamgmph
unit. A paragraph unit is a portion of text that is treated as a single string of
words to be broken into lines at any convenient point. For example, a paragraph
containing a displayed equation would consist of two paragraph units-the parts
of the paragraph that come before and after the equation. (Since the equation
itself can't be broken across lines, it is not a paragraph unit.) Similarly, each

6.2 Line and Page Breaking 95

item in a list-making environment begins a new paragraph unit.
'QX does its line breaking for a paragraph unit when it encounters the com-

mand or blank line that ends the unit, based upon the declarations in effect at
that time. So, the scope of the \sloppy declaration should include the command
or blank line that ends the paragraph unit with the bad line break. You can
either delimit the scope of the \sloppy declaration with braces, or else use a
countermanding \fussy declaration that restores 'I)$ to its ordinary compulsive
self. The \beginCsloppypar) command is equivalent to a blank line followed
by (\sloppy, and \end(sloppypar) is equivalent to a blank line followed by
a 3.

The third way to fix a bad line break is with a \linebreak command,
which forces T)jX to break the line at that spot. The \linebreak is usually
inserted right before the word that doesn't fit. An optional argument converts
the \linebreak command from a demand to a request. The argument must be
a digit from 0 through 4, a higher number denoting a stronger request. The
command \linebreak[Ol allows l&X to break the line there, but neither en-
courages nor discourages its doing so, while \linebreak[41 forces the line break
just like an ordinary \linebreak command. The arguments 1, 2, and 3 provide
intermediate degrees of insistence, and may succeed in coaxing T)jX to overcome
a bad line break. They can also be used to help T@ find the most aesthetically
pleasing line breaks. The \linebreakCOl command allows a line break where
it would normally be forbidden, such as within a word.

Both of these methods handle line-breaking problems by sweeping them un-
der the rug. The "lump in the carpet" that they may leave is one or more
lines with too much blank space between words. Such a line will produce an
"Underf ull \hboxn warning message.

Although unwanted line breaks are usually prevented with the " and \mbox
commands described ig Section 2.2.1, I4T)jX also provides a \nolinebreak com-
mand that forbids 'QX from breaking the line at that point. Like the \linebreak
command, \nolinebreak takes a digit from 0 through 4 as an optional argument
to convert the prohibition into a suggestion that this isn't a good place for a line
b r e a k t h e higher the number, the stronger the suggestion. A \nolinebreak[Ol
command is equivalent to \linebreak [Ol , and \nolinebreak [41 is equivalent
to \nolinebreak.

A \linebreak command causes l&X to justify the line, stretching the space
between words so the line extends to the right margin. The \newline command
ends a line without justifying it.

I can think of no good reason why you would want I can think of no good reason why you would
to make a short line like this want to make a short line like this
in the middle of a paragraph, but perhaps you can \newline
think of one. in the middle of a paragraph,

but perhaps you can think of one.

96 Designing It Yourself

You can type \\, which is the usual B W command for ending a line, in place
of \newline. In fact, I 4 w provides the \newline command only to maintain
a complete correspondence between the line-breaking commands and the page-
breaking commands described below.

The \linebreak, \nolinebreak, and \newline commands can be used only
in paragraph mode. They are fragile commands. See Section C.l . l if a C follows
a \linebreak or \nolinebreak command that has no optional argument.

Remember, don't worry about line breaks until you prepare the
ultimate, absolutely final version.

6.2.2 Page Breaking

W is as fussy about page breaks as it is about line breaks. As with line
breaking, sometimes 'QjX can find no good place to start a new page. A bad
page break usually causes 'I)$ to put too little rather than too much text onto
the page. When the \flushbottom declaration (Sectiori 6.1.1) is in effect, this
produces a page with too much extra vertical space; with the \raggedbottom
declaration, it produces a page that is too short. In the first case, TjjX warns
you about the extra space by generating an "Underfull \vbox" message. With
\raggedbottom in effect, 'Ij$ does not warn you about bad page breaks, so you
should check your final output for pages that are too short.

The Bl&X page-breaking commands are analogous to the line-breaking com-
mands described in Section 6.2.1 above. As with line breaking, @w provides
commands to demand or prohibit a page break, with an optional argument trans-
forming the commands to suggestions. The \pagebreak and \nopagebreak com-
mands are the analogs of \linebreak and \nolinebreak. When used between
paragraphs, they apply to that point; when used in the middle of a paragraph,
they apply immediately after the current line. Thus, a \pagebreak command
within a paragraph insists that TjjX start a new page after the line in which the
command appears, and \nopagebreak C31 suggests rather strongly that 'QX not
start a new page there.

You will sometimes want to squeeze a little more text on a page than 'l&X
thinks you should. The best way of doing this is to make room on the page
by removing some vertical space, using the commands of Section 6.4.2. If that
doesn't work, you can try using a \nopagebreak command to prevent T&C
from breaking the page before you want it to. However, often becomes
adamant about breaking a page at a certain point, and it will not be deterred
by \nopagebreak. When this happens, you can put extra text on the page as
follows:

Add the command \enlargethispage*<lOOOpt) to the text on the cur-
rent page, before the point where T)$ wants to start a new page.

Add a \pagebreak command to break the page where you want.

6.3 Numbering 9 7

Squeezing in extra text in this way will make the page longer than normal,
which may look bad in two-sided printing. Section C.12.2 describes a less heavy-
handed approach. But don't worry about page breaks until you prepare
the ultimate, absolutely final, no-more-changes (really!) version.

The \newpage command is the analog of \newline, creating a page that
ends prematurely right at that point. Even when a \f lushbottom declaration is
in effect, a shortened page is produced. The \clearpage command is similar to
\newpage, except that any leftover figures or tables are put on one or more sep-
arate pages with no text. The \chapter and \include commands (Section 4.4)
use \clearpage to begin a new page. Adding an extra \newpage or \clearpage
command will not produce a blank page; two such commands in a row are equiv-
alent to a single one. To generate a blank page, you must put some invisible
text on it, such as an empty \mbox.

When using the twoside style option for two-sided printing, you may want to
start a sectional unit on a right-hand page. The \cleardoublepage command
is the same as \clearpage except that it produces a blank page if necessary so
that the next page will be a right-hand (odd-numbered) one.

When used in two-column format, the \newpage and \pagebreak commands
start a new column rather than a new page. However, the \clearpage and
\cleardoublepage commands start a new page.

The page-breaking commands can be used only where it is possible to start
a new p a g e t h a t is, in paragraph mode and not inside a box (Section 6.4.3).
They are all fragile.

6.3 Numbering

Every number that WQX generates has a counter associated with it. The name
of the counter is usually the same as the name of the environment or command
that produces the number, except with no \. Below is a list of the counters used
by B m ' s standard document styles to control numbering.

Part paragraph figure enumi
chapter subparagraph table enumi i
section Page footnote enumi i i
subsection equation mpfootnote enumiv
subsubsection

The counters enumi . . . enumiv control different levels of enumerate environ-
ments, enumi for the outermost level, enumii for the next level, and so on. The
mpf ootnote counter numbers footnotes inside a minipage environment (Sec-
tion 6.4.3). In addition to these, an environment created with the \newtheorem
command (Section 3.4.3) has a counter of the same name unless an optional
argument specifies that it is to be numbered the same as another environment.

98 Designing It Yourself

There are also some other counters used for document-style parameters; they
are described in Appendix C.

The value of a counter is a single integer-usually nonnegative. Multiple
numbers are generated with separate counters, the "2" and "4" of "Subsec-
tion 2.4" coming from the sec t ion and subsect ion counters, respectively. The
value of a counter is initialized to zero and is incremented by the appropriate
command or environment. For example, the subsection counter is incremented
by the \subsection command before the subsection number is generated, and it
is reset to zero when the section counter is incremented, so subsection numbers
start from one in a new section.

The \setcounter command sets the value of a counter, and \addtocounter
increments it by a specified amount.

~ecause" counter^'^ are stepped before being \setcounterCf ootnote3€173
used, you set them to one less than the number Because\f ootnote€. . .3
you want. \addtocounter€f ootnotgH-2)%

counters\footnote{ ...) are stepped ...

When used in the middle of a paragraph, these commands should be attached
to a word to avoid adding extra space.

The \ se t counter and \addt ocount e r commands affect only the specified
counter; for example, changing the section counter with these commands does
not affect the subsection counter. The commands to change counter values are
global declarations (Section C.1.4); their effects are not limited by the normal
scope rules for declarations.

The page counter is used to generate the page number. It differs from
other counters in that it is incremented after the page number is generated,
so its value is the number of the current page rather than the next one. A
\setcounter€page)€27) command in the middle of the document therefore
causes the current page to be numbered 27. For this reason, the page counter
is initialized to one instead of zero.

UT)ijX provides the following commands for printing counter values; the list
shows what they produce when the page counter has the value four.

To generate a printed number, @7&X executes a command whose name is formed
by adding \the to the beginning of the appropriate counter's name; redefining
this command changes the way the number is printed. For example, a subsection
number is made by the \thesubsection command. To change the numbering
of sections and subsections so the fourth subsection of the second section is
numbered "11-D", you type the following (see Section 3.4 for an explanation of
\renewcommand):

6.4 Length, Spaces, and Boxes 99

Since sections are usually numbered the same throughout the document (at least
until the appendix), the obvious place for this command is in the preamble.

A new counter is created with a \newcounter command having the name
of the counter as its argument. The new counter's initial value is zero, and its
initial \the. . . command prints the value as an arabic numeral. See Section 6.6
for an example of how a new counter is used in defining an environment. The
\newcounter declaration should be used only in the preamble.

6.4 Length, Spaces, and Boxes

In visual design, one specifies how much vertical space to leave above a chapter
heading, how wide a line of text should be, and so on. This section describes
the basic tools for making these specifications.

6.4.1 Length

A length is a measure of distance. An amount of space or a line width is specified
by giving a length as an argument to the appropriate formatting command. A
length of one inch is specified by typing l in ; it can also be given in metric units
as 2.54cm or 25.4mm, or as 72. 27pt, where p t denotes point-a unit of length
used by printers. A length can also be negativefor example, -2.54cm.

The number 0 by itself is not a length. A length of zero is written Oin or
Ocm or Opt, not 0. Writing 0 as a length is a common mistake.

While inches, centimeters, and points are convenient units, they should be
avoided because they specify fixed lengths. A .25-inch horizontal space that
looks good in one-column output may be too wide in a two-column format. It's
better to use units of length that depend upon the appropriate style parameters.
The simplest such units are the em and the ex, which depend upon the font (the
size and style of type). A lem length is about equal to the width of an "M", and
iex is about the height of an "x". The em is best used for horizontal lengths and
the ex for vertical lengths. An em ruler for the current font is given below, and
an ex ruler is in the margin.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l I l l l l l l l l l l l

In addition to writing explicit lengths such as 1in or 3.5em, you can also
express lengths with length commands. A length command has a value that is
a length. For example, \parindent is a length command whose value specifies
the width of the indentation at the beginning of a normal paragraph. Typing

100 Designing It Yourself

\parindent as the argument of a command is equivalent to typing the current
value of \parindent. You can also type 2.5\parindent for a length that is
2.5 times as large as \parindent, or -2.5\parindent for the negative of that
length; -\parindent is the same as -1 .O\parindent.

A length such as 1.5em or \parindent is a rigid length. Specifying a space
of width Icm always produces a one-centimeter-wide space. (It may not be
exactly one centimeter wide because your output device might unifordly change
all dimensions-for example, enlarging them by 5%.) However, there are also
rubber lengths that can vary.2 Space specified with a rubber length can stretch
or shrink as required. For example, T$$ justifies lines (produces an even right
margin) by stretching or shrinking the space between words to make each line
the same length.

A rubber length has a natural length and a degree of elasticity. Of particular
interest is the special length command \ f i l l that has a natural length of zero
but is infinitely stretchable, so a space of width \ f i l l tends to expand as far
as it can. The use of such stretchable space is described in Section 6.4.2 below.
Multiplying a length command by a number destroys its elasticity, producing a
rigid length. Thus, 1\f ill and .7\f ill are rigid lengths of value zero inches.

Most lengths used in BTjjX are rigid. Unless a length is explicitly said to be
rubber, you can assume it is rigid. All length commands are robust; a \protect
command should never precede a length command.

Below are some of B w ' s length parameters-length commands that define
a document's style parameters; others are given in Appendix C. By expressing
lengths in terms of these parameters, you can define formatting commands that
work properly with different styles.

\parindent The amount of indentation at the beginning of a normal paragraph.

\textwidth The width of the text on the page.

\t extheight The height of the body of the p a g e t h a t is, the normal height of
everything on a page excluding the head and foot (Section 6.1.2).

\parskip The extra vertical space inserted between paragraphs. It is customary
not to leave any extra space between paragraphs, so \parskip has a natu-
ral length of zero (except in the l e t t e r document class). However, it is a
rubber length, so it can stretch to add vertical space between paragraphs
when the \f lushbottom declaration (Section 6.1.1) is in effect.

\baselineskip The normal vertical distance from the bottom of one line to
the bottom of the next line in the same paragraph. Thus, \ textheight f
\baselineskip equals the number of lines of text that would appear on a
page if it were all one paragraph.3

'A rigid length is called a {dimen) and a rubber length is called a {skip) in the W b o o k .
3This is only approximately correct-see the \topskip command in Section C.5.3 to find

out why.

6.4 Length, Spaces, and Boxes 101

I99$jX provides the following declarations for changing the values of length
commands and for creating new ones. These declarations obey the usual scoping
rules.

\newlength Defines a new length command. You type \newlengthC\gnat)
to make \gnat a length command with value Ocm. An error occurs if a
\gnat command is already defined.

\setlength Sets the value of a length command. The value of \parskip is set
to 1.01 millimeters by the command \setlength(\parskip)il .Oimm3.

\addtolength Increments the value of a length command by a specified amount.
If the current value of \parskip is .O1 inches, then executing the com-
mand \addtolengthI\parskipH-. l\parskip) changes its value to .009
inches-the original value plus -.l times its original value.

\settowidth Sets the value of a length command equal to the width of a speci-
fied piece of text. The command \settowidth(\parindent3(\em small3
sets the value of \parindent to the width of small-the text produced by
typesetting (\em small) in LR mode.

\settoheight, \settodepth These commands act like \settowidth, except
they set the value of the length command to the height and depth, respec-
tively, of the text. For example, \sett oheight (\parskip)(Cnu) sets the
value of \parskip to the height of the letter "G" in the current font, while
\settodepth(\parskip)(gnu) sets the value of \parskip to the distance
the letter "g" extends below the line. Height and depth are explained
below, in Section 6.4.3.

The value of a length command created with hewlength can be changed at
any time. This is also true for some of BljiJC's length parameters, while others
should be changed only in the preamble and still others should never be changed.
Consult Appendix C to find out when you can safely change the value of a BljiJC
parameter.

6.4.2 Spaces

A horizontal space is produced with the \hspace command. Think of \hspace
as making a blank "word", with spaces before or after it producing an interword
space.

k- .5 in 4
Here is a .5 inch space.
Here is a .5 inch space.
Here is a .5 inch space.
Negative space is a backspace-Jjjfhis.

.5 in -C(

Here\hspace{.5in)is a .5 inch space.
Here \hspace{.5in)is a . 5 inch space.
Here \hspace(.5in) is a .5 inch space.
. . .---like this. \hspace{- .5in)/////

102 Designing It Yourself

removes space from the beginning or end of each line of output text, except
at the beginning and end of a paragraph-including space added with \hspace.
The \hspace* command is the same as \hspace except that the space it pro-
duces is never removed, even when it comes at the beginning or end of a line.
The \hspace and \hspace* commands are robust.

The \vspace command produces vertical space. It is most commonly used
between paragraphs; when used within a paragraph, the vertical space is added
after the line in which the \vspace appears.

You seldom add space like this between lines in You\vspace{.25in) seldom add space like
T
.25 in this betveen lines in a paragraph, but you
-t ... by adding some negative space.

a paragraph, but you sometimes remove space be-
tween them by adding some negative space.

T \vspace{7 mm)
7 mm
_t You more often add space between ...

You more often add space between paragraphs- - - -
especially before or after displayed material.

Just as it removes horizontal space from the beginning and end of a line, T@
removes vertical space that comes at the beginning or end of a page. The
\vspace* command creates vertical space that is never removed.

If the argument of an \hspace or \vspace command (or its *-form) is a
rubber length, the space produced will be able to stretch and shrink. This
is normally relevant only for the fine tuning of the formatting commands of a
package or document class. However, a space made with an infinitely stretchable
length such as \ f i l l is useful for positioning text because it stretches as much as
it can, pushing everything else aside. The command \hf ill is an abbreviation
for \hspaceC\f i l l) .

Here is a stretched space. Here is a \Mill stretched space.
Here are two equal ones. Here are \Mill tvo \Mill equal ones.

Note that when two equally stretchable spaces push against each other, they
stretch the same amount. You can use stretchable spaces to center objects or to
move them flush against the right-hand margin. However, BZ@ provides more
convenient methods of doing that, described in Section 6.5.

Infinitely stretchable space can be used in the analogous way for moving
text vertically. The \vf ill command is equivalent to a blank line followed by
\vspaceC\f ill). Remember that spaces produced by \hf ill or \vf ill at the
beginning and end of a line or page disappear. You must use \hspace*C\f ill)
or \vspace*C\f ill) for space that you don't want to disappear.

The \dotf ill command acts just like \hf ill except it produces dots instead
of spaces. The command \hrulef ill works the same way, but it produces a
horizontal line.

6.4 Length, Spaces, and Boxes 103

Gnats and gnus . see pests. Gnats and gnus \dotfill\ see pests.
This is really it. This is \hrulefill\ really \hrulefill\ it.

6.4.3 Boxes

A box is a chunk of text that treats as a unit, just as if it were a single letter.
No matter how big it is, will never split a box across lines or across pages.
The \mbox command introduced in Section 2.2.1 prevents its argument from
being split across lines by putting it in a box. Many other l3TjjX commands and
environments produce boxes. For example, the a r r a y and t a b u l a r environments
(Section 3.6.2) both produce a single box that can be quite big, as does the
picture environment described in Section 7.1.

A box has a reference point, which is at its left-hand edge. 'I$$ produces
lines by putting boxes next to one another with their reference points aligned,
as shown in Figure 6.1. The figure also shows how the width, height, and depth
of a box are computed.
B ' provides additional commands and environments for making three

kinds of boxes: LR boxes, in which the contents of the box are processed in LR
mode; parboxes, in which the contents of the box are processed in paragraph
mode; and rule boxes, consisting of a rectangular blob of ink.

A box-making command or environment can be used in any mode. @"
uses the declarations in effect at that point when typesetting the box's contents,
so the contents of a box appearing in the scope of an \em declaration will be
emphasized-usually by being set in an italic type style. However, box-making
commands that appear in a mathematical formula are not affected by the com-
mands described in Section 3.3.8 that change the type style in the formula.

The \mbox in the formula x = y *ab+~yz+cd/~. uses . . . in the formula
the same type style as the surrounding text. $x = y * \mathbf<\scriptstyle ab +

\mbox<xyz) + cd) \textstyle / z$ uses ...

Since the input that produces a box's contents is either the argument of a box-
making command
made inside it are

or the text of a box-making environment, any declarations
local to the box.

wadth -c(

+ width H The box i The box
herght that

reference produces for f produces for
point

the letter "g". depth
i \mbox{gnat).

Figure 6.1: Boxes and how T@ puts them together.

104 Designing It Yourself

A box is often displayed on a line by itself. This can be done by treating
the box as a formula and using the displaymath environment (\ C . . . \I). The
center environment described in Section 6.5 can also be used.

LR Boxes

The \mbox command makes an LR box-a box whose contents are obtained by
processing the command's argument in LR mode. It is an abbreviated version of
the \makebox command; \makebox has optional arguments that \mbox doesn't.
The box created by an \mbox command is just wide enough to hold its contents.
You can specify the width of the box with a \makebox command that has an
optional first argument. The default is to center the contents in the box, but
this can be overridden by a second optional argument that consists of a single
letter: 1 to move the contents to the left side of the box, and r to move it to
the right.

l i n --cf
Good gnus are here at last.
Good gnus are here at last.
Good gnus are here at last.

I
Good \makebox [lin] {\em gnus) are here . . .
Good \makebox Clinl Cll (\em gnus) are . . .
Good \makebox [lin] [rl €\em gnus) are . . .

A box is treated just like a word; space characters on either side produce an
interword space.

The \framebox command is exactly the same as \makebox except it puts
a frame around the outside of the box. There is also an \fbox command, the
abbreviation for a \f ramebox command with no optional arguments.

1 i n

There was not a I gnu] or [armadillo] There was not a \f ramebox [lid [l] (gnu)

in sight. or \fbox(armadillo) in sight.

When you specify a box of a fixed width, T$$ acts a s if the box has exactly
that width. If the contents are too wide for the box, they will overflow into the
surrounding text.

X Xvqe armad@91 X X X X\framebox[.5in] (wide armadil1os)X X X

Par boxes

A parbox is a box whose contents are typeset in paragraph mode, with QX
producing a series of lines just as in ordinary text. The figure and table
environments (Section 3.5.1) create parboxes. There are two ways to make
a parbox at a given point in the text: with the \parbox command and the
minipage environment. They can be used to put one or more paragraphs of
text inside a picture or in a table item.

For 7&X to break text into lines, it must know how wide the lines should be.
Therefore, \parbox and the minipage environment have the width of the parbox

6.4 Length, Spaces, and Boxes 105

as an argument. The second mandatory argument of the \parbox command is
the text to be put in the parbox.

l i n -+ expect to get a lot \parboxCiin)IBreaking lines in a narrow
Breaking lines in

of bad line breaks parbox is hard.) \ YOU CAN \
a narrow CAN if you try this son \parboxIlin)Iexpect to get a lot of bad
is hard. of thing. line breaks if you try . . .)

There is no indentation at the beginning of a paragraph in these parboxes;
BT)~JX sets the \parindent parameter, which specifies the amount of indenta-
tion, to zero in a parbox. You can set it to any other value with \setlength
(Section 6.4.1).

In the example above, the parboxes are positioned vertically so the center of
the box is aligned with the center of the text line. An optional first argument
o f t (for top) or b (bottom) aligns the top or bottom line of the parbox with the
text line. More precisely, the optional argument causes the reference point of
the box to be the reference point of the top or bottom line of its contents.

This is a parbox \parbox [bl I1in)IThis is a parbox aligned
aligned on its bot- on its bottom line.)
tom line. AND THIS one is aligned on \ AND THIS \

its top line. \parbox[tl(iin)Cone is aligned on its top
line. 3

Finer control of the vertical positioning is obtained with the \raisebox com-
mand described below.'

The \parbox command is generally used for a parbox containing a small
amount of text. For a larger parbox or one containing a tabbing environment,
a list-making environment, or any of the paragraph-making environments de-
scribed in Section 6.5, you should use a minipage environment. The minipage
environment has the same optional positioning argument and mandatory width
argument as the \parbox command.

When used in a minipage environment, the \footnote command puts a
footnote at the bottom of the parbox produced by the environment. This is par-
ticularly useful for footnotes inside figures or tables. Moreover, unlike in ordinary
text, the \footnote command can be used anywhere within the environment-
even inside another box or in an item of a tabular environment. To footnote
something in a minipage environment with an ordinary footnote at the bottom
of the page, use the \footnotemark and \f ootnotetext commands described
in Section C.3.3.

106 Designing It Yourself

gnat: a tiny bug AND gnu: a beasta that \begin(minipage) Ct] Ciin)
that is very hard is hard to miss. (\em gnat): a tiny bug . . .
to find.

a See armadillo. \end(minipage) \ AND \
\beginCminipage) Ctl Ciin)
(\em gnu) : a beast\f ootnoteCSee
armadillo.) that is hard to miss.

\end(minipage)

If you have one minipage environment nested inside another, footnotes may
appear at the bottom of the wrong one.

You may find yourself wishing that 'QX would determine the width of a
parbox by itself, making it just wide enough to hold the text inside. This
is normally impossible because T& must know the line width to do its line
breaking. However, it doesn't have to know a line width when typesetting a
tabbing environment because the input specifies where every line ends. There-
fore, if a minipage environment consists of nothing but a tabbing environment,
then will set the width of the parbox to be either the width specified by
the minipage environment's argument or the actual width of the longest line,
choosing whichever is smaller.

Rule Boxes

A rule box is a rectangular blob of ink. It is made with the \ ru le command,
whose arguments specify the width and height of the blob. The reference point
of the rule box is its lower-left corner. There is also an optional first argument
that specifies how high to raise the rule (a negative value lowers it).

1 mm
+it+

1-55 mm f Rule 1: \rule~lmm3(5mm)
Rule 1: _t Rule 2:

f . I i n
Rule 2: \rule [. linl(.25in)(. 02in)

A thin enough rule is just a line, so the \rule command can draw horizontal or
vertical lines of arbitrary length and thickness.

A rule box of width zero is called a strut. Having no width, a strut is invisible;
but it does have height, and 9JjX will adjust the vertical spacing to leave room
for it.

Compare this box with this box . = I I Compare \f boxlthis box) with
\fboxC\rule C- .5cml COcm)(icm)this box).

Struts provide a convenient method of adding vertical space in places where
\vspace can't be used, such as within a mathematical formula.

6.4 Length, Spaces, and Boxes 107

Raising and Lowering Boxes

The \raisebox command raises text by a specified length (a negative length
lowers the text). It makes an LR box, just like the \mbox command.

You can or ~,,,, text. You can \raisebox(.6ex)C\em raise3 or
\raisebox(-.6ex)(\em lower3 text.

It is sometimes useful to change how big T&jX thinks a piece of text is without
changing the text. The \makebox command tells T@ how wide the text is, while
a strut can increase the text's apparent height but cannot decrease it. Optional
arguments of \raisebox tell l&X how tall it should pretend that the text is.
The command

\raisebox<. 4ex) [I. Sex] [.75exl {\em text)

not only raises t e d by .4ex, but also makes think that it extends 1.5ex
above the bottom of the line and .75ex below the bottom of the line. (The
bottom of the line is where most characters sit; a letter like y extends below it.)
If you omit the second optional argument, rn will think the text extends as far
below the line as it actually does. By changing the apparent height of text, you
change how much space leaves for it. This is sometimes used to eliminate
space above or below a formula or part of a formula.

Saving Boxes

If a single piece of text appears in several places, you can define a command with
\newcommand (Section 3.4) to generate it. While this saves typing, Tj$ doesn't
save any time because it must do the work of typesetting the text whenever it
encounters the command. If the text is complicated-especially if it contains a
picture environment (Section 7.1)-733X could waste a lot of time typesetting
it over and over again.

T@ can typeset something once as a box and then save it in a named storage
bin, from which it can be used repeatedly. The name of a storage bin is an
ordinary command name; a new bin is created and named by the \newsavebox
declaration. The \savebox command makes a box and saves it in a specified
bin; it has the bin name as its first argument and the rest of its arguments are
the same as for the \makebox command. The \usebox command prints the
contents of a bin.

\newsavebox(\toy)
\savebox(\toy) [. 65inl (gnats}

.65 in -4 ...
It's gnats and gnats and gnats , It's \usebox(\toy) and \usebox-C\toy) and
wherever we go. \usebox(\toy), wherever we go.

108 Designing It Yourself

The \sbox command is the short form of \savebox, with no optional arguments.
The \savebox and \sbox commands are declarations that have the usual scope.
However, the \newsavebox declaration is global (Section C.1.4) and does not
obey the customary scoping rules.

The lrbox environment is like an \sbox command, except that it ignores
spaces at the beginning and end of the text. Thus,

\beginIlrbox)C\ j ewel)
Text

\end<lrbox)

is equivalent to \sbox<\jewel3CText). This environment is used to define an
environment in terms of a command. For example, suppose we want to define a
boxit environment that produces a boxed, 1-inch-wide paragraph.

silly boxed para- ... a \begin(boxit)
graph that no one silly boxed paragraph ...

for anything. \endCboxit) for anything.

We define this environment by using its body (the text between \beginCboxit)
and \end(boxit)) as the argument of an \fbox command. Making the para-
graph box with a minipage environment, we can define the boxit environment
by:

6.4.4 Formatting with Boxes

Many B ' users fail to realize how much they can do with the box-making
commands described above. I will illustrate the poweroofothy% commands with
a silly example: defining a \face command to put a funny face around a word,
like the faces around "funny" and "face" in this sent&e.- he face is com-
posed of two diamonds (0) produced with the \diamond command, and a smile
(w) produced with \smile. The trick, of course, is positioning these symbols
correctly relative to theoxord being "faced".

The left eye of the face (the one near the "f") is positioned above the word
and 15% of the way frog the word's left edge to its right edge. First, we see
how to put a piece of text a fixed distance to the right of the left-hand edge of a
word. Recall that if the specified width of a \makebox is less than the width of
its contents, the contents extend outside the box. With the 1 position specified,
the contents extend to the right of the box. In the extreme case of a zero-width
box, the entire contents lie to the right.

6.4 Length, Spaces, and Boxes 109

U 1 c m W
The gnuuuuu began to mooood6ooooo. . . .to \makebox[Opt] [l] C\hspaceClcm3X3moo. . .

Because the box produced by this \makebox command has zero width, it doesn't
change the position of the "moo. . . ".

We want the face's left eye to be shifted to the right by .15 times the width
of the word and raised by the height of the word. So, the \face command
must measure the width and height of its argument using the \settoheight and
\settowidth commands. These lengths are saved in two new length commands,
\f aceht and \f acewd, that are defined with \newlength. The eye is raised with
the \raisebox command. Before figuring out how to draw the rest of the face,
we define a \lefteye command so \lefteye~\emphCmoooo)) produces &oooo.

\newlengthC\facewd) \newlength(\faceht) %% Define length commands
\newcommandC\lef teye3 [11(% Definition of \lefteye:

\settowidthC\facewd)~#1>\settoheight(\faceht>#1% - Save width & height
\raisebox(\f aceht>(% - Raise by height

\makebox [Opt] [l] (\hspaceX. 15\f acewd)% - Move right .15 * width
\diamond))% - Print eye

#I)% - Print argument
Each line in the definition of \lef teye ends with a %. This both allows comments
and splits the definition across lines without introducing unwanted interword
spaces. (See Section 2.2.1.) Unintentional spaces are a common source of error
in command definitions; be careful not to introduce any.

To make the right eye of the \face command, we put immediately after the
word a zero-width box whose contents extend to the left. Such a box is produced
by a \makebox command with the r positioning specifier:

\makebox [Optl [r] (\diamond\hspace(. l5\f acewd))
The right eye, like the left, is raised with a \raisebox command.

The face's smile is centered beneath the word. To achieve the correct hori-
zontal positioning, \makebox is used to center the smile in a box the same width
as the word. This box is in turn put inside and extending to the right of a
zero-width box that is placed before the word.

\makebox [Opt] [ll (\makebox [\f acewdl (\smile))

A bit of experimentation reveals that the smile should be lowered (raised by a
negative distance of) 1.4 ex.

The complete definition of \face appears in Figure 6.2. (Like all such defi-
nitions, it should go in the preamble.) The definition has been refined to solve
two problems. First, the eyes and smile would normally increase the height and
depth of the line, causing to add extra space above and below it. To pre-
vent this, the optional arguments to \raisebox have been used to make T)$
pretend that the eyes have zero height and the smile has zero (height and) depth.

110 Designing It Yourself

\newlengthC\f acewd) \newlengthC\f aceht) %% Define length commands
\newcommand~\f ace) [11 C%

\settowidth~\facewd)C#l~\settoheight(\faceht#l% * Save width & height.
\raiseboxC\f aceht) [Opt] (\makebox [Opt] [l] {% * Print left eye.

\hspaceC . l5\f acewd)\diamondH%
\raisebox{-1 .4exl [Opt] [Opt] {\makebox [Opt] [ll C% * Print smile. .

\makebox [\f acewdl {\smile)))%
(#I)% * Print argument
\raiseboxC\f aceht) [Opt] {\makebox [Opt] [r] C% * Print right eye.

\diamond\hspace(. l5\f acewd))))
Figure 6.2: The complete definition of the \face command.

The second problem occurs in the definition of \lefteye given above. As ex-
plained in Section 3.4.1, that definition fails to limit the scope of declarations
that appear in its argument.

The \em declaration in $nu escapes its argument. ... in \lefteyeC\em gnu) escapes ...

This problem is solved by putting an extra pair of braces around the part of the
definition that prints the argument.

A \face command uses the argument three times-to measure its height, to
measure its width, and to print it. Each time, the argument is processed anew
by IN$$. This could be a problem. For example, if the argument contains a
\typein command, each occurrence of \face causes U7$$ to request three sep-
arate inputs. We can modify the definition to make \face process its argument
only once by using a \savebox command to save the argument and replacing
the three uses (the #l's) with \usebox commands.

Solving a formatting problem is often a matter of figuring out how to position
some text. The definition of the \face command shows how we can use space-
and box-making commands to put one object (for example, an eye or a smile)
in any desired position relative to another object. The two objects can be

1 arbitrarilv far a ~ a r t . Consider the box around this com~lete line of text. It is I
I ,
easy to produce the box itself by putting a strut (a zero-width rule) and some
horizontal space in an \fbox command.

But, how did I position the box? I could have positioned it relative to the first
or last word on the line. However, that would have required knowing where the
line breaks occur, and they change every time I revise the paragraph. Instead,
I positioned the box relative to an invisible marginal note, produced with an
\mbox{) inside a \marginpar command (described in Section 3.5.2).

Suppose you want to put a box around an entire page of text. Again, pro-
ducing a box of the right size is easy; the problem is positioning it. Since the

6.5 Centering and "Flushing" 111

box appears at a fixed point on the page, it must be positioned relative to some
object that appears at a fixed location on the page. One such object is the page
heading; another is the page number. You just have to add a suitable zero-width
box to either of these objects. Section (2.5.3 describes how to set page headings;
the page number is produced by the \thepage command (Section 6.3).

6.5 Centering and "Flushing"
The center environment is used to produce one or more lines of centered text;
a \\ command starts a new line.

This is the last line of text in the preceding para- . . . of text in the preceding paragraph.
graph. \begin(center)

Here are three\\ centered \\
Here are three lines of text.

centered \endIcent er)
lines of text. This is the text immediately ...

This is the text immediately following the environ-
ment. It begins a new paragraph only if you leave
a blank line after the \end(center).

is in paragraph mode inside the center environment, so it breaks lines
where necessary to keep them from extending past the margins.

The f lushlef t and f lushright environments are similar, except instead
of each line of text being centered, it is moved to the left or right margin,
respectively.

These are the last lines of text from the preceding . . . of text from the preceding paragraph.
paragraph. , \beginCflushrightl

These are two \\ flushed right lines.
These are two \end(f lushright)

flushed right lines.

The center and f lushright environments are most commonly used with each
new line started by an explicit \\ command. There is little purpose to using
the flushleft environment in this way, since the \\ command in ordinary text
produces a flushed-left line. By letting do the line breaking, f lushleft
produces ragged-right text.

Notice how T)jX leaves these lines uneven, \begin(flushleft)
without stretching them out to reach the right Notice how \TeX\ leaves these lines
margin. This is known as "ragged-right" text. uneven, without stretching them out ...

\endIf lushleft)

The centering and flushing environments work by using certain declarations
that change how 'I)$ makes paragraphs. These declarations are available as

112 Designing It Yourself

B7&X commands; the declaration that corresponds to each environment is shown
below:

environment : center f lushlef t f lu sh r igh t
declaration: \centering \raggedright \raggedlef t

These declarations can be used inside an environment such as quote or in a
parbox (Section 6.4.3).

This is text that comes at the end of the preceding . . . at the end of the preceding paragraph.
paragraph. \begin(quote)

Here is a quote environment \raggedleft Here is a quote environment\\

whose lines are whose lines are \ \ flushed right.

flushed right. \end(quote)

The text of a figure or table can be centered on the page by putting a \centering
declaration at the beginning of the f igu re or t a b l e environment.

Unlike the environments, the centering and flushing declarations do not start
a new paragraph; they simply change how 7&X formats paragraph units (Sec-
tion 6.2.1). To affect a paragraph unit's format, the scope of the declaration
must contain the blank line or \end command (of an environment like quote)
that ends the paragraph unit.

6.6 List-Making Environments

A list is a sequence of items typeset in paragraph mode with indented left and
right margins, each item begun with a label. A label can be empty and an
indentation can be of length zero, so an environment not normally thought of
as a list can be regarded as one. In fact, almost every one of BT)$'s envi-
ronments that begins on a new line is defined as a list. The list-making envi-
ronments are: quote, quotation, verse, itemize, enumerate, descr ipt ion,
thebibliography, center, f l u s h l e f t , and f lushr ight , as well as the theorem-
like environments declared by \newtheorem.

B ' provides two primitive list-making environments: l i s t and t r i v l i s t ,
the latter being a restricted version of l i s t . They are flexible enough to produce
most lists and are used to define the environments listed above.

6.6.1 The list Environment

The l is t environment has two arguments. The first specifies how items should
be labeled when no argument is given to the \item command; the second con-
tains declarations to set the formatting parameters. The general form of a list
and the meaning of most of its formatting parameters are shown in Figure 6.3.
The vertical-space parameters are rubber lengths; the horizontal-space parame-

6.6 List-Making Environments 113

Preceding Text

t

t

Label
C I \rightmargin

\labelwidth Item 1
Paragraph 1

Item 1
Paragraph 2

+
Following Text

Figure 6.3: The format of a list.

114 Designing It Yourself

ters are rigid ones. The extra \partopsep space is added at the top of the list
only if the input f?Je has a blank line before the environment. The vertical space
following the environment is the same as the one preceding it.

Inside the list, the values of \parskip and \parindent are set to the values
of \parsep and \ l i s tpar indent , respectively. When one list is nested inside
another, the \ leftmargin and \rightmargin distances of the inner list are
measured from the margins of the outer list.

The default values of these parameters are determined by the document class
(and its options), as described in Section C.6.3; they depend upon the level of
nesting of the list. These default values can be changed by declarations in the
list environment's second argument. It is best to maintain the same spacing
in all lists, so the default values of the vertical spacing and margin parameters
should be used. However, the width and placement of the label may differ in
different kinds of lists.

The label is typeset in LR mode. If it fits within a box of width \labelwidth,
it is placed flush with the right-hand edge of a box of that width, which is
positioned as shown in Figure 6.3. (It can be moved to a different position with
the \hf ill command of Section 6.4.2.) If the label is wider than \labelwidth,
it extends to the right of the position shown in Figure 6.3 and the indentation
of the first line of the item is increased by the extra width of the label.

The first argument of the environment is the text to be used as the label
for any \item command with no optional argument. To number the items
automatically, the second argument of the l is t environment should contain a
\usecount e r (ctr) command whose argument is the name of a counter-usually
one defined with \newcounter (Section 6.3). This counter is reset to zero at the
beginning of the environment and is incremented by one before the execution
of any \item command that has no optional argument, so it can be used to
generate a label number.

This sentence represents the end of the text that
precedes the list.

B-I This is the first item of the list. Ob-
serve how the left and right margins
are indented by the same amount.

B-I1 This is the second item.

As usual, the following text starts a new paragraph
only if the list environment is followed by a blank
line.

\newcounter(bean)
... the text that precedes the list.
\beginClist)
CB--\RomanCbean)3C\usecounter(bean)

\setlengthC\rightmargin){\leftmargin))
\item This is the first item of the list.

Observe how the left and ...
\item This is the second item.
\endClist)
As usual, the following text starts a ...

A l i s t environment like this would be used to produce a one-of-a-kind list. The
l is t environment is more commonly used with the \newenvironment co~nmand
(Section 3.4) to define a new environment. Having many different list formats
tends to confuse the reader. Instead of formatting each list individually, you
should define a small number of list-making environments.

6.7 Fonts 115

6.6.2 The t r i v l i s t Environment

The t r i v l i s t environment is a restricted form of the l i s t environment in which
margins are not indented and an \item command with no optional argument
produces no text. The environment has no arguments and is very much like
a l is t environment whose second argument sets \lef tmargin, \rightmargin,
\ labelvidth, and \itemindent to a length of zero.

The t r i v l i s t environment is used to define other environments that create a
one-item list, usually with an empty label. For example, the center environment
(Section 6.5) is equivalent to

6.7 Fonts

A font is a particular size and style of type. Section 3.1 explains how to change
the type style; Section 6.7.1 explains how to change the size. As its default,

uses the Computer Modern fonts designed by Donald Knuth. There are a
variety of packages that cause to use fonts other than Computer Modern.
Many of these packages are described in the I4w Companion; your Local Guide
will tell you which of them are available on your computer. You should use one
of these packages to change the fonts that are used throughout the document.

6.7.1 Changing Type Size

Urn's normal default type size is ten-point, but the i l p t document-class option
makes the default size .eleven-point and the 12pt option makes it twelve-point.
B w provides the following declarations for changing the type size within a
document.

Gnu \ t iny Gnu \normalsize Gnu \LARGE
Gnu \ scr ip t s i z e Gnu \ large
Gnu \f ootnotesize Gnu \Large

Gnu \huge

Gnu \small Gnu \Huge

These declarations can be combined in the natural way with the commands for
changing the type style described in Section 3.1.

\sffamily get \large big and \Large bigger
get big and bigger and bolder \bfseries and \LARGE bolder

The precise size of type produced by these declarations depends upon the default
type size; the examples appearing here are for a ten-point default size. The
\normalsize declaration produces the default size, \footnotes i ze produces the

116 Designing It Yourself

size used for footnotes, and \ scr ip ts ize produces the size used for subscripts
and superscripts in \normalsize formulas.

When you typeset an entire paragraph unit (Section 6.2.1) in a certain size,
the scope of the size-changing declaration should include the blank line or \end
command that ends the paragraph unit. A size-changing command.may not be
used in math mode. To set part of a formula in a different size of type, you
can put it in an \mbox containing the size-changing command. All size-changing
commands are fragile.

Not every type style is available in every size. If you try to use a font that is
not available, B w will issue a warning and substitute a font of the same size
that is as close as possible in style to the one you wanted.

6.7.2 Special Symbols

You may need a special symbol not normally provided by &+'I$$. Such symbols
can exist in special fonts. The Local Guide should tell you what special fonts
are available; the BT@X Companion describes how to get B w to use a special
font.

A symbol in a special font is often identified by its character-code, which is a
number from 0 to 255. When describing a special font, the Local Guide should
tell you how to find the character codes for its special symbols. The command
\symbol{26) produces the symbol with character code 26 in the currently cho-
sen font. Character codes are often given in octal (base 8) or hexadecimal
(base 16). An octal character code is prefaced by ' and a hexadecimal one by ",
so \symbol(' 32) and \symbol{" 1A) produce the same symbol as \symbol~26),
since 32 is the octal and 1A the hexadecimal representation of 26.

CHAPTER 7

Pictures
and Colors

118 Pictures and Colors

This chapter explains how to draw pictures, include graphics prepared with other
programs in your document, and produce colors. Of these features, only simple
picture-drawing commands are implemented in standard 'QjX. The others are
implemented by the graphics and color packages, which need special help from
the device driver-the program that turns the dvi file into the output you see.
Different device drivers may require different dvi files, which are.created by
giving different options to the \usepackage commands that load the graphics
and color packages.

Eventually, these special features shculd be available with all device drivers.
However, when B w 2E is first released, some drivers will not implement these
features, and some drivers may implement only some of them. Check the Local
Guide to find out about the device drivers on your computer.

Pictures

The picture environment is used to draw pictures composed of text, straight
lines, arrows, circles, and simple curves. This environment and its associated
commands are implemented with standard m; they do not require special
support from the device driver. However, the pict2e package uses device-driver
support to provide enhanced versions of these commands that remove some of
their restrictions. The enhanced commands can draw straight lines and arrows
of any slope, circles of any size, and lines (straight and curved) of any thickness.

In the picture environment, you position objects in a picture by specifying
their x and y coordinates. So, before getting to the picture-making commands,
let us first review a little bit of coordinate geometry.

A coordinate is a number such as 5, -7, 2.3, or -3.1416. Given an origin and
a unit length, a pair of coordinates specifies a position. As shown in Figure 7.1,
the coordinate pair (-1.8,l) specifies the position reached by starting at the
origin and moving left 1.8 units and up 1 unit.

The unit length used in determining positions in a picture environment
is the value of the length command \unitlength. Not just positions but all
lengths in a picture environment are specified in terms of \unitlength. Its
default value is 1 point (about 1172"~ of an inch or .35mm), but it can be
changed with the \setlength command described in Section 6.4.1. Changing
the value of \unitlength magnifies or reduces a picture-halving the value
halves the lengths of all lines and the diameters of all circles. This makes it easy
to adjust the size of a picture. However, changing \unit length does not change
the widths of lines or the size of text characters, so it does not provide true
magnification and reduction. (The graphics package, described in Section 7.2,
provides true magnifying and reducing commands.)
B w provides two standard thicknesses for the lines in a p ic ture th in as in
0 and thick as in 0. They are specified by the declarations \+chinlines

7.1 Pictures 119

I

2

length

Figure 7.1: Points and their coordinates.

and \ th ick l ines , with \ t h in l ines as the default. These commands are ordi-
nary declarations and can be used at any time.

Many picture-drawing commands have a coordinate pair as an argument.
Such an argument is not enclosed in braces, but is just typed with parentheses
and a comma, as in (-2,3.7) or (0,-17.2).

7.1.1 The picture Environment

The p ic ture environment has a coordinate-pair argument that specifies the pic-
ture's size (in terms of \unitlength). The environment produces a box (Sec-
tion 6.4.3) whose width and height are given by the two coordinates. The origin's
default position is the lower-left corner of this box. However, the p i c tu re en-
vironment has an optional second coordinate-pair argument that specifies the
coordinates of the box's lower-left corner, thereby determining the position of
the origin. For example, the command

produces a picture of width 100 units and height 200 units, whose lawer-left cor-
ner has coordinates (10,20), so the upper-right corner has coordinates (110,220).
Unlike ordinary optional arguments, the p ic ture environment's optional argu-
ment is not, enclosed in square brackets.

When first drawing a picture, you will usually omit the optional argument,
leaving the origin at the lower-left corner. Later, if you want to modify the
picture by shifting everything, you just add the appropriate optional argument.

The environment's first argument specifies the nominal size of the picture,
which is used by to determine how much room to leave for it. This need

120 Pictures and Colors

bear no relation to how large the picture really is; @ ' allows you to draw
things outside the picture, or even off the page.

The \begin(picture) command puts Blj@ in picture mode, a special mode
that occurs nowhere else.' The only things that can appear in picture mode are
\put, \mult iput , \qbezier, and \graphpaper commands (described below)
and declarations such as \em, \ thicklines, and \ se t length. You' should not
change \unitlength in picture mode.

The examples in this section all illustrate commands in picture mode, but the
\beginCpicture) and \end(picture) commands are not shown. To help you
think in terms of arbitrary unit lengths, the examples assume different values of
\unitlength. They are all drawn with the \ thicklines declaration in effect.
The pictures in the examples also contain lines and arrows, not produced by
the commands being illustrated, that indicate positions and dimensions; these
are drawn with \ th in l ines in effect, allowing you to compare the two line
thicknesses.

Remember that the picture environment produces a box, which treats
just like a single (usually) large letter. See Section 6.5 for commands and en-
vironments to position the entire picture on the page. All the picture-drawing
commands described in this section are fragile.

7.1.2 Picture Objects

Most things in a picture are drawn by the \put command. The command

\put (1 1 .3, - .3) {picture object)

puts the picture object in the picture with its reference point having coordinates
(11.3, -.3). The various kinds of picture objects and their reference points are
described below.

Text

The simplest kind of picture object is ordinary text, which is typeset in LR mode
to produce a box with the usual reference point (see Section 6.4.3).

/gang of armadillos

(2 4 5)

\put (2.3,5)Cgang of armadillos)

Boxes

A box picture object is made with the \makebox or \framebox command. These
commands, and the related \savebox command, have a special form for use with
pictures. The first argument is a coordinate pair that specifies the width and
height of the box.

'IKQ$'s picture mode is really a restricted form of LR mode.

7.1 Pictures 121

\put (1.3,4)C\framebox(3, I. 1)CgnuIl

) I T . ' units

+ 3 units -+
(1.3,4)

The reference point is the lower-left corner of the box. The default is to center the
text both horizontally and vertically within the box, but an optional argument
specifies other positioning. This argument consists of one or two of the following
letters: 1 (left), r (right), t (top), and b (bottom). The letters in a two-letter
argument can appear in either order.

\put (8, -5) C\framebox(8,3.5) [tl {gnu))

gnat \put (18, -5) C\f ramebox(l0,3) [br] {gnat))

(8, - 5) (18, - 5)

Unlike the ordinary \f ramebox command described in Section 6.4.3, the picture-
making version adds no space between the frame and the text. There is a
corresponding version of \makebox that works the same as \framebox except
it does not draw the frame. These picture-making versions are used mainly
as picture objects, although they can be used anywhere that an ordinary box-
making command can.

The discussion of zero-width boxes in Section 6.4.4 should explain why a
\makebox(O,O) command with no positioning argument puts the center of the
text on the reference point, and with a positioning argument puts the indicated
edge or corner of the text on the reference point.

I
(091) + gnat tang

(-1, .5)

armadillo
J \put (0, I) C\makebox(O,O)Cgnat tang33

\put (-1, .5) C\makebox(O, 0) Ctrl Carmadillo))
\put (I, 0) C\makebox(O, 0) Cbl Cgnu))

A \makebox(O,O) command is very useful for positioning text in a picture.
The \dashbox command is similar to \framebox but draws the frame with

dashed lines. It has an additional first argument that specifies the width of each
dash.

A dashed box looks best when the width and the height are both multiples of
the dash length-in this example, the width is ten times and the height four
times the length of a dash.

Straight Lines

Straight lines can be drawn with only a fixed, though fairly large, choice of
slopes. A line is not specified by giving its endpoints, since that might produce
a slope not in U W ' s repertoire. Instead, the slope and length of the line are
specified. WQjX's method of describing slope and length was chosen to make
designing pictures easier, but it requires a bit of explanation.

The \line command produces a picture object that is a straight line, with
one end of the line as its reference point. The command has the form

where the coordinate pair (x, y) specifies the slope and Zen specifies the length, in
a manner I will now describe. (Figure 7.2 illustrates the following explanation
with a particular example.) Let po be the reference point, and suppose its
coordinates are (xo, yo). Starting at po, move x units to the right and y units up
to find the point pl, so pl has coordinates (xo + x, yo + y). (Negative distances
have the expected meaning: moving right a distance of -2 units means moving
2 units to the left, and moving up -2 units means moving down 2 units.) The
line drawn by this command lies along the straight line through po and pl. It
starts at po and goes in the direction of pl a distance determined as follows by
len. If the line is not vertical (x # 0), it extends Zen units horizontally to the
right or left of po (depending upon whether x is positive or negative). If the
line is vertical (x = 0), it extends len units above or below po (depending upon
whether y is positive or negative).

The Zen argument therefore specifies the line's horizontal extent, except for
a vertical line, which has no horizontal extent, where it specifies the vertical

a x
1.4

Figure 7.2: \put (1.4,2.6) C\line(3, -1) I4.8))

distance. It equals the actual length of the line only for horizontal and vertical
lines. The value of Zen must be nonnegative.

Since only a fixed number of slopes are available, there are only a limited
number of values that x and y can assume. They must both be integers (numbers
without decimal points) between -6 and +6, inclusive. Moreover, they can have
no common divisor bigger than one. In other words, x ly must be a fraction in
its simplest form, so you can't let x = 2 and y = -4; you must use x = 1 and
y = -2 instead. The following are all illegal arguments of a \ l i n e command:
(1.4,3), (3,6), (0,2), and (1,7).

KI&J draws slanted (neither horizontal nor vertical) lines using a special
font whose characters consist of small line segments. This means that there is
a smallest slanted line that can draw-its length is about 10 points, or
1/7 inch. If you try to draw a smaller slanted line, HT)@ will print nothing.
It also means that HT& must print lots of line segments to make up a long
slanted line, so drawing a lot of slanted lines can take a long time and can use
up a lot of W ' s memory. However, BT)@ draws a horizontal or vertical line of
any length quickly, without using much memory.

Arrows

An arrow-a straight line ending in an arrowhead-is made by the \vector
command. It works exactly like the \ l i n e command.

The tip of the arrowhead lies on the endpoint of the line opposite the reference
point. This makes any normal-length arrow point away from the reference point.
However, for an arrow of length zero, both endpoints lie on the reference point,
so the tip of the arrow is at the reference point.

B7&X can't draw arrows with as many different slopes as it can draw lines.
The pair of integers specifying the slope in a \vector command must lie between
-4 and +4, inclusive; as with the \ l i n e command, they must have no common
divisor.

Stacks

The \shorts tack command produces a box containing a single column of text
with the reference point at its lower-left corner. Its argument contains the text,
rows being separated by a \\ command. The \shorts tack command is much
like a one-column tabulai- environment (Section 3.6.2), but the space between
rows is designed for a vertical column of text in a picture. The default alignment

124 Pictures and Colors

is to center each row in the column, but an optional positioning argument of 1
(left) or r (right) aligns the text on the indicated edge.

Gnats May Sh
0

and break

f gnus(3. 7) (197)

\put (1,7)~\shortstack.ICnats\\ and \\ gnus))
\put (3,7) €\shortstack Crl (Hay\\ break \\my))
\put (5,7) I\shortstack Cll (Sh\\o\\e.\\sH

Unlike an ordinary tabular environment, rows are not evenly spaced. You
can change the inter-row spacing by using either the \\ command's optional
argument (Section C.1.6) or a strut (Section 6.4.3). The \shortstack command
is an ordinary box-making command that can be used anywhere, but it seldom
appears outside a picture environment.

Circles

The \circle command draws a circle of the indicated diameter, with the center
of the circle as reference point, and the \circle* co&mand draws a disk (a
circle with the center filled in). B' has only a fixed collection of circles and
disks; the \circle and \circle* commands choose the one whose diameter is
closest to the specified diameter.

On my computer, the largest circle that B' can draw has a diameter of 40
points (a little more than 112 inch) and the largest disk has a diameter of 15
points (about .2 inch). Consult the Local Guide to find out what size circles and
disks are available on your computer.

Ovals and Rounded Corners

An oval is a rectangle with rounded corners-that is, a rectangle whose corners
are replaced by quarter circles. It is generated with the \oval command, whose
argument specifies the width and height, the reference point being the center of
the oval. Bl$X draws the oval with corners as round as possible, using quarter
circles with the largest possible radius.

3.1 units -(l.l, -4)

Giving an optional argument to the \oval command causes B ' to draw only
half or a quarter of the complete oval. The argument is one or two of the letters
1 (left), r (right), t (top), and b (bottom), a one-letter argument specifying

7.1 Pictures 125

a half oval and a two-letter argument specifying a quarter oval. The size and
reference point are determined as if the complete oval were being drawn; the
optional argument serves only to suppress the unwanted part.

Joining a quarter oval to straight lines produces a rounded corner. It takes a bit
of calculating to figure out where to \put the quarter oval.

Framing

The \f ramebox command puts a frame of a specified size around an object. It
is often convenient to let the size of the object determine the size of the frame.
The \fbox command described in Section 6.4.3 does this, but it puts extra space
around the object that you may not want in a picture. The \frame command
works very much like \fbox except it doesn't add any extra space.

7.1.3 Curves

The \qbezier command takes three points as arguments and draws a quadratic
Bezier curve with those as its control points. A quadratic Bezier curve with
control points PI, P2, P3 is a curve from PI to P3 such that the line from PI to
P2 is tangent to the curve at PI, and the line from P3 to P2 is tangent to the
curve at P3.

126 Pictures and Colors

For two curves (or a curve and a straight line) to join smoothly, they must have
the same tangent at the point where they meet. Bezier control points therefore
provide a convenient way of specifying a curve.
IN@ draws curves by drawing lots of individual points. (This does not

apply to the pict2e package's enhanced version.) Each point takes time to
draw and takes memory space, so B ' does not draw a completely smooth
curve. The \qbeziermax command specifies the maximum number of points
@" will normally plot for a single \qbezier command. (It can be changed
with \renewcommand.) However, an optional argument to \qbezier allows you
to tell f i ' exactly how many points to plot.

7.1.4 Grids

The graphpap package defines the graphpaper command, which draws a num-
bered coordinate grid. The command's first argument specifies the coordinates
of the lower-left corner of the grid, and its second argument specifies the grid's
width and height.

7.1 Pictures 127

The grid normally consists of one line every 10 units, but an optional first
argument allows you to specify a different spacing.

.The arguments of \graphpaper can contain only integers.

7.1.5 Reusing Objects

The \savebox command described in Section 6.4.3 is similar to \makebox except
that, instead of being drawn, the box is saved in the indicated storage bin. Like
\makebox, the \savebox command has a form in which the size of the box
is indicated by a coordinate pair, with positioning determined by an optional
argument.

k 3 units -+ \savebox{\toy}(3, I. 3) [tr] {gnu)
...
\put(-2,4>(\frame(\usebox(\toy)))
\put (2,4) C\f rame{\useboxC\toy33}

The storage bin \ toy in this example must be defined with \newsavebox. A
\savebox command cap be used inside a p ic ture environment to save an object
that appears several times in that picture, or outside to save an object that
appears in more than one picture. Remember that \savebox is a declaration
with the normal scoping rules.

It can take I4W a long time to draw a picture, especially if it contains
slanted lines, so it's a good idea to use \savebox whenever an object appears
in different pictures or in different places within the same picture. However,
a saved box also uses memory, so a picture should be saved no longer than
necessary. The space used by a saved box is reclaimed upon leaving the scope
of the \savebox declaration. You can also use a command like \sboxC\toy)O,
which destroys the contents of storage bin \ toy and reclaims its space.

7.1.6 Repeated Patterns

Pictures often contain repeated patterns formed by regularly spaced copies of
the same object. Instead of using a sequence of \put commands, such a pattern

128 Pictures and Colors

can be drawn with a \multiput command. For any coordinate pairs (x, y) and
(Ax, Ay), the command

puts 17 copies of object in the picture, starting at position (x, y) and stepping
the position by (Ax, Ay) units each time. It is equivalent to the 17 commands

\put (x, y) (object)
\put(x + Ax,y + Ay)<object3
\put (x + 2Ax, y + 2Ay) (object)
. . .
\put(x + 16Ax,y + 16Ay)Cobject)

as illustrated by the following example:

5.2 units
(3 ,2 .4) 3.3 units

0

You can make a two-dimensional pattern by using a p ic ture environment con-
taining another \multiput in the argument of a \multiput command. However,
\multiput typesets the object anew for each copy it makes, so it is much more
efficient to make a two-dimensional pattern by saving a one-dimensional pat-
tern made with \multiput in a storage bin, then repeating it with another
\multiput. Saving the object in a bin can also save processing time for a one-
dimensional pattern. However, patterns with too many repetitions in all may
cause l&X to run out of memory.

7.1.7 Some Hints on Drawing Pictures

As you gain experience with the p ic ture environment, you'll develop your own
techniques for designing pictures. Here are a few hints to get you started.

If you use a small unit length, such as the default value of 1 point, you will
seldom need decimals.

It can take quite a bit of trial and error to get a picture right. Use a screen
previewer, and run B w on a file containing just the picture.

Make a coordinate grid with the \graphpaper command, and use it for
placing objects.

If you are not afraid of math, you will find that a few simple calculations can
save a lot of trial and error--especially when drawing slanted lines and arrows.

It's a good idea to break a complicated picture into "subpictures". The
subpicture is drawn in a separate p ic ture environment inside a \put argument,
as in

7.2 The graphics Package 129

This permits easy repositioning of the subpicture and allows you to work in terms
of local coordinates relative to the subpicture's origin instead of calculating the
position of every picture component with respect to a single origin. You can also
magnify or reduce just the subpicture by changing the value of \unitlength with
a \setlength command in the \put command's argument-but don't leave any
space after the \setlength command.

A small mistake in a picture-drawing command can produce strange results.
It's usually simple to track down such an error, so don't panic when a picture
turns out all wrong. If you find that some part of the picture is incorrectly
positioned by a small amount, check for stray spaces in the argument of the
\put command. Remember that this argument is typeset in LR mode, so a
space before or after an object produces space in the output.

7.2 The graphics Package

The graphics package defines commands for performing geometric transfor-
mations and including graphics prepared with other computer programs. The
geometric transformations are scaling, rotation, and reflection. These transfor-
mations may be applied to any text including ordinary letters and words, but
they are usually applied to pictures made with the picture environment and
included graphics. This package requires support from the device driver; see the
remarks at the beginning of this chapter.

The package provides two scaling commands, \scalebox and \resizebox.
The \scalebox command allows you to enlarge or reduce any text by a constant
scale factor.

great big gnat
regular gnat

\scalebox(2)(great
regular gnat
\scalebox(. 5)(tiny

big gnat)

gnat 3

An optional second argument specifies a separate vertical scale facxor.

ask@ \scalebox(. 75) C21 (tall skinny gnat3

The \resizebox allows you to scale text to a desired size. Its two arguments
specify the width and height of the box that it produces. Using ! for either
argument maintains the aspect ratio of the text. - 5 cm -------+A
fat g n a t + 4 c - \resizebox<5cmH. 4cm)1f at gnat3

+ 2 cm ---4

fat gnat \resizebox(2cm)(!)Cfat gnat)

130 Pictures and Colors

Both \scalebox and \resizebox typeset their text argument in LR mode. They
produce a box whose reference point is the same as the reference point of the
original unscaled box.

The \rotatebox command rotates text by a specified angle. In the following
examples, the sizes and reference points of boxes are shown.

gnu \rotatebox€30)(gnu)

The \rotatebox command typesets its text argument in LR mode. It produces
a box whose reference point is at the same height as the rotated reference point
of the original text.

The \reflectbox command typesets its argument in LR mode and then
produces its mirror image. .

gnu \reflectbox~gnu)

Graphics produced by another program can be included in your document
with the \includegraphics command. The following example assumes that
the file LA83. f un contains a picture in a form that the device driver can handle.

In this example, the size of the box is specified by the file LA83.fun. Some
graphics files do not include a size specification. In that case, will produce
an error message, and you will have to specify the size yourself using optional
arguments to the \includegraphics command. In the next example, the first

7.3 Color 131

picture shows what is actually in the file jason. eps and the second shows the
output of the \includegraphics ~ o m m a n d . ~

\includegraphics*
L i b , 15mml C S b , 27mml C jason . eps)

The optional arguments to \includegraphics override any size specification
in the file itself. However, the box specified by the file (and produced by
\includegraphics with no optional argument) might not contain the entire
picture. A command such as

\resizebox{\textwidth)o
{\includegraphics [Oin,Oin] [8in, loin] (j ason. eps33

will show you what is actually in the file jason. eps.
The draft option causes the \includegraphics command to print a box

containing the name of the file rather than the contents of the file. This option
is specified either by typing

\usepackage [draf tl {graphics)

or by specifying the eaft document-class option (Section 2.2.2). A final op-
tion in the \usepackage command counteracts the effects of a draft document-
class option.

7.3 Color

You can produce colored text with the \textcolor command or the correspond-
ing \color declaration. (To keep the cost of this book down, colors are indicated
by shades of gray.)

CECI N'EST PAS UNE PIPE ROUGE. ... UNE \textcolorCred)CPIPE) ROUGE.

\color(red)
... UNE ~\co lor(b lack) PIPE) NOIRE.

2Without the * after \includegraphics, the entire picture would be printed, although 'I)$
would leave only enough space for the small rectangle.

132 Pictures and Colors

The \colorbox command typesets its argument in LR mode on a rectangular
background of a specified color.

\colorboxCred)(UNE PIPE ROUGE)

The command \f colorbox(blue3Cred3IUNE. . - 3 puts a blue border 'around the
red rectangle.

A \pagecolor(greenI declaration causes the background of the entire page
to be green. It is a global declaration that applies to the current page and all
subsequent pages, until countermanded by another \pagecolor command.

The following colors are predefined: black, white, red, green, blue, yellow,
cyan, and magenta. The \def inecolor command allows you to define your own
colors in terms of a color model. In the rgb color model, a color is specified by
three numbers, ranging from 0 to 1, that represent the amounts of red, green,
and blue light required to produce it. For example, magenta is produced by
mixing equal amounts of red and blue light, so it is defined by

A darker shade of magenta is defined by

In the gray color model, a shade of gray is specified by a single number ranging
from 0 (black) to 1 (white).

\definecolor~dark)@ay)C.5)
\colorbox(dark)(A dark gray box.)

\def inecolor(light)(gray)C. 75)
\colorbox(light)(A light gray box.)

also supports the cmyk model, popular with (human) printers, in which a
color is specified by values of cyan, magenta, yellow, and black ranging from 0
to 1. Other color models may be available on your computer, including ones in
which a color is specified by a name. Check your Local Guzde.

After BT@ ZE is released, there may be a period when some drivers will not
handle color commands properly. Check your output carefully, especially when
the scope of a color declaration spans pages-for example if the declaration
appears in a footnote that is split across pages.

CHAPTER 8

Errors

134 Errors

Section 2.3 describes first aid for handling errors; it explains how to deal with
simple errors. This chapter is for use when you encounter an error or warning
message that you don't understand. The following section tells how to locate the
error; the remaining sections explain the meaning of specific error and warning
messages.

As you saw in Section 2.3, an error can confuse I4W and cause it to produce
spurious error messages when processing subsequent text that is perfectly all
right. Such spurious errors are not discussed here. When 'l&X writes a page
of output, it has usually recovered from the effects of any previous errors, so
the next error message probably indicates a real error. The following section
explains how to tell when T&jX has written an output page.

8.1 Finding the Error

As described in Section 2.3, an error message includes an error indicator stating
what TEX thinks the problem is, and an error locator that shows how much of
your input file Tj$ had read when it found the error. Most of the time, the line
printed in the error locator displays an obvious error in the input. Typing H can
also provide useful information. If you don't see what's wrong, look up the error
message in the following sections to find its probable cause. If you still don't see
what's wrong, the first thing to do is locate exactly where the error occurred.

The error locator starts with a line number such as 1.14, meaning that
the error was found while BQjX was processing the fourteenth line from the
beginning of the file. If your input is all on a single file, then the error locator
unambiguously identifies where TE;X thinks the problem is. However, if you're
using the commands of Section 4.4 to split your input into several files, then
you also must know what file the error is in. Whenever QjX starts processing
a file, it prints on your terminal (and on the log file) a "(" followed by the file
name, and it prints a ")" when it finishes processing the file. For example, the
terminal output

. . . (myf ile. tex C11 C21 C31 (part1 . tex C41 C51) (part2. tex 161 C71
! Undefined control sequence.
1.249 \todzy
?

tells you that the error (a misspelled \today command) is on line 249 of the file
part2. tex, which was included by an \input or \include command contained
in the file myf i l e . tex. T&X had completely processed the file part 1. tex, which
was also read by a command in myf i l e . tex.

The error locator tells you how much of the input file TE;X had processed be-
fore it discovered the error; the last command that processed is usually the
source of the problem. There is one important exception; but before discussing
it, a digression is in order.

8.1 Finding the Error 135

Logically, typesetting can be viewed as a two-step process: first the document
is typeset on one continuous scroll that unrolls vertically, then the scroll is cut
into individual pages to which headings and page numbers are added. (Since a
50-yard scroll of metal type is somewhat unwieldy, printers partition the logical
scroll into convenient lengths called galleys.) Instead of first producing the entire
scroll and then cutting it into pages, m does both steps together, alternately
putting output on the scroll with one hand and cutting off a page with the other.
It usually puts text on the scroll one paragraph unit (Section 6.2.1) at a time.
After each paragraph unit, it checks whether there's enough for a page. If so, it
cuts off the page, adds the heading and page number, and writes the page on
the dvi file. This way, w doesn't have to keep much more than one page of
text in the computer's memory at a time.

Whenever T)i$ writes a page on its output file, it prints the page number
on the terminal, enclosed in square brackets. Thus, any message that appears
on the terminal after T)$ prints C271 and before it prints C281 was generated
between the time lj$ wrote output pages 27 and 28. Whatever generated the
message probably appeared in the text printed on page 28. However, it might
also be in the text that was left on the scroll when T@ cut off page 28, putting
it in the first paragraph of page 29. Most of S w ' s warning messages are
generated by ?X's scroll-making hand. It reports that a problem is on page 28
if it is detected between the time Tfl writes pages 27 and 28, so the problem
could actually appear at the top of page 29.

Now, let's get back to locating an error. Most errors are discovered while
TF$ is producing the scroll, but some errors, which I will call outputting errors,
are detected while it is cutting off a page. T@ identifies an outputting error by
printing <output> on the terminal at the beginning of a line somewhere above
the error locator. For an outputting error, the error locator shows how far w
got when it was producing the scroll; the actual error occurred at or before that
point. An outputting error is usually caused by a fragile command in a moving
argument.

An error can occur while Um is processing the \begin(document) or
\endCdocument) command, when it reads the auxiliary files it has written. You
can tell that this has happened because the output on your terminal shows
that 'l&X is reading a file with the extension aux. Such an error means that
there is bad information on the auxiliary file. An error while processing the
\begin(document) was caused by an error the last time you ran Sw. An er-
ror while processing the \endIdocument) is usually caused by a fragile command
in a moving argument.

An error that occurs while HTEX is processing a toc, lo f , or l o t file means
that there is an error in a table of contents, list of figures, or list of tables entry.
This error was caused by an error in a \caption or sectioning command-
perhaps a fragile command in the argument-the previous time @T)jX was run
on the file.

136 Errors

When the terminal output doesn't quickly lead you to the source of the error,
look at the printed output (on your screen previewer). If I 4 ' reaches the end
of your input or is stopped with a \stop command, the printed output will
contain everything it has put on the scroll, and the location of the error will
probably be obvious. If you stopped I4'' by typing an X, then it will not print
what was left on the scroll after the last full page was written out.' Since the
error probably occurred in this leftover text, the output will just narrow the
possible location of the error.

If you still can't find the error, your next step is to find the smallest piece of
your input file that produces the error. Start by eliminating everything between
the \beginCdocument) and the last page or so of output. Then keep cutting
the input in half, throwing away the part that does not cause the error. This
should quickly lead to the source of the problem.

When all else fails, consult your Local Guide to find a I 4 w expert near you.

8.2 BW's Error Messages

Here is an alphabetical list of most of I 4 W ' s error indicators (with the initial
" ! LaTeX Error : " omitted), toget her with their causes. Not listed are indica-
tors for errors caused by a bad document class, some errors for which typing H
provides a clear explanation, and many errors produced only when a particular
package is used.

Bad \ l ine or \vector argument.
A \ l i ne or \vector command specified a negative length or an illegal slope.
Look up the constraints on these commands in Section 7.1.

Bad math environment del imiter .
I4' has found either a math-mode-starting command such as \ E or \(when
it is already in math mode, or else a math-mode-ending command such as \) or
\I while in LR or paragraph mode. The problem is caused by either unmatched
math mode delimiters or unbalanced braces.

\begin{ . . . I on input l i n e ... ended by \end(.. .) .
M)i$ has found an \end command that doesn't match the corresponding \begin
command. You probably misspelled the environment name in the \end com-
mand, have an extra \begin, or else forgot an \end.

Can be used only i n preamble.
I 4 w has encountered, after the \begin(document), a command that should
appear only in the preamble, such as \usepackage, \nof i l e s , \includeonly, or
\makeindex. The error is also caused by an extra \begin(documentl command.

8.2 @"'s Error Messages 137

Cannot determine size of graphic in . . . (no BoundingBox).
An \includegraphics command with no optional arguments read a file that
does not specify the size of the box to be produced (graphics package only).

Command ... already defined.
You are using \newcommand, \newenvironment, \newlength, \newsavebox, or
\newtheorem to define a command or environment name that is already defined,
or \newcounter to define a counter that already exists. (Defining an environ-
ment named gnu automatically defines the command \gnu.) You'll have to
choose a new name or, in the case of \newcommand or \newenvironment, switch
to the \renew. . . command.

Command ... invalid in math mode.
The indicated command is not permitted in math mode but was used there.

Counter too large.
Some object that is numbered with letters or with footnote symbols has received
too large a number. You're probably either making a very long enumerated list
or resetting counter values.

Environment ... undefined.
B ' has encountered a \begin command for a nonexistent environment. You
probably misspelled the environment name. This error can be corrected on the
spot by typing an I followed by the correct command, ending with a return.
(This does not change the input file.)

File ... not found.
B m is trying to read a file that doesn't exist. If the missing file has the
extension tex, then it is trying to \input or \include a nonexistent file; if it
has the extension cls, then you have specified a nonexistent document class; if
it has the extension sty, then you have specified a nonexistent package. B w
is waiting for you either to type another file name followed by return, or to type
return to continue without reading any file.

Illegal character in array arg.
There is an illegal character in the argument of an array or tabular environ-
ment, or in the second argument of a \multicolumn command.

\include cannot be nested.
Your document \include's a file containing an \include command.

Lonely \item--perhaps a missing list environment.
An \item command appears outside any list environment.

138 Errors

Missing \begin(document).
@T)i$ produced printed output before encountering a \begin(document) com-
mand. Either you forgot the \begin(document) command or there is something
wrong in the preamble. The problem may be a stray character or an error in a
declaration-for example, omitting the braces around an argument or forgetting
the \ in a command name.

Missing p-arg in array arg.
There is a p that is not followed by an expression in braces in the argument of an
array or tabular environment, or in the second argument of a \multicolumn
command.

Missing O-exp in array arg.
There is an Q character not followed by an (Q-expression in the argument of'an
array or tabular environment, or in the second argument of a \multicolumn
command.

No counter ' . . . ' defined.
You have specified a nonexistent counter in a \setcounter or \addtocounter
command, or in an optional argument to a \newcounter or \newtheorem com-
mand. You probably mistyped the counter name. However, if the error occurred
while a file with the extension aux is being read, then you probably used a
\newcount er command in an \include'd file.

No \title given.
A \maketitle command is not preceded by a \title command.

Not in outer par mode.
You had a figure or table environment or a \marginpar command in math
mode or inside a parbox.

Option clash for package ...
The same package was loaded twice with different options. The package might
have been loaded by another package.

\pushtabs and \poptabs don't match.
found a \poptabs with no matching \pushtabs, or has come to the

\end(tabbing> command with one or more unmatched \pushtabs commands.

Something's wrong--perhaps a missing \item.
There are many possible causes, including an omitted \item command in a
list-making environment and a missing argument of a thebibliography envi-
ronment.

8.2 H w ' s Error Messages 139

Tab overflow.

A \= command has exceeded the maximum number of tab stops that
permits.

There's no line here to end.

A \newline or \\ command appears between paragraphs, where it makes no
sense. If you are trying to 'leave a blank line", use a \vspace command (Sec-
tion 6.4.2).

This file needs format ... but this is . . .
The document uses a document class or package that is not compatible with
the version of I S ' you are running. If you are using only standard files, then
there is something wrong with the installation of I S ' on your computer.

This may be a LaTeX bug.

@I)$ has become thoroughly confused. This is probably due to a previously
detected error, but it is possible that you have discovered an error in IN@
itself. If this is the first error message produced by the input file and you can't
find anything wrong, save the file and contact the person listed in your Local
Guide.

Too deeply nested.

There are too many list-making environments nested within one another. How
many levels of nesting are permitted may depend upon what computer you are
using, but at least four levels are provided, which should be enough.

Too many columns in eqnarray environment.

An eqnarray environment contains three & column separators without an inter-
vening \\ command.

Too many unprocessed floats.

While this error can result from having too many \marginpar commands on a
page, a more likely cause is forcing @ ' to save more figures and tables than
it has room for. When typesetting its continuous scroll, B w saves figures and
tables separately and inserts them as it cuts off pages. This error occurs when
I S W is f~rced to save too many figure and/or table environments. A likely
cause is a logjam-a figure or table that cannot be printed, causing others to pile
up behind it, since I+' will not print figures or tables out of order. The jam
can be started by a figure or table that won't fit where its optional placement
argument (Section C.9.1) says it must go. See the discussion of ISTj$'s figure-
placement algorithm in Section C.9.1.

140 Errors

Undefined color ' . . . ' .
The indicated color name is used without having been defined by a \def inecolor
command (color package only).

Undefined color model ' . . . ' .
A \def inecolor command specifies an unknown color model (color package
only).

Undefined t a b position.
A \>, \+, \-, or \< command is trying to go to a nonexistent tab position--one
not defined by a \= command.

U n k n 0 ~ graphics extension . . .
The graphics package's \includegraphics command uses the file's extension
to determine what kind of program produced the file. This error occurs when
the file name does not have an extension known to the package. Consult the
Local Gzrlide to see what file extensions you can use.

Unknown option ... f o r ...
The \documentclass command or a \usepackage command specifies an illegal
option for the class or package.

\verb ended by end of l i n e .
The argument of a \verb command extends beyond the current line. You may
have forgotten the character that ends the argument.

\verb i l l e g a l i n command argument.
A \verb command appears in the argument of another command.

\< i n m$d l ine .
A \< command appears in the middle of a line in a tabbing environment. This
command should come only at the beginning of a line.

8.3 W's Error Messages

Here is an alphabetical list of some of w ' s error messages and what may have
caused them.

! Double subscript.
There are two subscripts in a row in a mathematical formula-something like
x-(23-(3), which makes no sense. To produce x2,, type x-(2-(3)).

8.3 w's Error Messages 141

! Double superscript.
There are two superscripts in a row in a mathematical formula-something like
1~^{2)^{33, which makes no sense. To produce zz3, type x^C2-{3)).

! Extra alignment t ab has been changed t o \c r .
There are too many separate items (column entries) in a single row of an array
or tabular environment. In other words, there were too many 8's before the
end of the row. You probably forgot the \\ at the end of the preceding row.

! Extra 3 , or forgotten $.

The braces or math mode delimiters don't match properly. You probably forgot
a {, \[, \(, or $.

! I can't f ind f i l e '...'.
You probably ran I4W on a nonexistent file. This error can also occur if you
omitted the braces around an \input command.

! I l l ega l parameter number i n def in i t ion of
This is probably caused by a \newcommand, \renewcommand, \providecommand,
\newenvironment, or \renewenvironment command in which a # is used in-
correctly. A # character, except as part of the command name \#, can be used
only to indicate an argument parameter, as in #2, which denotes the second
argument. This error is also caused by nesting one of the five commands listed
above inside another, or by putting a parameter like #2 in the last argument of
a \newenvironment or \renewenvironment command.

! I l l e g a l unit of measure (pt inserted) .
If you just got a

! Missing number, t rea ted as zero.

error, then this is part of the same problem. If not, it means that BTEX was
expecting a length as an argument and found a number instead. The most
common cause of this error is writing 0 instead of something like Oin for a length
of zero, in which case typing return should result in correct output. However,
the error can also be caused by omitting a command argument.

! Misplaced alignment t a b character &,

The special character &, which should be used only to separate items in an
array or tabular environment, appeared in ordinary text. You probably meant
to type \&, in which case typing I\& followed by return in response to the error
message should produce the correct output.

142 Errors

! Missing control sequence inserted.
This is probably caused by a \newcommand, \renewcommand, \newlength, or
\newsavebox command whose first argument is not a command name.

! Missing number, t rea ted as zero.
This is usually caused by a BT)$ command expecting but not finding either a
number or a length as an argument. You may have omitted an argument, or
a square bracket in the text may have been mistaken for the beginning of an
optional argument. This error is also caused by putting \protect in front of
either a length command or a command such as \value that produces a number.

! Missing C inserted.
! Missing) inserted.
'lj$ has become confused. The position indicated by the error locator is prob-
ably beyond the point where the incorrect input is.

! Missing $ inserted.
T)$ probably found a command that can be used only in math mode when it
wasn't in math mode. Remember that unless stated otherwise, all the commands
of Section 3.3 can be used only in math mode. w is not in math mode
when it begins processing the argument of a box-making command, even if that
command is inside a math environment. This error also occurs if l&X encounters
a blank line when it is in math mode.

! Not a l e t t e r .
Something appears in the argument of a \hyphenation command that doesn't
belong there.

! Paragraph ended before . . . was complete.
A blank line occurred in a command argument that shouldn't contain one. You
probably forgot the right brace at the end of an argument.

! TeX capacity exceeded, sorry I . . .] .
T)$ has just run out of space and aborted its execution. Before you panic,
remember that the least likely cause of this error is TEX not having the capacity
to process your document. It was probably an error in your input file that caused
'lj$ to run out of room. For example, the following command makes a circular
definition, defining \gnu in terms of itself:

\newcommand(\gnu)(a \gnu) % This i s wrong!

When ?I)$ encounters this \gnu command, it will keep chasing its tail trying to
figure out what \gnu should produce, and eventually run out of space. @?I)$
seldom runs out of space on a short input file, so if running it on the last few

8.3 W's Error Messages 143

pages before the error indicator's position still produces the error, then there's
almost certainly something wrong in the input file. An error that causes
to run out of space can be hard to find; you may have to use the divide and
conquer method described in Section 8.1 to locate it.

Today's computers have enough memory to provide '&X with all the space
it needs to process almost any document. However, any particular version of

uses only a fixed amount of space, and the version on your computer may
not be big enough to process your document. In this case, you should try to get
a bigger version. Meanwhile, by understanding why '&X ran out of space, you
can reduce the space it needs for your document. The end of the error indicator
tells what kind of space TjijX ran out of. The kinds of space you are most likely
to run out of are listed below, with an explanation of what uses them up.

buffer s i ze Can be caused by too long a piece of text as the argument of a
sectioning, \caption, \addcont ent s l ine , or \addt ocont ents command.
This error will probably occur when the \end(document) is being pro-
cessed, but it could happen when a \tableof contents, \ l i s t o f f igures,
or \ l i s to f t ab les command is executed. To solve this problem, use a
shorter optional argument. Even if you're producing a table of contents or
a list of figures or tables, such a long entry won't help the reader.

exception dictionary You have used \hyphenation commands to give TEX
more hyphenation information than it has room for. Remove some of the
less frequently used words from the \hyphenation commands and insert
\ - commands instead.

hash s i ze Your input file defines too many command names and/or uses too
many cross-referencing labels.

main memory s i ze This is one kind of space that '&X can run out of when
processing a short file. There are three ways you can run out of main
memory space: (1) defining a lot of very long, complicated commands,
(2) making an index or glossary and having too many \index or \glossary
commands on a single page, and (3) creating so complicated a page of
output that '&$ can't hold all the information needed to generate it.

The solution to the first two problems is obvious: define fewer commands
or use fewer \index and \glossary commands. The third problem is
nastier. It can be caused by large tabbing, tabular, array, and picture
environments. (In particular, \qbezier commands can use a lot of main
memory.) W ' s space may also be filled up with figures and tables waiting
for a place to go.

To find out if you've really exceeded W ' s capacity in this way, put a
\clearpage command in your input file right before the place where TEX
ran out of room and try running it again. If it doesn't run out of room

144

pool si e You probably used too many cross-referenci& labels and/or defined
to many new command names. More precisely, the labels and command
n es that you define have too many characters, so this problem can be
so ved by using shorter names. However, the error can also be caused
by omitting the right brace that ends the argument of either a counter
co mand such as \setcounter, or a \newenvironment or \newtheorem
co 1 mand.

Errors

e \clearpage command there, then you did exceed ljjX's capacity.
1 runs out of room, then there's probably an error in your file.

s really out of room, you must give it some help. Remember that
cesses a complete paragraph before deciding whether to cut the
serting a \newpage command in the middle of the paragraph,

should break the page, may save the day by letting 'I)$ write

e This occurs when commands, environments, and the scopes of dec-
are nested too deeply-for example, by having the argument of

command contain a picture environment that in turn has a
declaration whose scope contains a \multiput command

out

lated

final

an invalid character.
t file contains some strange nonprinting character (sometimes called a

that it shouldn't. Instead of using a simple text editor, you
the file with a program that does its own formatting. Such

insert strange characters into a file unless you save it as a text

the current page before processing the rest of the paragraph. (A
\pagebreak command won't help.) If the problem is caused by accumu-

figures and tables, you can try to prevent them from accumulating-
either by moving them further towards the end of the document or by
trying to get them to come out sooner. (See Section C.9.1 for more de-
tails.) If you are still writing the document, simply add a \clearpage
conmand and forget about the problem until you're ready to produce the

version. Changes to the input file are likely to make the problem go
away.

control sequence.
an unknown command name. You probably misspelled the

typing I followed by the desired command name and a
output. However, you still must change the input

when a &+" command is being processed, the
place. The error can also be caused by a

command.

! Use of ...
If the ". . ." is a Wl&X command, then it's one of the picture-drawing
commands described in Section 7.1, and you the wrong syntax for spec-
ifying an argument. If it's \@array that its definition, then there
is something wrong in an @-expression of an array or tabular
environment-perhaps a fragile \protect'ed. The error
can also be caused by an an optional argument
appearing in a moving not be the name of
the command.)

8.4 J4w Warnings

! You can't use 'macro parameter char c t e r # ' i n . . . mode.
The special character # has appeared in ordi ary text. You probably meant
to type \#, in which case you can respond to the error message by typing I\#
followed by return to produce the correct out I ut.

145

BTEX Warnings

W m ' s warning messages begin with "LaTeX arning : ". (Some begin with an
indication of the class of warning-for exampl , "LaTeX Font warning: ".) The
most common messages are described below. ertain classes of warnings cause
UT)$ to print an additional message at the e d to indicate that a warning of
that class occurred. i
Citation ' . . . ' on page . . . undefined. 1
The citation key in a \ c i t e command was not efined by a \bibitem command.
See Section 4.3.

Command ... invalid i n math mode.
The indicated command is not permitted in ath mode but was used there.
Remember that \boldmath, \unboldmath, a size-changing commands may
not be used in math mode.

Float too large f o r page by ...
A figure or table is too tall, by the indicated th, to fit on a page. It is printed
by itself on an oversize page. The length is

Font shape ' . . . ' i n s i ze . . . not ava i l b le .
You specified a font that is not available on our computer. The next line of
the message describes what font UT@ is usi g in its place. As explained in
Section 3.3.8, this message can be caused by \boldmath declaration even if
the font is never used. i

h floa specifier changed to ht
!h flo t specifier changed to !ht
A figu e or table environment has an optional argument h or ! h, but the
figure o table would not fit on the current page, so it is being put on the top of
a subse uent page. I

146

... ' multiply defined.
or \bibitem commands have the same arguments. More precisely,
same arguments the preceding time that I4W processed the input.

Errors

may have changed. Rerun to get cross-references right.
processing the entire input if the numbers printed by \cite, \ref,
commands may be wrong because the correct values have changed
time B w processed the input.

I

Margin ar on page ... moved.
A marg'nal note was moved down on the page to avoid printing it on top of a
previou marginal note. It will therefore not be aligned with the line of text
where t 1 e \marginpar command appeared.

No \au hor given.
A \mak 1 title command is not preceded by an \author command.

Option 1 argument of \twocolumn too tall on page . . .
The op ional argument of a \twocolumn command produced a box too large to
fit on a t page.

specified an oval so small that BQjX could not draw small
to put in its corners. What BT)$ did draw does not look

~ e f ere4ce ' . . . ' on page . . . undefined.
of a \ref or \pageref command was not defined by a \label

available, defaults substituted.
Issued dfter processing the entire input if any unavailable font was specified.

ere multiply-defined labels.
processing the entire input if any label was defined by two different

There were undefined references or
Issued after processing the entire input if a \ was found that had
no corresponding \ label or bibliography

8.5 'I)iJC Warnings

Unused global option(s) : [. . . I .
The listed options were given to the \docue b t c l a s s command but were not

147

known to it or to any packages that were loadt

I

You have requested release ' . . . of La?
' . . . ' i s available.
You are using a document class or package tha
than the one you are running. You should get

8.5 3)ijX Warnings

You can identify a IJQC warning message beca
no ? is printed, and it does not begin with "La'
some of TjjX's warnings.

?X, but only release

requires a later release of BTEX
;he latest release of I4W.

Lse it is not an error message, so
'ex Warning : ". Below is a list of

Overfull \hbox . . .
See Section 6.2.1.

Overfull \vbox ...
Because it couldn't find a good place for a page
than it should. See Section 6.2.2 for how to de 1 with page-breaking problems.

break, T)$ put more on the page

Underfull \hbox ...
Check your output for extra vertical space. If you find some, it was probably
caused by a problem with a \\ or \newline corn and-for example, two \\ com-
mands in succession. This warning can also be caused by using the sloppypar
environment or \sloppy declaration, or by ins [. rting a \linebreak command.

Underf u l l \vbox . . .
could not find a good place to break the pa e, so it produced a page without

enough text on it. See Section 6.2.2 for how to I handle page-breaking problems.

APPENDIX A ~
Using ~ a k d n d e x

150 Using MakeIndex

A.l How to Use MakeIndex

MakeIndex is a program for making an index from information generated by
\index commands in your document. Section A.2 below explains what \index
commands to use to produce the index entries you want. To use MakeIndex,
you must also put the following commands in your document:

0 \usepackage(makeidx) in the preamble (between the \documentclass
and \begin(document 3 commands).

0 \makeindex in the preamble.

0 \printindex where you want the index to appear-usually right before
the \endCdocument 3 command.

Let's suppose that the root file (Section 4.4) of your document is myf ile. tex.
You first run HTQX on your entire document, which causes it to generate the
file myf ile . idx containing the information from your \index commands. You
next run MakeIndex by typing something like

makeindex myfile

MakeIndex reads myf ile . idx and produces the file myf ile . ind. MakeIndex
will reject an entry or issue a warning when it finds an error. If it doesn't find
any, you can rerun H7$$ on your document; I4T)jX will use myf ile. ind to
produce the index. If MakeIndex does find errors, see Section A.3 below.

By reading the index, you may discover additional mistakes. These should
be corrected by changing the appropriate \index commands in the document
and regenerating the ind file. If there are problems that cannot be corrected in
this way, you can always edit the ind file directly. However, such editing is to
be avoided because it must be repeated every time you generate a new version
of the index.

MakeIndex can be customized in a variety of ways to make glossaries and
other kinds of indexes. See the HTQX Companion for details.

A.2 How to Generate Index Entries

A.2.1 When, Why, What, and How to Index

The index is there to help the reader find things in your document. It should
make this as easy as possible. Many authors index words, listing all the pages on
which a word appears. A good writer indexes concepts-ideas, facts, people, etc.
Here is an entry from a word index and the corresponding entry from a concept
index. Imagine using each of them to find out if there are gnus in Tasmania.
(Page 150 tells you that there aren't.)

A.2 How to Generate Index Entries 151

gnu, 17, 25, 54, 62, 64, 74, 101, gnu,
103, 104, 121, 124, 125, caged, 104, 121, 125
150, 167, 202, 250 distribution of, 25, 54, 150, 167

gnat and, 62, 64, 103, 124, 202
indexing, 74, 150, 250
size of, 17, 25, 101, 167

With the word index, you have to look at twelve pages before reaching the right
one; with the concept index, you have to look at only two.

To make an index, you must first decide what concepts should appear in it.
You must then figure out under what words a reader might look to find each
concept. Try to understand who your readers are and how they think about the
concept. Don't just list the words that you used to describe it.

You may be tempted to generate the index as you write the document. Resist
the temptation. It is virtually impossible to make a good index that way. Add
\index commands as you write to remind yourself of what you want to index,
but be prepared to modify those commands when you produce the index.

A computer can't generate the index for you, but it can help. You have to
decide whether gnus are central enough to your topic to appear in the index, and
if so, where to direct the reader who wants to learn about them. The computer
can help by finding all occurrences of "gnu". A good way to start writing an
index is by making an alphabetized list of all the distinct words that appear in
your document. Consult your Local Guide to see if your computer has a program
to generate such a list.

Most books have indexes; most technical reports don't. They should. Any
nonfiction work of more than twenty or so pages that is worth reading deserves
an index. With I4w and MakeIndex doing the tedious work for you, there is
no good reason not to make one.

A.2.2 The Basics

The following example shows some simple \index commands and the index
entries that they produce using MakeIndez. The page number refers to the page
containing the text where the \index command appears.

Alpha, ii
alpha, viii, ix, 22
alpha bet, 24
Alphabet, ix
alphabet, 23
alphas, 22

Page ii: \index(Alpha)
Page viii: \index(alpha)
Page ix: \indexCalpha)

\index{Alphabet)
Page 22: \indexCalphal

\indexCalphas3
Page 23: \indexCalphabet)

\index(alphabet 1
Page 24: \index(alpha bet)

152 Using MakeIndex

The duplicate \index(alphabet) commands on page 23 produce only one "23"
in the index.

To produce a subentry, the argument of the \index command should contain
both the main entry and the subentry, separated by a ! character.

gnat, 32 Page 7: \index(gnat ! size of 3
anatomy, 35 Page 32: \index(gnat)
size of, 7 Page 35: \index(gnat ! anatomy)

gnus \index€gnus!good)
bad, 38 Page 38: \indexCgnus !bad)
good, 35

You can also have subsubentries.

bites
animal

gnats, 8
gnus, 10

vegetable, 12

Page 8: \index(bites !animal !gnats)
Page 10: \indexCbites !animal !gnus)
Page 12 : \index€bites !vegetable)

BT)$ and MakeIndex support only three levels of indexing; you can't have
subsubsubentries.

To specify a page range, put an \index(. . . I 0 command at the beginning
of the range and an \index{. . . I 13 command at the end of the range. The two
". . . "s must be identical.

gnat, vi-x, 22
gnus

bad, 22
good, 28-32

Page vi: \indexCgnat I 0
Page x: \indexCgnat I) 1
Page 22: \index(gnat)

\index{gnus !bad I 0
\index{gnus !bad I)

Page 28: \index<gnus ! good I 0
Page 30: \indexCgnus !good)
Page 32: \indexCgnus !good 1))

As the example shows, MakeIndex does the right thing when both ends of the
range fall on the same page, and when there is an identical entry within the
range.

You can add a cross-reference to another entry as follows:

at, 2 Page 2: \index{at)
bat, see bat, at Page 2: \index{at !bat I see(bat, at))

Since the "see" entry does not print a page number, it doesn't matter where the
\index(. . . l see(. . .)I goes, but it must come after the \beginCdocument)
command. You might want to put all such cross-referencing commands in one
place.

A.2 How to Generate Index Entries 153

If you specify an entry of the form S ~ T ~ (~ S ~ T ~ , the string strl determines the
alphabetical position of the entry, while the string str2 produces the text of the
entry.

twenty, 44
xx, 55
twenty-one, 46

Page 44: \index(twenty)
Page 46: \index(twenty-one)
Page 55: \index(twenty@xx)

This feature is useful because the argument of the \index command provides
the actual input string that BT)jX uses to generate the index entry.

alpha, 13
a, 14
alphas, 12
alps, 33

Page 12: \index(alphas)
Page 13: \ indexCalpha)
Page 14: \index(alphaQα)
Page 33: \index(alpsQ\textbf {alps))

The command \indexIα) will also produce an a entry in the index, but
that entry will be alphabetized as α.

In some indexes, certain page numbers are specially formatted-for example,
an italic page number may indicate the primary reference, and an n after a page
number may denote that the item appears in a footnote. MakeIndex makes it
easy to format an individual page number any way you want. For any string
of characters str, the command \index(. . . I str) produces a page number of
the form \str{n). Similarly, the command \index(. . . l (str) produces a page
number of the form \str(n-m), or of the form \strCn) if the specified range
includes only a single page.

gnat, 3, 4n Preamble: \newcommand(\nn) C11 (#in)
gnu, 5, 44-46 Page 3: \index(gnat l emph)

Page 4: \ i n d e ~ (g n a t l ~)
Page 5: \index(gnu)
Page 44: \index(gnu I (emph)
Page 46: \index(gnu 1) 3

The "see" option is a special case of this facility, where the \see command is
predefined by the makeidx package.

A.2.3 The Fine Print

The argument of an \index command must always have matching braces, where
the brace in a \C or \) command counts. Special characters like \ may appear in
the argument only if the \index command is not itself contained in the argument
of another command. This is most likely to be a problem when indexing items
in a footnote. Even in this case, robust commands can be placed in the "(0"

part of an entry, as in \index(alpQ\textit(alp)), and fragile commands can
be used if protected with the \protect command.

154 Using MakeIndex

MakeIndez works as expected when all page numbers are either arabic or
lowercase roman numerals; pages numbered with roman numerals are assumed
to precede those numbered with arabic numerals. MakeIndex can also handle
other types of page numbers; consult its documentation for details.

To put a !, @, or I character in an index entry, quote it by preceding the
character with a ". More precisely, a character is said to be quoted if it follows
an unquoted 'I that is not part of a \ I 1 command. A quoted ! , Q, or I character
is treated like an ordinary character rather than having its usual meaning. The
" preceding a quoted character is deleted before the entries are alphabetized.

exclaim (!), 2
loudly, 3

fiir, 4
quote (I 1) , 5

Page 2: \indexIexclaim (I' !) 1
Page 3: \index(exclaim (I1 !) ! loudly)
Page 4: \index(furQf \"Iu)r)
Page 5: \index(quote (\verb+" "+I)

MakeIndex regards spaces as ordinary characters when alphabetizing the
entries and deciding whether two entries are the same. Thus, the commands
\index(gnu), \ inde~(~gnu) , and \indexCgnuu) produce three separate en-
tries, the first appearing near the beginning of the index, since (space) comes
before any letter in MakeIndex's "alphabetical" order. All three entries look
the same when printed, since l+w ignores extra spaces in the input. However,
since regards multiple spaces as a single space, \indexCauspace) and
\index(auuspace) produce identical output on the idx file, so they produce a
single index entry. Since 7, is treated as an ordinary character in the argument of
an \index command, there is no way to split the argument across lines without
inserting a space into the entry.

A.3 Error Messages

MakeIndex prints out the number of lines read and written and how many errors
were found. Messages to identify the errors are written on a file with extension
i lg . There are two phases in which MakeIndex can produce error messages:
when it is reading the idx file, and when it is writing the ind file. Each error
message prints the nature of the error followed by a line number, identifying
where in the file the error occurs. In the reading phase, the line number refers
to the idx file; in the writing phase, it refers to the ind file. The error messages
should enable you to figure out what you did wrong.

APPENDIX B

The Bibliography
Database

156 The Bibliography Database

As explained in Section 4.3.1, the \bibliography command specifies one or
more bib fles-bibliographic database files whose names have the extension bib.
BIBTEX uses the bib file(s) to generate a bbl file that is read by \bibliography
to make the bibliography. This appendix explains how to create bib files.

Once you learn to use BIBTS, you will find it easier to let BIBTE;~ make
your reference list than to do it yourself. Moreover, you will quickly compile a
bibliographic database that eliminates almost all the work of making a bibliog-
raphy. Other people may have bib files that you can copy, or there may be a
common database that you can use. Ask your friends or check the Local Guide
to find out what is available. However, remember that you are responsible for
the accuracy of the references in your document. Even published references are
notoriously unreliable; don't rely on any bibliography information that has not
been carefully checked by someone you trust.

The Format of the bib File

B. l . l The Entry Format

A bib file contains a series of entries like the following:

OBOOKCkn:gnus,
AUTHOR = "Donald E. Knudson" ,
TITLE = "1966 World Gnus Almanac",
PUBLISHER = {Permafrost Press),
ADDRESS = (Novosibirsk) 1

The @BOOK states that this is an entry of type book. Various entry types are
described below. The kn:gnus is the key, as it appears in the argument of a
\ c i t e command referring to the entry.

This entry has four fields, named AUTHOR, TITLE, PUBLISHER, and ADDRESS.
The meanings of these and other fields are described below. A field consists of
the name, followed by an "=" character with optional space around it, followed
by its text. The text of a field is a string of characters, with no unmatched
braces, surrounded by either a pair of braces or a pair of " characters. (Unlike
in I+" input, \(and \3 are considered to be braces with respect to brace
matching.) Entry fields are separated from one another, and from the key, by
commas. A comma may have optional space around it.

The outermost braces that surround the entire entry may be replaced by
parentheses. As in B ' input files, an end-of-line character counts as a space
and one space is equivalent to one hundred. Unlike B m , BIBTE;~ ignores the
case of letters in the entry type, key, and field names, so the entry above could
have been typed as follows:

B.l The Format of the bib File 157

&IBook(KN : Gnus, author=CDonald E . Knudson) ,
TiTlE = "1966 World

Gnus Almanac", . . . 1

However, the case of letters does matter to BT@, so the key should appear
exactly the same in all \cite commands in the input file.

The quotes or braces can be omitted around text consisting entirely of nu-
merals. The following two fields are equivalent:

Volume = "27" Volume = 27

B.1.2 The Text of a Field

The text of the field is enclosed in braces or double quote characters (It). A part
of the text is said to be enclosed in braces if it lies inside a matching pair of
braces other than the ones enclosing the entire field.

Names

The text of an author or editor field represents a list of names. The bibliogra-
phy style determines the format in which a name is printed-whether the first
name or last name appears first, if the full first name or just the first initial is
used, etc. The bib file entry simply tells BIBTEX what the name is. You should
type an author's complete name, exactly as it appears in the cited work, and let
the bibliography style decide what to abbreviate.

Most names can be entered in the obvious way, either with or without a
comma, as in the following examples.

"John Paul Jones" "Jones, John Paul"
"Ludwig van Beethoven" "van Beethoven, Ludwig"

Only the second form, with a comma, should be used for people who have
last names with multiple parts that are capitalized. For example, Per Brinch
Hansen's last name is Brinch Hansen, so his name should be typed with a comma:

"Brinch Hansen, Per"

If you type "Per Brinch Hansen", BIBTEX will think that "Brinch" is his middle
name. "van Beethoven" or "de la Madrid" pose no problem because "van" and
"de la" are not capitalized.

"Juniors" present a special problem. People with "Jr." in their name gener-
ally precede it with a comma. Such a name should be entered as follows:

"Ford, Jr., Henry"

158 The Bibliography Database

B I B T ~ ~ is sometimes confused by characters that are produced by I4''
commands-for example, accented characters and characters produced by the
commands of Section 3.2.2. It will do the right thing if you put curly braces
immediately around a command that produces a character:

"Kurt G(\"(o))del" "V. S(\o)rensenl1 " J . Mart'(\' (\i))"

If there are multiple authors or editors, their names are separated by the
word and. A paper written by Alpher, Bethe, and Gamow has the following
entry:

AUTHOR = "Ralph Alpher and Bethe, Hans and George Gamow"

An and separates authors' names only if it is not enclosed in braces. If an author
or editor field has more names than you want to type, just end the list of names
with and others; the standard styles convert this to the conventional "et al."

Titles

The bibliography style determines whether or not a title is capitalized; the titles
of books usually are, the titles of articles usually are not. You type a title the
way it should appear if it is capitalized.

TITLE = "The Agony and the Ecstasy"

You should capitalize the first word of the title, the first word after a colon, and
all other words except articles and unstressed conjunctions and prepositions.
BIBTS will change uppercase letters to lowercase if appropriate. Uppercase
letters that should not be changed are enclosed in braces. The following two
titles are equivalent; the A of Afmca will not be made lowercase.

"The Gnats and Gnus of (Africa)"
"The Gnats and Gnus of (Alfrica"

B.1.3 Abbreviations

Instead of an ordinary text string, the text of a field can be replaced by an
abbreviation for it. An abbreviation is a string of characters that starts with a
letter and does not contain a space or any of the following ten characters:

The abbreviation is typed in place of the text field, with no braces or quotation
marks. If jggl is an abbreviation for

Journal of Gnats and Gnus, Series-1

B.l The Format of the bib File 159

then the following are equivalent:

Journal = jggl
Journal = "Journal of Gnats and Gnus, Series-1"

Some abbreviations are predefined by the bibliography style. These always in-
clude the usual three-letter abbreviations for the month: jan, feb, mar, etc.
Bibliography styles may contain abbreviations for the names of commonly ref-
erenced journals. Consult your Local Guide for a list of the predefined abbrevi-
ations for the bibliography styles available on your computer.

You can define your own abbreviations by putting a @string command in
the bib file. The command

@string(jggl = " Journal of Gnats and Gnus, Series"lM)

defines jggl to be the abbreviation assumed in the previous example. Paren-
theses can be used in place of the outermost braces in the Qstring command,
and braces can be used instead of the quotation marks. The text must have
matching braces.

The case of letters is ignored in an abbreviation as well as in the command
name Qstring, so the command above is equivalent to

QSTRING(JgG1 = "Journal of Gnats and Gnus, Series-1")

A Qstring command can appear anywhere before or between entries in a
bib file. However, it must come before any use of the abbreviation, so a sensible
place for @string commands is at the beginning of the file. You can also put
your abbreviations in a separate bib file, say abbrev. bib, and use the command

in your document. A Qstring command in a bib file takes precedence over
a definition made by the bibliography style, so it can be used to change the
definition of an abbreviation such as Feb.

B. 1.4 Cross-References

Several cited sources may be part of a larger work-for example, different pa-
pers in the same conference proceedings. You can make a single entry for the
conference proceedings, and refer to that entry in the entries for the individual
papers. Fields that appear in the proceedings' entry need not be duplicated in
the papers' entries. However, every required field for a paper must be either in
its entry or in the referenced entry.

160 The Bibliography Database

@INPROCEEDINGS(beestly-gnats,
AUTHOR = "Will D. Beest",
TITLE = "Gnats in the Gnus",
PAGES = "47--59",
CROSSREF = "ope:6cpbn)

...
QPROCEEDINGS(ope:6cpb,
TITLE = "Sixth Conference on Parasites in Bovidael',
BOOKTITLE = "Sixth Conference on Parasites in Bovidae1I,
EDITOR = "AnnT. L. Ope",
YEAR = 1975)

The apparently redundant BOOKTITLE field in the proceedings entry is needed to
provide the field of that name for the entry of each paper that cross-references
it. As explained below, the TITLE field is required to produce a reference-list
entry for the proceedings; BIBTEX ignores the BOOKTITLE field when producing
such an entry. The reference list made by BIBT~X may have an entry for the
proceedings that is cited by the entries for the individual papers, even if the
proceedings are not explicitly cited in the original document.

A cross-referenced entry like ope: 6cpb in the example must come after any
entries that refer to it.

B.2 The Entries

B.2.1 Entry Types

When entering a reference in the database, the first thing to decide is what
type of entry it is. No fixed classification scheme can be complete, but B I B T !
provides enough entry types to handle almost any reference reasonably well.

References to different types of publications contain different information;
a reference to a journal article might include the volume and number of the
journal, which is usually not meaningful for a book. Therefore, database entries
of different types have different fields. For each entry type, the fields are divided
into three classes:

required Omitting the field will produce an error message and will occasionally
result in a badly formatted bibliography entry. If the required information
is not meaningful, you are using the wrong entry type. If the required infor-
mation is meaningful but not needed-for example, because it is included
in some other field-simply ignore the warning that BIBTS generates.

optional The field's information will be used if present, but can be omitted
without causing any formatting problems. A reference should contain any
information that might help the reader, so you should include the optional

B.2 The Entries 161

field if it is applicable. (A nonstandard bibliography style might ignore an
optional field when creating the reference-list entry.)

ignored The field is ignored. BIBTEX ignores a field that is not required or
optional, so you can include any fields you want in a bib file entry. It's a
good idea to put all relevant information about a reference in its bib file
entry--even information that may never appear in the bibliography. For
example, if you want to keep an abstract of a paper in a computer file, put
it in an abstract field in the paper's bib file entry. The bib file is likely
to be as good a place as any for the abstract, and it is possible to design
a bibliography style for printing selected abstracts.

Misspelling its name will cause a field to be ignored, so check the database entry
if relevant information that you think is there does not appear in the reference-
list entry.

The following are all the entry types, along with their required and optional
fields, that are used by the standard bibliography styles. The meanings of the
individual fields are explained in the next section. A particular bibliography
style may ignore some optional fields in creating the reference. Remember that,
when used in the bib file, the entry-type name is preceded by an (D character.

article An article from a journal or magazine. Required fields: author, t i t l e ,
journal, year. Optional fields: volume, number, pages, month, note.

book A book with an explicit publisher. Required fields: author or edi tor ,
t i t l e , publisher, year. Optional fields: volume or number, ser ies ,
address, ed i t ion, month, note.

booklet A work that is printed and bound, but without a named publisher or
sponsoring institution. Required field: t i t l e . Optional fields: author,
howpublished, address,month, year,note.

conference The same as inproceedings, included for compatibility with older
versions.

inbook A part of a book, usually untitled; it may be a chapter (or other sec-
tional unit) and/or a range of pages. Required fields: author or edi tor ,
t i t l e , chapter and/or pages, publisher, year. Optional fields: volume
or number, ser ies , type, address, edition, month, note.

incollection A part of a book with its own title. Required fields: author,
t i t i e , booktitle, publisher, year. Optional fields: edi tor , volume or
number, ser ies , type, chapter, pages, address, edition, month, note.

inproceedings An article in a conference proceedings. Required fields: author,
t i t l e , booktitle, year. Optional fields: edi tor , volume or number,
ser ies , pages, address, month, organization, publisher, note.

162 The Bibliography Database

manual Technical documentation. Required field: t i t l e . Optional fields:
author, organization, address, edition, month, year, note.

mastersthesis A master's thesis. Required fields: author, t i t l e , school,
year. Optional fields: type, address, month, note.

misc Use this type when nothing else fits. Required fields: none.' Optional
fields: author, t i t l e , howpublished, month, year, note.

phdthesis A Ph.D. thesis. Required fields: author, t i t l e , school, year.
Optional fields: type, address, month, note.

proceedings The proceedings of a conference. Required fields: t i t l e , year.
Optional fields: edi tor , volume or number, ser ies , address, month,
organization, publisher, note.

techreport A report published by a school or other institution, usually num-
bered within a series. Required fields: author, t i t l e , i n s t i tu t ion , year.
Optional fields: type, number, address, month, note.

unpublished A document with an author and title, but not formally published.
Required fields: author, t i t l e , note. Optional fields: month, year.

In addition to the fields listed above, each entry type also has an optional key
field, used in some styles for alphabetizing and forming a \bibitem label. You
should include a key field for any entry with no author or author substitute.
(Depending on the entry type, an edi tor or an organization can substitute
for an author.) Do not confuse the key field with the key that appears in the
\ c i t e command and at the beginning of the whole entry, after the entry type.

B.2.2 Fields

Below is a description of all the fields recognized by the standard bibliography
styles. An entry can also contain other fields that are ignored by those styles.

address Usually the address of the publisher or ins t i tu t ion . For major pub-
lishing houses, omit it entirely or just give the city. For small publishers,
you can help the reader by giving the complete address.

annote An annotation. It is not used by the standard bibliography styles, but
may be used by other styles that produce an annotated bibliography.

author The name(s) of the author(s), in the format described above.

booktitle The title of a book, a titled part of which is being cited. It is used
only for the incollect ion and inproceedings entry types; use the t i t l e
field for book entries. How to type titles is explained above.

B.2 The Entries 163

chapter A chapter (or other sectional unit) number.

crossref The database key of the entry being cross-referenced.

edition The edition of a book-for example, "Second". (The style will convert
this to ' "second" if appropriate.)

editor The name(s) of editor(s), typed as indicated above. If there is also an
author field, then the edi tor field gives the editor of the book or collection
in which the reference appears.

howpublished How something strange was published.

institution The sponsoring institution of a technical report.

journal A journal name. Abbreviations may exist; see the Local Guide.

key Used for alphabetizing and creating a label when the author and edi tor
fields are missing. This field should not be confused with the key that
appears in the \ c i t e command and at the beginning of the entry.

month The month in which the work was published or, for an unpublished
work, in which it was written. Use the standard three-letter abbreviations
described above.

note Any additional information that can help the reader. The first word should
be capitalized.

number The number of a journal, magazine, technical report, or work in a
series. An issue of a journal or magazine is usually identified by its volume
and number; the organization that issues a technical report usually gives
it a number; bodks in a named series are sometimes numbered.

organization The organization that sponsors a conference or that publishes a
manual.

pages One or more page numbers or ranges of numbers, such as 42--111 or
7,41,73--97.

publisher The publisher's name.

school The name of the school where a thesis was written.

series he name of a series or set of books. When citing an entire book, the
t i t l e field gives its title and the optional se r i e s field gives the name of
a series or multivolume set in which the book was published.

title The work's title, typed as explained above.

164 The Bibliography Database

type The type of a technical report-for example, "Research Note". It is also
used to specify a type of sectional unit in an inbook or incollection
entry and a different type of thesis in a mastersthesis or phdthesis
entry.

volume The volume of a journal or multivolume book.

year The year of publication or, for an unpublished work, the year it was writ-
ten. It usually consists only of numerals, such as 1984, but it could also
be something like circa 1066.

Reference

166 Reference Manual

This appendix describes all W ' commands and environments, including some
features, anomalies, and special cases not mentioned earlier. You should look
here when a command or environment does something surprising, or when you
encounter a formatting problem not discussed in earlier chapters.

Command and environment descriptions are concise; material explained in
an earlier chapter is sketched very briefly. The syntax of commands and envi-
ronments is indicated by a command form such as:

Everything in typewriter style, such as the \parbox [, represents material that
appears in the input file exactly as shown. The italicized parts pos, wdth, and tezt
represent items that vary; the command's description explains their function.
Arguments enclosed in square brackets [I are optional; they (and the brackets)
may be omitted, so \parbox can also have the form

The case in which an optional argument is missing is called the default. If a
command form has two optional arguments that come one right after the other,
when only one is present it is assumed to be the first one.

A number of style parameters are listed in this appendix. Except where
stated otherwise, these parameters are length commands. A length is rigid
unless it is explicitly said to be a rubber length (Section 6.4.1).

C. 1 Commands and Environments

C. l . l Command Names and Arguments

The six commands # $ & ' - ^ are the only ones with single-character names.
The character %, while not a command, causes I & ' to ignore all characters
following it on the input lineincluding the space character that ends the line-
and all space characters at the beginning of the next line. A % can be used to
begin a comment and to start a new line without producing space in the output.
However, a command name cannot be split across lines.

About two dozen commands have two-character names composed of \ fol-
lowed by a single nonletter. All other command names consist of \ followed by
one or more letters. Command names containing an Q character can be used
only in the s t y files that implement packages (Section 6.1.4). Upper- and low-
ercase letters are considered to be different, so \gamma and \Gamma are different
commands. Spaces are ignored after a command name of this form, except that
a blank line following the command still denotes the end of a paragraph.

Commands may have mandatory and/or optional arguments. A mandatory
argument is enclosed by curly braces (and) and an optional argument is en-
closed by square brackets [and 1. Space between arguments is ignored.

C.l Commands and Environments 167

The following commands take an optional last argument:

\\ \linebreak \nolinebreak \newcounter \twocolumn
\item \pagebreak \nopagebreak \newtheorem \suppressf loats

If that argument is missing and the next nonspace character in the text is a
C, then IXQX will mistake this [for the beginning of an optional argument.
Enclosing the [in braces prevents this mistake.

Enclosing text in braces can seldom cause trouble. . . . \begin(itemize)
a [This is an aside.] This is the rest of the item. \item ([This is an aside .I) This is . . .

A I within the optional argument of an \item command must be enclosed in
braces to prevent its being mistaken for the 1 that marks the end of the argu-
ment.

[gnu] A large animal, found mainly in dictionar- \beginCdescription)
ies. \item C([gnu] 31 A large animal. . .

[gnat] A small animal, found mainly in tents. \item [([gnat])I A small animal. . .
\endCdescript ion)

Some commands, including \\, have a *-form that is obtained by typing a *
right after the command name. If a * is the first nonspace character following
a command like \\, then it should be enclosed in braces; otherwise, Bm will
mistake the \\ and * for a * command.

C. 1.2 Environments

An environment is begun with a \begin command having the environment's
name as the first argument. Any arguments of the environment are typed as
additional arguments to the \begin. The environment is ended with an \end
command having the environment's name as its only argument. If an environ-
ment has a *-form, the * is part of the environment's name, appearing in the
argument of the \begin and \end commands.

C.1.3 Fragile Commands

Commands are classified as either robwt or fragile. Type-style-changing com-
mands such as \textbf and \em are robust, as are most of the math-mode
commands' of Section 3.3. Any command with an optional argument is fragile.

Certain command arguments are called moving arguments. A fragile com-
mand that appears in a moving argument must be preceded by a \protect
command. A \protect applies only to the command it precedes; fragile com-
mands appearing in its argument(s) require their own \protect commands. The
following are all the commands and environments with moving arguments:

168 Reference Manual

0 Commands with an argument that may be put into a table of contents,
list of figures, or list of tables: \addcontentsline, \addtocontents,
\caption, and the sectioning commands. If an optional argument is used
with a sectioning or \caption command, then it is this argument that is
the moving one.

0 Commands to print on the terminal: \typeout and \typein. The optional
argument of \typein is not a moving argument.

Commands to generate page headings: \markboth (both arguments) and
\markright. (The sectioning commands, already listed, fall under this
category too.)

0 The l e t t e r environment (defined in the l e t t e r document class).

0 The \thanks command.

The optional argument of \bibitem.

An @ in an array or tabular environment. (Although @ is not a command,
fragile commands in an @-expression must be \protectled as if they were
in a moving argument.)

All length commands are robust and must not be preceded by \protect. A
\protect command should not be used in an argument of a \setcounter or
\addtocounter command.

C . 1.4 Declarations

A declaration is a command that changes the value or meaning of some command
or parameter. The scope of a declaration begins with the declaration itself and
ends with the first) or \end whose matching C or \begin occurs before the
declaration. The commands \I , \), and $ that end a math-mode environment
and the 1 or I that end the argument of a I4m command also delimit the
scope of a declaration; but the 3 or 1 ending the argument of a command defined
with \newcommand, or \renewcommand, or \providecommand does not delimit its
scope. A declaration is in effect throughout its scope, except within the scope
of a subsequent countermanding declaration.

The following declarations are global; their scope is not delimited by braces
or environments.

\newcounter \pagenumbering \newlength \hyphenation
\set counter \thispagestyle \newsavebox
\addtocounter \pagecolor \newtheorem

C.l Commands and Environments 169

C. 1.5 Invisible Commands and Environments
A number of commands and environments are "invisible", meaning that they do
not produce any text at the point where they appear. 'I@ regards an invisible
command or environment in the middle of a paragraph as an invisible "word".
Putting spaces or an end-of-line character both before and after an invisible
word can generate two separate interword spaces, one on either side of this
word, producing extra space in the output. Moreover, if the invisible word
occurs at the end of a paragraph, not attached to a real word, it could appear
on a line by itself, producing a blank line in the output. Invisible words caused
by a command with no argument are seldom a problem, since spaces are ignored
when they follow a command name that ends in a letter. Also, the following
invisible commands and environments usually eliminate this extra space:l

\pagebreak \nolinebreak \vspace \color
\nopagebreak \label \glossary figure
\linebreak \index \marginpar table

Any other invisible command with an argument that appears inside a paragraph
should be attached to an adjacent word, as should the commands and environ-
ments listed above in certain unusual situations where they can produce extra
space in the output.

C.1.6 The \\ Command
\\ Clenl
* Clenl
These commands start a new line and add an extra vertical space of length Zen
above it. The default is to add no extra space. The *-form inhibits a page
break before the new line. They may be used in paragraph mode and within the
following commands and environments:

array eqnarray \shortstack
tabular tabbing \author

BI)i$ is in paragraph mode, so a \\ can be used, in the following environments
(among others):

verse center f lushlef t flushright

and when processing the argument of a \ t i t l e , \date, or sectioning command.
Do not use two \\ commands in a row in paragraph mode; instead, use an
optional mgument to add extra vertical space.

In the array and tabular environments, the spacing between rows is ob-
tained by putting a strut (Section 6.4.3) on each line; a positive value of Zen

lMore precisely, spaces that follow these commands and environments are ignored if there
is space in the output before the invisible word that they generate.

increases the depth
of extra space if an
default strut.

of this strut. This can fail to add the expected amount
object in the row extends further below the line than the

The \\ and * commands are fragile.

C.2 The Structure of the Document

A document consists of the following parts.

prepended files
A possibly empty sequence of f i lecontents environments (Section 4.7).

preamble
Begins with a \documentclass command. It may contain \usepackage
commands, declarations that apply to the entire document, and command
and environment definitions.

text of the document

C.3 Sentences and Paragraphs

C .3.1 Making Sentences

The following commands and characters are for use mainly in paragraph and
LR mode. They are robust.

quotes
' Apostrophe. ' text ' Single quotes. ' ' text ' '' Double quotes.

dashes
- Intra-word. - - Number-range. --- Punctuation.

spacing

\, Produces a small space; use it between a double and a single quote.

\U Produces an interword space.
" Produces an interword space where no line break can occur.

\@ Causes an "er.d-of-sentence" space after punctuation when typed before
the punctuation character. Needed only if the character preceding the
punctuation character is not a lowercase letter or a number.

C.3 Sentences and Paragraphs 171

\f renchspacing Suppresses extra space after punctuation, even when \@
is used. Fragile.

\nonf renchspacing Reverses the effect of \f renchspacing. Fragile.

special characters
$ \$ % \% { \c - \-
& \a # \# } \)
(These commands can be used in math mode.) See Sections 3.2 and 3.3.2
for commands to make other symbols.

logos
\LaTeX Produces B-w logo. \TeX Produces ?$$ logo.

\today Generates the current date, in the following format: May 18, 1994.

\emphCtedct) Emphasizes text, usually by printing it in italic type.

\rnboxCted) Typesets text in LR mode inside a box, which prevents it from
being broken across lines. It can be used in math mode. (See Section 6.4.3.)

C.3.2 Making Paragraphs

A paragraph is ended by one or more completely blank lines-lines not contain-
ing even a %. A blank line should not appear where a new paragraph cannot be
started, such as in math mode or in the argument of a sectioning command.

\noindent When used at the beginning of the paragraph, it suppresses the
paragraph indentation. It has no effect when used in the middle of a
paragraph. Robust.

\indent Produces a horizontal space whose width equals the width of the para-
graph indentation. It is used to add a paragraph indentation where one
would otherwise be suppressed. Robust.

\par Equivalent to a blank line; often used to make command and environment
definitions easier to read. Robust.

Style Parameters

\textwidth Normal width of text on the page. Should be changed only in the
prearhble.

\linewidth Width of lines in the current environment; equals \textwidth ex-
cept when inside a displayed-paragraph environment such as quote or
itemize. Its value should not be changed with the length-setting com-
mands.

172 Reference Manual

\parindent Width of the indentation at the beginning of a paragraph. Its value
is set to zero in a parbox. Its value may be changed anywhere.

\baselineskip The minimum space from the bottom of one line to the bottom
of the next line in a paragraph. (The space between individual lines may be
greater if they contain tall objects.) Its value is set by a type-sizbchanging
command (Section 6.7.1). The value used for the entire paragraph unit
(Section 6.2.1) is the one in effect at the blank line or command that ends
the paragraph unit. Its value may be changed anywhere.

\baselinestretch A decimal number (such as 2 or 1.5). Its default value is 1
and is changed with \renewcommand. The value of \baselineskip is set
by \begin(document) and by each type-size-changing command to its de-
fault value times \baselinestretch. You can produce a "double-spaced"
version of the document for copy editing by setting \baselinestretch
to 2, but it will be ugly and hard to read. Any other changes to the in-
terline spacing should be part of the complete document design, best done
by a competent typographic designer.

\parskip The extra vertical space inserted before a paragraph. It is a rubber
length that usually has a natural length of zero. Its value may be changed
anywhere, but should be a stretchable length when a \f lushbottom dec-
laration (Section 6.1.2) is in effect.

C.3.3 Footnotes

Produces a footnote with t ex t as its text and num as its number. The num
argument is a positive integer, even when footnotes are "numbered" with letters
or other symbols; if it is missing, then the footnote counter is stepped and
its value used as the footnote number. This command may be used only in
paragraph mode to produce ordinary footnotes. It should not be used inside
a box except within a minipage environment, in which case it may be used in
LR or math mode as well as paragraph mode and the footnote appears at the
bottom of the box ended by the next \endCminipage). This may be the wrong
place for it if there are nested minipage environments. Fragile.

\f ootnotemark [num]

Used in conjunction with \f ootnotetext to footnote text where a \footnote
command cannot be used. It produces a footnote mark (the footnote number
that appears in the running text), but it does not produce a footnote. See
Figure C.l for an example of its use. It steps the footnote counter if the
optional argument is missing. It may be used in any mode. Fragile.

C.3 Sentences and Paragraphs 173

It was / Gnats12 and ~ n u s ' ~ (as we trekked It was \fbox~Gnats\footnotemark\ and
through Africa in the blazing noontime heat. Gnus\f ootnot emark)%

\addtocounter(f ootnote3X-l3\f ootnotetext

12Small insects.
13Large mammals.

(Small insects. >\addtocounter€f ootnote3C13X
\f ootnotetextCLarge mammals. 3 as we . . .

Figure C.l: Making footnotes without the \footnote command.

\f ootnotetext Enurn] { t e x t)
Used in conjunction with \f ootnotemark to footnote text where the \footnote
command cannot be used. See Figure C. 1 for an example. It produces a footnote,
just like the corresponding \footnote command, except that no footnote mark
is generated and the footnote counter is not stepped. Fragile.

Style Parameters

\footnotesep The height of a strut placed at the beginning of every foot-
note to produce the vertical space between footnotes. It may be changed
anywhere; the value used is the one in effect when the \footnote or
\f ootnotetext command is processed.

\f ootnoterule A command that draws the line separating the footnotes from
the main text. It is used by BT)ijX in paragraph mode, between paragraphs
(in W'S inner vertical mode). The output it generates must take zero
vertical space, so negative space should be used to compensate for the space
occupied by the rule. It can be redefined anywhere with \renewcommand;
the definition used is the one in effect when QX produces the page of
output.

C.3.4 Accents and Special Symbols

Commands for making accents in normal text are listed in Table 3.1 on page 38;
commands for making accents in math formulas are listed in Table 3.11 on
page 50. See Section C.lO.l for commands used in a tabbing environment to
produce the accents normally made with \=, \ ' , and \ ' .

Non-English symbols are made with commands listed in Table 3.2 on page 39.
The following commands for making additional special symbols can also be used
in any mode:

Section 3.3.2 gives many commands for generating symbols in mathematical
formulas.

174 Reference Manual

C.4 Sectioning and Table of Contents

The use of the following commands for producing section headings and table of
contents entries is illustrated in Figure C.2.

C.4.1 Sectioning Commands

sec-cmd [toc-entry1 (heading)
sec-cmd *(heading)

Commands to begin a sectional unit. The *-form suppresses the section number,
does not increment the counter, does not affect the running head, and produces
no table of contents entry. The secnumdepth counter, described below, deter-
mines which sectional units are numbered.

sec-cmd One of the following:

Each sectional unit should be contained in the next higher-level unit, ex-
cept that \part is optional. The article document class does not have a
\chapter command.

toc-entry Produces the table of contents entry and may be used for the running
head (Section 6.1.2). It is a moving argument. If it is missing, the heading
argument is used for these purposes.

heading Produces the section heading. If the toc-entry argument is missing,
then it is a moving argument that provides the table of contents entry and
may be used for the running head (Section 6.1.2).

Gnats and Gnus Forever \subsection*CGnats and Gnus Forever)

From insects embedded in amber and fossils. . . From insects embedded in amber and ...

In the table of contents: \addcontentsline{toc)(subsection~{Gnats~
Gnats 37 \addtocontents{toc){\protect\vspace

2 ex i2ex3)

2 . 2 ~ Gnus 37 \addcontentsline~toc~~subsection)C\protect
2.3 Gnats and Gnus on Gneiss 37 \numberlineC2.2x3{Gnus33

In the text (on page 37):
2.3 Insects and Ungulates on . . .

\subsectionCGnats and Gnus on Gneiss] %
{Insects and Ungulates on Metamorphic Rock)

Figure C.2: Sectioning and table of contents commands.

C.4 Sectioning and Table of Contents 175

C.4.2 The Appendix

\appendix

A declaration that changes the way sectional units are numbered. In the stan-
dard a r t i c l e document class, appendix sections are numbered "A", "B", etc.
In the report and book classes, appendix chapters are numbered "A", "B",
etc., and the chapter number is printed in the heading as "Appendix A", "Ap-
pendix B", etc. The \appendix command generates no text and does not affect
the numbering of parts.

C.4.3 Table of Contents

\tableofcontents
\list off igures
\ l i s to f tab le s

Generate a table of contents, list of figures, and list of tables, respectively. These
commands cause BTEX to write the necessary information on a file having the
same first name as the root file and the following extension:

command: \tableof contents \ l i s t o f f igures \ l i s to f tab le s
extension: toc l o f l o t

A table of contents or a list of figures or tables compiled from the information
on the current version of this file is printed at the point where the command
appears.

Table of contents entries are produced by the sectioning commands, and list
of figures or tables entries are produced by a \caption command in a figure
or table environment (Section 3.5.1). The two commands described below also
produce entries.

\addcontent sline(file)Csec-unit)(entry)

Adds an entry to the specified list or table.

file The extension of the file on which information is to be written: toc (table
of contents), lo f (list of figures), or l o t (list of tables).

sec-unit Controls the formatting of the entry. It should be one of the following,
depending upon the value of the file argument:

toc: the name of the sectiond unit, such as part or subsection

l o f : figure

l o t : table

There is no \ in this argument.

176 Reference Manual

entry The text of the entry. It is a moving argument. To produce a line with a
sectional-unit or figure or table number, entry should be of the form

\protect \numberlineCsec-numH heading)

where sec-num is the number and heading is the heading.

\addtocontents{file)Ctext>

Adds text (or formatting commands) directly to the file that generates the table
of contents or list of figures or tables.

file The extension of the file on which information is to be written: toc (table
of contents), lo f (list of figures), or l o t (list of tables).

text The information to be written. It is a moving argument.

C.4.4 Style Parameters

Parameters control which sectional units are numbered and which are listed in
the table of contents. Each sectional unit has a level number. In all document
classes, sections have level number 1, subsections have level number 2, etc. In
the a r t i c l e document class, parts have level number 0; in the report and book
classes, chapters have level number 0 and parts have level number -1.

The following two counters (Section 6.3) are provided; they can be set in the
preamble.

secnumdepth The level number of the least significant sectional unit with num-
bered headings. A value of 2 means that subsections are numbered but
subsubsections are not.

tocdepth The level number of the least significant sectional unit listed in the
table of contents.

C.5 Classes, Packages, and Page Styles

C.5.1 Document Class

\document c la s s [options] I class)

Specifies the document class and options.

class The document class. The standard classes are: ar t i c l e , report, book,
l e t t e r (for letters), and s l i d e s (for slides).

options A list of one or more options, separated by commas-with no spaces.
The options recognized by the standard document classes are listed below.
Alternatives, at most one of which should appear, are separated by the
symbol " I ".

C.5 Classes, Packages, and Page Styles 177

IOpt I lipt I 12pt Chooses the normal (default) type size of the document.
The default is lOpt, which selects ten-point type. (These options are
not recognized by the slides class.)

letterpaper 1 legalpaper 1 executivepaperl a4paper 1 aspaper 1 b5paper
Causes the output to be formatted for the appropriate paper size:

letter 8.5in x l l in A4 210mm x 297mm
legal 8.5in x 14in A5 148mm x 210mm
executive 7.25in x 10.5in B5 176mm x 250mm

The default is lett erpaper.

landscape Causes the output to be formatted for landscape (sideways)
printing on the selected paper size. This option effectively inter-
changes the width and height dimensions of the paper size.

final I draft If l$$ has trouble finding good places to break lines, it can
produce lines that extend past the right margin ("overfull hboxes").
The draft option causes such lines to be marked by black boxes in
the output. The final option, which does not mark these lines, is
the default.

oneside 1 twoside Formats the output for printing on one side or both
sides of a page. The default is oneside, except that it is twoside for
the book class. (The twoside option cannot be used with the slides
document class.)

openright 1 openany Specifies that chapters must begin on a right-hand
page (openright) or may begin on any page (openany). These op-
tions apply only to the report class (whose default is openany) and
the book class (whose default is openright).

onecolumn 1 twoc6lumn Specifies one-column or two-column pages. The
default is onecolumn. (The twocolumn option cannot be used with
the letter or slides class.)

notitlepage I titlepage The titlepage option causes the \maketitle
command to make a separate title page and the abstract envi-
ronment to put the abstract on a separate page. The default is
titlepage for all classes except article, for which it is notitlepage.
(These options are not recognized by the letter class.)

openbib Causes the bibliography (Section 4.3) to be formatted in open
style. (This option is not recognized by the letter and slides
classes.)

leqno Puts formula numbers on the left side in equation and eqnarray
environments.

f leqn Left-aligns displayed formulas.

178 Reference Manual

Putting an option in the \document c lass command effectively adds that
option to any package (loaded with a \usepackage command) that rec-
ognizes it. PIj jX issues a warning message if a document-class option is
recognized neither by the document class nor by any loaded package.

Style Parameters

\bibindent Width of the extra indentation of succeeding lines in a bibliography
block with the openbib style option.

\columnsep The width of the space between columns of text in twocolumn style.

\columnseprule The width of a vertical line placed between columns of text in
twocolumn style. Its default value is zero, producing an invisible line.

\mathindent The amount that formulas are indented from the left margin in
the f leqn document-class option.

C . 5.2 Packages

\usepackage [options] Ipkgs)

pkgs A list of packages to be loaded. The standard packages include:

a l l t t Defines the a l l t t environment; see Section (3.6.4.

amstex Defines many commands for mathematical formulas. It is de-
scribed in the B'QX Companion.

babel For documents in one or more languages other than English; see
the Companion.

color For producing colors, using special device-driver support. A device
driver is specified as an option; the Local Guide should list the default
driver for your computer. See Section 7.3.

graphics For geometrical transformations of text and including graphics
prepared by other programs. It requires special device-driver support.
A device driver is specified as an option; the Local Guide should list
the default driver for your computer. See Section 7.2.

graphpap Defines the \graphpaper command for use in the picture en-
vironment (Section 7.1.4).

i f then Defines simple programming-language constructs (Section C.8.5).

latexsym Defines some special mathematical symbols; see Section 3.3.2.

makeidx Defines commands for use with MakeIndex (Appendix A).

C.5 Classes, Packages, and Page Styles 179

pict 2e Defines enhanced versions of the picture environment commands
that remove restrictions on line slope, circle radius, and line thickness.

showidx Causes \index command arguments to be printed on the page
where they occur; see Section 4.5.1.

options A list of options, which are provided to all the specified packages. They
must be legal options for all the packages.

C.5.3 Page Styles

An output page consists of a head, a body, and a foot. Style parameters determine
their dimensions; the page style specifies the contents of the head and foot.
Left-hand and right-hand pages have different parameters. In two-sided style,
even-numbered pages are left-hand and odd-numbered pages are right-hand; in
one-sided style, all pages are right-hand. All commands described in this section
are fragile.

A declaration, with normal scoping rules, that specifies the current'page style.
The style used for a page is the one in effect when T)@ "cuts the scroll"
(page 135). Standard style options are:

plain The head is empty, the foot has only a page number. It is the default
page style.

empty The head and foot are both empty.

headings The head contains information determined by the document class
(usually a sectional-unit heading) and the page number; the foot is empty.

myheadings Same as headings, except head information (but not the page
number) is specified by \markboth and \markright commands, described
below.

Same as \pagestyle except it applies only to the current page (the next one to
be "cut from the scroll"). It is a global declaration (Section C.1.4).

\markright {right-head)
\markboth(lejLhead)Cright-head)

These commands specify the following heading information for the headings
and myheadings page styles:

180 Reference Manual

left-hand page Specified by left-head argument of the last \markboth before
the end of the page.

right-hand page Specified by right-head argument of the first \markright
or \markboth on the page, or if there is none, by the last one before the
beginning of the page.

Both right-head and left-head are moving arguments. In the headings page
style, sectioning commands set the page headings with the \markboth and
\markright commands as follows:

Document Class
Printing Style Command book, report article

two-sided \markbotha \chapter \section
\markright \section \subsect ion

one-sided \markright \chapter \section

aSpecifies an empty right head.

These commands are overridden as follows:

\markboth Put a \markboth command right after the sectioning command.

\markright Put a \markright command immediately before and after the
sectioning command, but omit the first one if the sectional unit starts a
new page.

The right head information is always null for the first page of a document. If
this is a problem, generate a blank first page with the titlepage environment.

\pagenumbering(num-style)

Specifies the style of page numbers and sets the value of the page counter to 1.
It is a global declaration (Section C.1.4). Possible values of num-style are:

arabic Arabic numerals.

roman Lowercase roman numerals.

Roman Uppercase roman numerals.

alph Lowercase letters.

Alph Uppercase letters.

The \pagenumbering command redefines \thepage to be \num-styleCpage).

\twocolumn [text]

Starts a new page by executing \clearpage (Section 6.2.2) and begins typeset-
ting in two-column format. If the text argument is present, it is typeset in a
double-column-wide parbox at the top of the new page. Fragile.

C.5 Classes, Packages, and Page Styles 181

Starts a new page by executing \clearpage (Section 6.2.2) and begins typeset-
ting in single-column format. Fragile.

Style Parameters

Most of the parameters controlling the page style are shown in Figure C.3, where
the outer rectangle represents the physical page. These parameters are all rigid
lengths. They are normally changed only in the preamble. Anomalies may occur
if they are changed in the middle of the document. Odd-numbered pages use
\oddsidemargin and even-numbered pages use \evensidemargin. Not shown in
the figure is the parameter \topskip, the minimum distance from the top of the
body to the reference point of the first line of text. It acts like \baselineskip
for the first line of a page.

C.5.4 The Title Page and Abstract

\maket itle

Generates a title. With the notitlepage document-class option (the default
for the article class), it puts the title at the top of a new page and issues a
\thispagestyle(plain) command. With the t itlepage option (the default
for other classes), it puts the title on a separate page, using the titlepage en-
vironment. Information used to produce the title is obtained from the following
declarations; an example of their use is given in Figure C.4. It's best to put
these declarations in the preamble.

\titleCted> Declares text to be the title. You may want to use \\ to tell
where to start a new line in a long title.

\authorCnames) Declares the author(s), where names is a list of authors
separated by \and commands. Use \\ to separate lines within a single
author's entry-for example, to give the author's institution or address.

\date(text) Declares text to be the document's date. With no \date com-
mand, the current date is used.

The arguments of these three commands may include the following command:

\thanksCtext) Produces a footnote to the title. The text is a moving argu-
ment. Can be used for an acknowledgment of support, an author's address,
etc. The footnote marker is regarded as having zero width, which is ap-
propriate when it comes at the end of a line; if the marker comes in the
middle of a line, add extra space with \u after the \thanks command.

182 Reference Manual

- l i n 4
\t opmargin

1 Head '\headheight
\oddsidemargin t.- or -
\evensidemargin

Body

\f ootskip

Foot I I

Figure C.3: Page style parameters.

C.6 Displayed Paragraphs 183

Gnu Veldt Cuisine \title(Gnu Veldt Cuisine)

G . Picking*
Acme Kitchen Products

R. Dillo
Cordon Puce schoolt

24 July 1984
Revised 5 January 1985

\author(G. Picking\thanks(Supported
by a grant from the GSF .) \\

Acme Kitchen Products
\and

R. Dillo \\ Cordon Puce
School\thanks(On leave during 1985.))

\date(24 July 1984 \\
Revised 5 January 1985)

*Supported by a grant from the GSF
t o n leave during 1985.

Figure C.4: An example title.

\beginCabstractl text \end(abstract)

Generates an abstract, with text as its contents, right where the environment
occurs. The abstract is placed on a page by itself when the t i t lepage document-
class option (the default for the report class; see Section 6.1.1) is in effect. This
environment is not defined in the book document class.

\begidt i t lepage) text \endCtitlepage)

Produces a title page with the empty page style and resets the number of the
following page to one. You are completely responsible for formatting the contents
of this page.

Displayed Paragraphs

The output produced by a displayed-paragraph environment starts on a new
line, as does the output produced by the text following it. In addition to the
environments described in this section, the tabbing, center, f lush le f t , and
f lushright environments and the environments defined by \newtheorem (Sec-
tion 3.4.3) are also displayed-paragraph environments.

The text following a displayed-paragraph environment begins a new para-
graph if there is a blank line after the \end command. However, even with
no blank line, the following text may have a paragraph indentation if a right
brace or \end command comes between it and the environment's \end com-
mand. This anomalous indentation is eliminated with a \noindent command
(Section C.3.2).

Anomalous extra vertical space may be added after a displayed-paragraph en-
vironment that ends with a displayed equation (one made with the displaymath,

equation, or eqnarray environment). This space can be removed by adding a
negative vertical space with a \vspace command (Section 6.4.2). You can de-
termine how much space to remove by trial and error.

All displayed-paragraph environments are implemented with the l ist or
t r i v l i s t environment. These environments and the relevant formatting pa-
rameters are described in Section C.6.3 belowd

C.6.1 Quotations and Verse

For a short quotation or a sequence of short quotations separated by blank lines.

\begin(quotation) text \end(quotation)

For a multiparagraph quotation.

\begin(verse) text \endCverse)

For poetry. Lines within a stanza are separated by \\ commands and stanzas
are separated by one or more blank lines.

C.6.2 List-Making Environments

\begin(itemize) item-list \end(itemize)
\begin(enumerate) item-list \end(enumerate)
\begin(description) item-list \endCdescription)

The item-list consists of a sequence of items, each one begun with an \item
command (see below). Numbering in an enumerate environment is controlled
by the counter enumi, enumii, enumiii, or enumiv, depending upon its nesting
level within other enumerate environments. The printed value of this counter
is declared to be the current \ref value (Section C.11.2).

The default labels of an itemize environment axe produced by the com-
mand \labelitemi, \ label i temii , \ label i temi i i , or \labelitemiv, depend-
ing upon its nesting level within other itemize environments. The "tick marks"
produced by the itemize environment may be changed by redefining these com-
mands with \renewcommand.

If an item of a description environment begins with a displayed-paragraph
environment, the item label may overprint the first line of that environment. If
this happens, the item should begin with an \mbox() command to cause the
environment to start on a new line.

Starts a new item and produces its label. The item label is generated by the
label argument if present; otherwise the default label is used. In itemize and

C.6 Displayed Paragraphs 185

enumerate, the label is typeset flush right a fixed distance from the item's left
margin. In enumerate, the optional argument suppresses the incrementing of the
enumeration counter. The default label is null in the description environment.
The \item command is fragile.

C.6.3 The list and trivlist Environments

\beginClist3Cdefault-labelWecls3 item-list \end(list)

Produces a list of labeled items.

item-list The text of the items. Each item is begun with an \item command
(Section C.6.2).

default-label The label generated by an \item command with no optional argu-
ment.

decls A sequence of declarations that can be used to change any of the following
parameters that control formatting in the l i s t environment. (See also
Figure 6.3 on page 113.)

\topsep The amount of extra vertical space (in addition to \parskip) in-
serted between the preceding text and the first list item, and between
the last item and the following text. It is a rubber length.

\partopsep The extra vertical space (in addition to \topsep+ \parskip)
inserted, if the environment is preceded by a blank line, between the
preceding text and the first list item and between the last item and
the following text. It is a rubber length.

\itemsep The amount of extra vertical space (in addition to \parsep)
inserted between successive list items. It is a rubber length.

\parsep The amount of vertical space between paragraphs within an item.
It is the value to which \parskip is set within the list. It is a rubber
length.

\leftmargin The horizontal distance between the left margin of the en-
closing environment and the left margin of the list. It must be nonneg-
ative. In the standard document classes, it is set to \leftmargini,
\ leftmarginii , . . . or \leftmarginvi, depending on the nesting
level of the l i s t environment.

\rightmargin The horizontal distance between the right margin of the en-
closing environment and the right margin of the list. It must be non-
negative. Its default value is zero in the standard document classes.

\ l is tparindent The amount of extra indentation added to the first line
of every paragraph except the first one of an item. Its default value is
zero in the standard document classes. It may have a negative value.

186 Reference Manual

\itemindent The indentation of the first line of an item. Its default value
is zero in the standard document classes. It may have a negative
value.

\labelsep The space between the end of the box containing the label
and the text of the first line of the item. It may be set to a negative
length.

\labelwidth The normal width of the box that contains the label. It
must be nonnegative. In the standard document styles, its default
value is \leftmargin.. . - \labelsep, so the left edge of the label
box is flush with the left margin of the enclosing environment. If
the natural width of the label is greater than \labelwidth, then the
label is typeset in a box with its natural width, so the label extends
further to the right than "normal".

\makelabel(label) A command that generates the label printed by the
\item command from the label argument. Its default definition po-
sitions the label flush right against the right edge of its box. It may
be redefined with \renewcommand.

In addition to declarations that set these parameters, the following decla-
ration may appear in deck:

\usecounter(ctr) Enables the counter ctr (Section 6.3) to be used for
numbering list items. It causes ctr to be initialized to zero and in-
cremented by \ref stepcounter when executing an \item command
that has no optional argument, causing its value to become the cur-
rent \ref value (Section C.11.2). It is a fragile command.

\begin€t r iv l i s t) item-list \end(t r iv l i s t)

Acts like a l i s t environment using the current values of the list-making parame-
ters, except with \parsep set to the current value of \parskip and the following
set to zero: \leftmargin, \labelwidth, and \itemindent. The t r i v l i s t en-
vironment is normally used to define an environment consisting of a single list
item, with an \item command appearing as part of the environment's definition.

C.6.4 Verbatim
\begin(verbatim) literal-text \end(verbatim)
\beginCverbatim*) literal-text \end(verbatim*)

Typesets literal-text exactly as typed, including special characters, spaces, and
line breaks, using a typewriter type style. The only text following the \begin
command that is not treated literally is the \end command. The *-form differs
only in that spaces are printed as symbols.

C.7 Mat hematical Formulas 187

If there is no nonspace character on the line following the \begin command,
then ZiteraLtext effectively begins on the next line. There can be no space
between the \end and the {verbatim) or {verbatim*).

A verbatim or verbatim* environment may not appear in the argument of
any command.

\verbchar liteml-text char
\verb*char literal-text char

Typesets literal-tezt exactly as typed, including special characters and spaces,
using a typewriter type style. There may be no space between \verb or \verb*
and char. The *-form differs only in that spaces are printed as symbols.

char Any nonspace character, except it may not be a * for \verb.

l i t e d t e d Any sequence of characters not containing an end-of-line character
or char.

A \verb or \verb* command may not appear in the argument of any other
command.

\begin{alltt) literal-text \end{alltt)

Like the verbatim environment, except the three characters \, C, and) have
their usual meanings. Thus, you can use commands like \input in the environ-
ment. This command is defined by the a l l t t package.

C.7 Mathematical Formulas

Unless otherwise noted, all commands described in this section can be used only
in math mode. See Section 3.3.8 for an explanation of the display and text math
styles.

C.7.1 Math Mode Environments
$ formula $
\ (formula \)
\beginbath) formula \endCmath)

These equiklent forms produce an in-text formula by typesetting formula in
math mode using text style. They may be used in paragraph or LR mode. The
\(and \) commands are fragile; $ is robust.

\ensuremath{ formula)

Equivalent to \ (formula\) when used in paragraph or LR mode; equivalent to
formula when used in math mode.

\I formula \I
\begin(displaymath) formula \end(displaymath)

These equivalent forms produce a displayed formula by typesetting formula in
math mode using display style. They may be used only in paragraph mode.
The displayed formula is centered unless the fleqn document-class option is
used (Section 6.1.1). The commands \ [and \I are fragile.

\begin€equat ion) formula \end(equation)

The same as displaymath except that an equation number is generated using
the equation counter. The equation number is positioned flush with the right
margin, unless the leqno document-class option is used (Section 6.1.1).

\begin(eqnarray) eqns \end(eqnarray)
\begin(eqnarray*) eqns \end(eqnarray*)

Produces a sequence of displayed formulas aligned in three columns. The eqns
text is like the body of an array environment (Section 3.3.3) with argument rcl;
it consists of a sequence of rows separated by \\ commands, each row consisting
of three columns separated by & characters. (However, a \multicolumn com-
mand may not be used.) The first and third columns are typeset in display style,
the second in text style. These environments may be used only in paragraph
mode.

The eqnarray environment produces an equation number for each row, gen-
erated from the equation counter and positioned as in the equation environ-
ment. A \label command anywhere within the row refers to that row's number.
A \nonumber command suppresses the equation number for the row in which it
appears. The eqnarray* environment produces no equation numbers.

The command \lefteqn(fornula) prints fornula in display math style (Sec-
tion 3.3.8), but pretends that it has zero width. It is used within an eqnarray
or eqnarray* environment for splitting long formulas across lines.

An overfull \hbox warning occurs if a formula extends beyond the prevailing
margins. However, if the formula does lie within the margins, no warning is
generated even if it extends far enough to overprint the equation number.

Style Parameters

\jot The amount of extra vertical space added between rows in an eqnarray
or eqnarray* environment.

\mathindent The indentation from the left margin of displayed formulas in the
f leqn document-class option.

\abovedisplayskip The amount of extra space left above a long displayed
formula--except in the fleqn document-class option, where \topsep is

used. A long formula is one that lies closer to the left margin than does
the end of the preceding line. It is a rubber length.

\belowdisplayskip The amount of extra space left below a long displayed
formula--except in the f leqn document-class option, where \topsep is
used. It is a rubber length.

\abovedisplayshortskip The amount of extra space left above a short dis-
played formula--except in the fleqn document-class option, which uses
\topsep. A short formula is one that starts to the right of where the
preceding line ends. It is a rubber length.

\belowdisplayshortskip The amount of extra space left below a short dis-
played formula-except in the f leqn document-class option, which uses
\topstep. It is a rubber length.

C.7.2 Common Structures

-(sub> Typesets sub as a subscript. Robust.

-(sup) Typesets sup as a superscript. Robust.

' Produces a prime symbol (I) . Robust.

\frac(numer>Cdenom> Generates a fraction with numerator numer and de-
nominator denom. Robust.

\sqrt [nl (a rg) Generates the notation for the nth root of arg. With no optional
argument, it produces the square root (no indicated root). Fragile.

ellipsis The following commands produce an ellipsis (three dots) arranged as
indicated. They are all robust.

\ldots Horizontally at the bottom of the line (. . .). It may be used in
paragraph and LR mode as well as math mode.

\cdots Horizontally at the center of the line (. . .).

\vdots Vertically (!).

\ddot s Diagonally (' . .).

C. 7.3 Mathematical Symbols

See Tables 3.3 through 3.8 on pages 41-44. The symbols in Table 3.8 are printed
differently in display and text styles; in display style, subscripts and superscripts

190 Reference Manual

may be positioned directly above and below the symbol. All the commands listed
in those tables are robust.

Log-like functions, which are set in roman type, are listed in Table 3.9 on
page 44. Subscripts appear directly below the symbol in display style for \det,
\gcd, \ inf , \ l i m , \liminf, \limsup, \max, \min, \Pr, and \sup. All log-like
commands are robust. The following commands also create symbols:

\bmod Produces a binary mod symbol. Robust.

\pmod(argl produces "(mod arg)". Robust.

C.7.4 Arrays

See Section C.10.2.

C.7.5 Delimiters

\ lef tdelim formula \ r ight delim

Typesets formula and puts large delimiters around it, where delim is one of
the delimiters in Table 3.10 on page 47 or a ' . ' character to signify an invisible
delimiter. The \ l e f t and \ r ight commands are robust.

C.7.6 Putting One Thing Above Another

\overline<formula)

Typesets formula with a horizontal line above it. Robust.

\underline< formula)

Typesets formula with a horizontal line below it. May be used in paragraph or
LR mode as well as math mode. Fragile.

accents

Table 3.11 on page 50 lists math-mode accent-making commands. They are
robust, as are the following additional accenting commands:

\widehat Wide version of \hat.

\widetilde Wide version of \ t i lde .

\imath Dotless i for use with accents.

\ jmath Dotless j for use with accents.

C.7 Mathematical Formulas 191

\stackrelCtop]Cbot)

Typesets top immediately above bot, using the same math style for top as if it
were a superscript.

C.7.7 Spacing

The following commands produce horizontal space in math mode. They are all
robust. The \, command may also be used in paragraph and LR mode.

\ thin space \ : medium space
\ ! negative thin space \ ; thick space

C.7.8 Changing Style
Type Style

The following commands cause letters, numbers, and uppercase Greek letters in
their argument arg to be typeset in the indicated style. The commands may be
used only in math mode. They are robust.

\mat-€ text ct) Roman \mathsf (text3 Sans Serif
\mathitCtext) Italic \mathttCtext3 Typewriter
\mathbf (text] Boldface \mathcalCtext 1 CdLCZQRAP'HZC

The argument of \mathcal may contain only uppercase letters.
The following two commands affect all characters in a formula. They may

be used only in paragraph or LR mode. They are robust.

\boldmath Causes math formulas to be typeset in a bold style. It causes
to generate a warning if a formula could use a bold-series font that is not
available, even if the font is not actually used.

\unboldmath Causes math formulas to be typeset in a normal (nonbold) style.

Math Style

The following declarations can appear only in math mode. They choose the
type size and certain formatting parameters, including ones that control the
placement of subscripts and superscripts. All are robust commands.

\displaystyle Default style for displayed formulas.

\ t ex t s ty l e Default style for in-text formulas and for the items in an ar ray
environment.

\ s c r ip t s ty l e Default style for first-level subscripts and superscripts.

\ s c r ip t s c r i p t s t y l e Default style for higher-level subscripts and superscripts.

192 Reference Manual

C.8 Definitions, Numbering, and Programming

C.8.1 Defining Commands
\newcommand Ccmd3 [argsl [optl Cdef 3
\renewcommand Ccmd3 [argsl Coptl (def 3
\providecommandCcmd3 [argsl [opt] (def 3
These commands define or redefine a command. They are all fragile.

c m d A command name beginning with \ and followed by either a sequence
of letters or a single nonletter. For \newcommand it must not be already
defined and must not begin with \end; for \renewcommand it must already
be defined. The command \providecommand acts like \newcommand unless
c m d is already defined, in which case it does nothing and the old definition
is retained.

args An integer from 1 to 9 denoting the number of arguments of the command
being defined. The default is for the command to have no arguments.

opt If this argument is present, then the first of the args arguments of c m d is
optional and has a default value of opt. If this argument is absent, then
all arguments of cmd are mandatory.

def The text to be substituted for every occurrence of cmd; a parameter of
the form #n in c m d is replaced by the text of the nth argument when
this substitution takes place. It may contain command- and environment-
defining commands only if all commands and environments they define
have no arguments.

The argument-enclosing braces of a command defined or redefined with any of
these three commands do not delimit the scope of a declaration in that argument.
(However, the scope may be delimited by braces that appear within def.) The
defined command is fragile if it has an optional argument or if def includes a
fragile command; otherwise it is robust.

C.8.2 Defining Environments
\newenvironment Cnam3 [argsl [opt] Cbegdef 3Cenddef 3
\renewenvironment Cnam3 Cargsl Coptl C begdef 3Cenddef3
These commands define or redefine an environment. They are both fragile.

nam The name of the environment; it can be any sequence of letters, numbers,
and the character * that does not begin with end. For \newenvironment,
neither an environment by that name nor the command \nam may already
be defined. For \renewenvironment, the environment must already be
defined.

C.8 Definitions, Numbering, and Programming 193

args An integer from 1 to 9 denoting the number of arguments of the newly
defined environment. The default is no arguments.

opt If this argument is present, then the first of the args arguments of the
environment is optional and has a default value of opt. If this argument is
absent, then all arguments of the environment are mandatory.

begdef The text substituted for every occurrence of \beginCnam); a parameter
of the form #n in begdef is replaced by the text of the nth argument of
\beginCnam) when this substitution takes place.

enddef The text substituted for every occurrence of \endCnam). It may not
contain any argument parameters.

The begdef and enddef arguments may contain command- and environment-
defining commands only if all commands and environments they define have no
arguments. The argument-enclosing braces of an environment that was defined
with \newenvironment or \renewenvironment do not delimit the scope of a
declaration contained in the argument.

C.8.3 Theorem-like Environments

\newtheorem C env-name)(caption) [within]
\newtheorem Cenv-name) [numbered-like1 {caption)

This command defines a theorem-like environment. It is a global declaration
(Section C.1.4) and is fragile.

env-name The name of the environment-a string of letters. It must not be the
name of an existing environment or counter.

caption The text printed at the beginning of the environment, right before the
number.

within The name of an already defined counter, usually of a sectional unit. If
this argument is present, the command \theenv-name is defined to be

\the within. \arabic(en~~narne3

and the env-name counter will be reset by a \stepcounterCwithin) or
\ref stepcounterCwithin) command (Section C.8.4). If the within argu-
ment is missing, \theenv-name is defined to be \arabicCenv-name).

numbered-like The name of an already defined theorem-like environment. If this
argument is present, the env-name environment will be numbered in the
same sequence (using the same counter) as the numbered-like environment
and will declare the current \ref value (Section (3.11.2) to be the text
generated by \thenurnbered-like.

194 Reference Manual

Unless the numbered-like argument is present, this command creates a counter
named env-name, and the environment declares the current \ref value (Sec-
tion C.11.2) to be the text generated by \theem-name.

The \newtheorem command may have at most one optional argument. See
Section C . l . l if a \newtheorem without a final optional argument is followed by
a [character.

C.8.4 Numbering

The following commands manipulate counters. There are packages that provide
additional commands for performing arithmetic calculations; check the BT)$
Companion.

\newcounterCnewctr) [withinl

Defines a new counter named newctr that is initialized to zero, with \thenewctr
defined to be \arabicInewctr). It is a global declaration. The \newcounter
command may not be used in an \includeld file (Section 4.4). Fragile.

newctr A string of letters that is not the name of an existing counter.

within The name of an already defined counter. If this argument is present, the
newctr counter is reset to zero whenever the within counter is stepped by
\stepcounter or \ref stepcounter (see below).

\setcounterCctr)Cnum)

Sets the value of counter ctr to num. It is a global declaration (Section C.1.4).
Fragile.

Increments the value of counter ctr by num. It is a global declaration (Sec-
tion C.1.4). Fragile.

\valueIctr)

Produces the value of counter ctr. It is used mainly in the nzlm argument
of a \setcounter or \addtocounter command-for example, the command
\setcounter(bean)C\value(page)) sets counter bean equal to the current
value of the page counter. However, it can be used anywhere that BT@ expects
a number. The \value command is robust, and must never be preceded by a
\protect command.

numbering commands

The following commands print the value of counter ctr in the indicated format.
They are all robust.

C.8 Definitions, Numbering, and Programming 195

\arabicIctr) Arabic numerals.

\roman(ctr) Lowercase roman numerals.

\Roman(ctr) Uppercase roman numerals.

\alph(ctr3 Lowercase letters. The value of ctr must be less than 27.

\Alph(ctr) Uppercase letters. The value of ctr must be less than 27.

\fnsymbolCctr) Produces one of the nine "footnote symbols" from the fol-
lowing sequence: * t $ 5 1 1 * * t t $ f . It may be used only in math
mode. The value of ctr must be less than 10.

\the ctr

A command used to print the value associated with counter ctr. Robust.

Increment the value of counter ctr by one and reset the value of any counter
numbered "within" it. For example, the subsection counter is numbered within
the sect ion counter, which, in the report or book document style, is numbered
within the chapter counter. The \ref stepcount er command also declares the
current \ref value (Section C .11.2) to be the text generated by \the&.

C.8.5 The i f then Package

The i f then package provides commands for writing simple programs with tests
and loops. The use of these commands is illustrated in Figure C.5. This section
may not make much sense unless you have already done some programming.

If test is true, then then-tzt is processed; if test is false, then else-tzt is processed.
The then-tzt and else-txt arguments can be any I4.w input. The test argument
must be an expression that I4W evaluates to true or false. It can be any of
the following:

numl op numz A numerical relation, where op is one of the following three
characters: > = < , and numl and numl are numbers. For example,
\valueCpage) > 17 evaluates to true if and only if the current value of
the page counter is greater than 17.

\equalCstr13Cstr23 Evaluates to true if and only if QjX regards strl and str2
as equal. w may think the two arguments are different even if they print
the s a m e f o r example, \today and May,l , ,2001 are not equal, even on

196 Reference Manual

The gcd (greatest common divisor) of m and n is
printed by the following algorithm, which succes-
sively subtracts the smaller value from the larger
until the two are equal.

a : = m ; b : = n ;
while a # b

d o if a > b then a := a - b
else b := b - a ;

print (a)

For example: Gcd(54,30) = gcd(24,30) = gcd(24'6)
= gcd(18,6) = gcd(12,6) = gcd(6,6) = 6. ... For example: \printgcd(54).(30)

Figure C.5: Writing programs with the i f t h e n package's commands.

May 1, 2001. Tj@ will think strl and str2 are equal if replacing every
command by its definition makes them identical. For example, nou\g(x)
and noux-gnu-x are equal if \g is defined by

If you're not sure exactly what equals what, try some experiments.

\lengthtest(lenl op Zenz) A length relation, where op is one of the follow-
ing three characters: > = <, and Zenl and lem are lengths. For example,
\lengthtestI\parindent < icm) evaluates to true if and only if the cur-
rent value of \parindent is less than l centimeter. In evaluating the
relation, a rubber length is replaced by its natural length (Section 6.4.1).

\isodd{num) Evaluates to true if and only if the number num is odd. It is
used to produce different text for left- and right-hand pages. However, the
obvious \i sodd(\value(page)) doesn't work, because the current value
of the page counter could be 42 even though the text now being processed
will wind up on page 43 (see Section 8.1). Instead, use \labelIkey3 and
\isodd(\pageref (key)) (Section C.11.2). The page counter does have
the expected value when processing the page's head or foot.

\boolean{nam) Evaluates to the current value of the boolean register nam,
where nam can be any sequence of letters. This register must be defined
with the command \newbooleanCname). Its value is set by the command
\setboolean(namHbool), where boo1 is either t rue or f a l s e .

complex expressions A test can be built up from simpler expressions in the
customary fashion using the boolean operators \and, \or, and \not, with
\ (and \) serving as parentheses.

C.9 Figures and Other Floating Bodies 197

\whiledoCtest)i body)

Repeatedly processes body until test becomes false, where test is the same as for
\ i f thenelse. (Does nothing if test is initially false.)

C.9 Figures and Other Floating Bodies

C.9.1 Figures and Tables
\beginCf igure) [locl body \endif igure)
\beginCf igure*) [locl body \endCf igure*)
\beginitable) [locl body \endCtable)
\begidtable*) [loc] body \enditable*)

These environments produce floating figures and tables. In two-column format,
the ordinary forms produce single-column figures and tables and the *-forms
produce double-column ones. The two forms are equivalent in single-column
format.

The body is typeset in a parbox of width \textwidth. It may contain one or
more \caption commands (see below). The loc argument contains a sequence
of one to four letters, each one specifying a location where the figure or table
may be placed, as follows:

h Here: at the position in the text where the environment appears. (Not
possible for double-column figures and tables in two-column format.)

t Top: at the top of a text page.

b Bottom: at the bottom of a text page. (Not possible for double-column
figures or tables in two-column format.)

p Page of floats: on a separate page containing no text, only figures and
tables.

If the loc argument is missing, the default specifier is tbp, so the figure or
table may be placed at the top or bottom of a text page or on a separate page
consisting only of figures and/or tables.

The loc argument can also contain the character !, which directs KQX to try
harder to place the figure or table at the earliest possible place in the document
allowed by the rest of the argument. What "trying harder" means is explained
below.

You may find that ~~ puts a figure or table where you don't want it. If the
figure or table is printed too soon, you can either move it later in the input or use
the \suppressfloats command described below. If it is printed too late, you
can move it earlier in the input or use an optional argument with a ! character.
Occasionally, you will find that nothing seems to work. You may then think you

198 Reference Manual

have discovered a bug in KI&X. You almost certainly haven't. No computer
program can deduce exactly where you want your figures to go. U['s figure-
placement algorithm was carefully designed to do the best it could. To solve
your problem, you will have to understand why KQX puts the figure or table
where it does. fil$jX follows the rules listed below. You will have to read these
rules slowly and carefully to understand what is doing. The last rule,
which mentions the formatting parameters, is likely to be the key. You will have
to read the descriptions of these parameters carefully to understand the rule.
There are fifteen parameters, but one of the first seven is probably responsible
for your problem.

Here are the rules that determine where a figure or table is put:

It is printed at the earliest place that does not violate subsequent rules,
except that an h (here) position takes precedence over a t (top) position.

It will not be printed on an earlier page than the place in the text where
the f igure or table environment appears.

A figure will not be printed before an earlier figure, and a table will not
be printed before an earlier table.2

It may appear only at a position allowed by the loc argument, or, if that
argument is missing, by the default tbp specifier.

Placement of the figure or table cannot produce an overfull page.

The page constraints determined by the formatting parameters described
below are not violated. However, if a ! appears in the optional argument,
then the constraints for text pages are ignored, and only the ones for float
pages (expressed by \f loatpagef ract ion and \dblf loatpagef raction)
apply.

The last three rules are suspended when a \clearpage, \cleardoublepage,
or \endIdocument) command occurs, all unprocessed figures and tables being
allowed a p option and printed at that point.

When giving an optional loc argument, include enough options so these rules
allow the figure or table to go somewhere, otherwise it and all subsequent figures
or tables will be saved until the end of the chapter or document, probably.causing
T)$ to run out of space.

\caption [lst-entry] {heading}

Produces a numbered caption.

'However, in a two-column page style, a single-column figure can come before an earlier
double-column figure, and vice versa.

C.9 Figures and Other Floating Bodies 199

.?.st-entry Generates the entry in the list of figures or tables. Such an entry
should not contain more than a few hundred characters. If this argument
is missing, the heading argument is used. It is a moving argument.

heading The text of the caption. It produces the list of figures or tables entry if
the .?.st-entry argument is missing, in which case it is a moving argument.
If this argument contains more than a few hundred characters, a shorter
.?.st-entry argument should be used--even if no list of figures or tables is
being produced.

A \label command that refers to the caption's number must go in heading
or after the \caption command in the body of the figure or table environ-
ment. The \caption command can be used only in paragraph mode, but can
be placed in a parbox made with a \parbox command or minipage environment
(Section 6.4.3). It is fragile.

\suppressf loats Clocl

Prevents additional figures and tables from appearing on the current page. There
are two possible loc arguments:

t No more figures or tables at the top of the current page.

b No more figures or tables at the bottom of the current page.

With no optional argument, additional figures and tables are suppressed from
both the top and bottom of the current page. A ! in the optional argument of
a figure or table environment counteracts the effect of a \suppressfloats
command for that particular figure or table.

Style Parameters

Changes made to the following parameters in the preamble apply from the first
page on. Changes made afterwards take effect on the next page, not the current
one. A float denotes either a figure or a table, and a float page is a page
containing only floats and no text. Parameters that apply to all floats in a
one-column page style apply to single-column floats in a two-column style.

topnumber A counter whose value is the maximum number of floats allowed at
the top of a text page.

\topfraction The maximum fraction of the page that can be occupied by floats
at the top of the page. Thus, the value .25 specifies that as much as the
top quarter of the page may be devoted to floats. It is changed with
\renewcommand.

bottomnumber Same as topnumber except for the bottom of the page.

200 Reference Manual

\bottomfraction Same as \topfraction except for the bottom of the page.

totalnumber A counter whose value is the maximum number of floats that can
appear on a single text page, irrespective of their positions.

\textfraction The minimum fraction of a text page that must be devoted to
text. The other 1 - \textfraction fraction may be occupied by floats. It
is changed with \renewcommand.

\floatpagefraction The minimum fraction of a float page that must be occu-
pied by floats, limiting the amount of blank space allowed on a float page.
It is changed with \renewcommand.

dbltopnumber The analog of topnumber for double-column floats on a two-
column page.

\dbltopfraction The analog of \topfraction for double-column floats on a
two-column page.

\dblf loatpagef ract ion The analog of \f loatpagef ract ion for a float page
of double-column floats.

\floatsap The vertical space added between floats that appear at the top or
bottom of a text page. It is a rubber length.

\textfloatsep The vertical space added between the floats appearing at the
top or bottom of a page and the text on that page. It is a rubber length.

\intextsep The vertical space placed above and below a float that is put in
the middle of the text with the h location option. It is a rubber length.

\dblfloatsep The analog of \floatsep for double-width floats on a two-col-
umn page. It is a rubber length.

\dbltextfloatsep The analog of \textfloatsep for double-width floats on a
two-column page. It is a rubber length.

C.9.2 Marginal Notes

\marginpar ClefLtedI (right-text)

Produces a marginal note using right-tezt if it goes in the right margin or there is
no optional argument, otherwise using left-ted. The text is typeset in a parbox.

For two-sided, single-column printing, the default placement of marginal
notes is on the outside margin-left for even-numbered pages, right for odd-
numbered ones. For one-sided, single-column printing, the default placement is
in the right margin. These defaults may be changed by the following declara-
tions:

C.10 Lining It Up in Columns 201

\reversemarginpar Causes marginal notes to be placed in the opposite mar-
gin from the default one.

\normalmarginpar Causes marginal notes to be placed in the default margin.

When a marginal note appears within a paragraph, its placement is determined
by the declaration in effect at the blank line ending the paragraph. For two-
column format, marginal notes always appear in the margin next to the column
containing the note, irrespective of these declarations.

A marginal note is normally positioned so its top line is level with the line
of text containing the \marginpar command; if the command comes between
paragraphs, the note is usually level with the last line of the preceding para-
graph. However, the note is moved down and a warning message printed on
the terminal if this would make it overlap a previous note. Switching back
and forth between reverse and normal positioning with \reversemarginpar and
\normalmarginpar may inhibit this movement of marginal notes, resulting in
one being overprinted on top of another.

Style Parameters

\marginparwidth The width of the parbox containing a marginal note.

\marginparsep The horizontal space between the outer margin and a marginal
note.

\marginparpush The minimum vertical space allowed between two successive
marginal notes.

C.10 Lining It Up in Columns

C.lO.l The tabbing Environment
\begin(tabbing) rows \end(tabbing)

This environment may be used only in paragraph mode. It produces a sequence
of lines, each processed in LR mode, with alignment in columns based upon a
sequence of tab stops. Tab stops are numbered 0, 1, 2, etc. Tab stop number i
is said to be set if it is assigned a horizontal position on the page. Tab stop 0 is
always set to the prevailing left margin (the left margin in effect at the beginning
of the environment). If tab stop i is set, then all tab stops numbered 0 through
i - 1 are dso set. Tab stop number i - 1 is normally positioned to the left of
tab stop number i.

The behavior of the tabbing commands is described in terms of the values
of two quantities called next-tab-stop and left-margin-tab. Initially, the value of
next-tab-stop is 1, the value of left-margin-tab is 0, and only tab number 0 is
set. The value of next-tab-stop is incremented by the \> and \= commands, and

202 Reference Manual

Gnat: swatted by: men
COWS

and gnus
not very filling

Armadillo: not edible
(note also the: aardvark

albatross
Gnu: eaten by gnats

\beginCtabbing)
Armadillo: \= \ k i l l
Gnat : \> swatted by: \= men \+\+ \\

COWS \\
and \ ' gnus \- \\

not very f i l l i n g , \- \\
eton) Armadillo: \> not edible \\

\pushtabs
(note also the: \= aardvark \\

\> albatross \' eton) \\
\poptabs

Gnu : \> eaten by \> gnats
\end(t abbing)

Figure C.6: A tabbing environment example.

it is reset to the value of lefimargin-tab by the \\ and \ k i l l commands. The
following commands, all of which are fragile, may appear in rows; their use is
illustrated in Figure C.6.

\= If the value of next-tab-stop is i, then this command sets tab stop number
i's position to be the current position on the line and changes the value of
next-tab-stop to i + 1.

\> If the value of next-tab-stop is i, then this command starts the following text
at tab stop i's position and changes the value of nedtab-stop to i + 1.

\\ Starts a new line and sets the value of next-tab-stop equal to the value of
le&rnargin-tab. See Section C.1.6 for more details.

\ k i l l Throws away the current line, keeping the effects of any tab-stopsetting
commands, starts a new line, and sets the value of nezt-tab-stop to the
value of lefimargin-tab.

\+ Increases the value of left-margin-tab by one. This causes the left margin of
subsequent lines to be indented one tab stop to the right, just as if a \>
command were added to the beginning of subsequent lines. Multiple \+
commands have the expected cumulative effect.

\- Decreases the value of left_margin-tab, which must be positive, by one. This
has the effect of canceling one preceding \+ command, starting with the
following line.

\< Decreases the value of next-tab-stop by one. This command can be used only
at the beginning of a line, where it acts to cancel the effect, on that line,
of one previous \+ command.

C.10 Lining. It UP in Columns 203

\' Used to put text flush right against the right edge of a column or against the
left margin. If the value of next-tab-stop is i, then it causes everything in
the current column-all text from the most recent \>, \=, \ ' , \\, or \kill
command-to be positioned flush right a distance of \tabbingsep (a style
parameter) from the position of tab stop number i - 1. Text following the
\' command is placed starting at the position of tab stop number i - 1.

\ Moves all following text on the line flush against the prevailing right margin.
There must be no \>, \=, or \ ' command after the \' and before the
command that ends the output line.

\pushtabs Saves the current positions of all tab stops, to be restored by a
subsequent \poptabs command. You can nest \pushtabs commands, but
\pushtabs and \poptabs commands must come in matching pairs within
a tabbing environment.

\poptabs See \pushtabs.

\a. . . The commands \=, \ ' , and \ ' usually produce accents, but are redefined
to tabbing commands inside the tabbing environment. The commands
\a=, \a', and \af produce those accents in a tabbing environment.

The tabbing environment exhibits the following anomalies:

0 The scope of a declaration appearing in rows is ended by any of the fol-
lowing commands:

No environment contained within the tabbing environment can contain
any of these tabbing commands.

The commands \=, \ ' , \' , and \- are redefined to have special meanings
inside a tabbing environment. The ordinary \- command would be use-
less in this environment; the effects of the other three are obtained with
the \a. . . command described above. These commands revert to their
ordinary meanings inside a parbox contained within the tabbing environ-
ment.

One tabbing environment cannot be nested within another, even if the
inner one is inside a parbox.

Style Parameters

\tabbingsep See the description of the \ ' command above.

204 Reference Manual

C . 10.2 The a r r ay and t a b u l a r Environments

\begin(array) Cposl (cols) rows \end(array)
\beginItabular) [pos] (cols) rows \endCtabular)
\begin(tabular*Hwdth) [posl (cols) rows \endItabular*)

These environments produce a box (Section 6.4.3) consisting of a sequence of
rows of items, aligned vertically in columns. The ar ray environment can be
used only in math mode, while tabular and tabular* can be used in any
mode. Examples illustrating most of the features of these environments appear
in Figure C.7.

wdth Specifies the width of the tabular* environment. There must be rubber
space between columns that can stretch to fill out the specified width; see
the \extracolsep command below.

pos Specifies the vertical positioning; the default is alignment on the center of
the environment.

t align on top row.

b align on bottom row.

GG&A Hoofed Stock

)(GG\&A Hoofed Stock)
Year
1971

72

72 & 245 & 245 & Light trading due to a
heavy winter. \\ \hline

73 & 245 & 2001 & No gnus was very

Price
low 1 high
97-245

245-245

73

good gnus this year. \\ \hline

4 65mm c

Table
1.234 centaur rite::gauche

56.7 scenter wright::rad
8.99 cent write::sinister

Comments
Bad year.
Light trading due to a

1971 & 97 & 245 & Bad year. \\ \hline

245-2001

\begin(tabular*)(65mm><Q<3rO<. 11%
@(\extracolsepC\f illncr%
@(\extracolsepCOpt) : : >l@C>>

\multicolumn(5)(c)~\underline~Table~ \\
1&234 & centaur & rite & gauche \\

56 & 7 & scenter & Wright & rad \\
8099 & cent & write & sinister

\end{tabular*)

\multicolumnC43Clc
\\ \hline\hline

&\multicolumn(23(c
\multicolumnClHlc

Figure C.7: Examples of the tabular and tabular* environments.

heavy winter.
No gnus was very good
gnus this year.

& \multicolumn{i)(r@C\ ,\vline\, 1)Clow)
& high & \multicolumn~l~{c~)(Comments~

\\ \hline

C.10 Lining It Up in Columns 205

cols Specifies the column formatting. It consists of a sequence of the follow-
ing specifiers, corresponding to the sequence of columns and intercolumn
material:

1 A column of left-aligned items.

r A column of right-aligned items.

c A column of centered items.

I A vertical line the full height and depth of the environment.

@{text) This specifier is called an Q-expression. It inserts text in every
row, where text is processed in math mode in the array environment
and in LR mode in the tabular and tabular* environments. The
text is considered a moving argument, so any fragile command within
it must be \protect 'ed.

An @-expression suppresses the space B w normally inserts between
columns; any desired space between the inserted text and the adjacent
items must be included in text. To change the space between two
columns from the default to wd, put an QC\hspace{wd)) command
(Section 6.4.1) between the corresponding column specifiers.
An \extracolsepCwd3 command in an @-expression causes an extra
space of width wd to appear to the left of all subsequent columns,
until countermanded by another \extracolsep command. (How-
ever, it will not put space to the left of the first column.) Unlike
ordinary intercolumn space, this extra space is not suppressed by an
@-expression. An \extracolsep command can be used only in an Q-
expression in the cols argument. It is most commonly.used to insert
a \ f i l l space (Section 6.4.1) in a tabular* environment.

pCwd3 Produces a column with each item typeset in a parbox of width
wd, as if it were the argument of a \parbox [tl Cwd) command (Sec-
tion 6.4.3). However, a \ \ may not appear in the item, except in the
following situations: (i) inside an environment like minipage, array,
or tabular, (ii) inside an explicit \parbox, or (iii) in the scope of a
\centering, \raggedright, or \raggedlef t declaration. The latter
declarations must appear inside braces or an environment when used
in a p-column element.

*Cnum3Ccols) Equivalent to num copies of cob, where num is any positive
integer and cols is any list of column-specifiers, which may contain
another *-expression.

An extra space, equal to half the default intercolumn space, is put before
the first column unless cols begins with a I or Q-expression, and after
the last column unless cols ends with a I or Q-expression. This space

206 Reference ManuaI

usually causes no problem, but is easily eliminated by putting an @() at
the beginning and end of cols.

rows A sequence of rows separated by \\ commands (Section C.1.6). Each row
is a sequence of items separated by & characters; it should contain the same
number of items as specified by the cols argument. Each item is processed
as if it were enclosed in braces, so the scope of any declaration in an item
lies within that item. The following commands may appear in an item:

\mult icolumnCnum)~col)(item) Makes item the text of a single item
spanning num columns, positioned as specified by col. If num is
1, then the command serves simply to override the item positioning
specified by the environment argument. The col argument must con-
tain exactly one 1, r, or c and may contain one or more @-expressions
and I characters. It replaces that part of the environment's cols ar-
gument corresponding to the num spanned columns, where the part
corresponding to any column except the firstfbegins with 1, r, c, or
p, so the cols argument I c l l0(:)lr has the four parts I c I , 1 @ C : 1,
1, and r. A \multicolumn command must either begin the row or
else immediately follow an &. It is fragile.

\vline When used within an 1, r, or c item, it produces a vertical line
extending the full height and depth of its row. An \hf ill command
(Section 6.4.2) can be used to move the line to the edge of the column.
A \vline command can also be used in an @-expression. It is robust.

The following commands can go between rows to produce horizontal lines.
They must appear either before the first row or immediately after a \\
command. A horizontal line after the last row is produced by ending the
row with a \\ followed by one of these commands. (This is the only case
in which a \\ command appears after the last row of an environment.)
These commands are fragile.

\hline Draws a horizontal line extending the full width of the environ-
ment. Two \hline commands in succession leave a space between the
lines; vertical rules produced by I characters in the cols argument do
not appear in this space.

\cline{ toll - co12) Draws a horizontal line across columns toll through
~ 0 1 ~ . TWO or more successive \c l ine commands draw their lines in
the same vertical position. See the \multicolumn command above
for how to determine what constitutes a column.

The following properties of these environments, although mentioned above, are
often forgotten:

C . l l Moving Information Around 207

These environments make a box; see Section 6.5 for environments and
commands that can be used to position this box.

0 The box made by these commands may have blank space before the first
column and after the last column; this space can be removed with an
Q-expression.

0 Any declaration in rows is within an item; its scope is contained within
the item.

0 An Q-expression in cols suppresses the default intercolumn space.

Style Parameters

The following style parameters can be changed anywhere outside an array or
tabular environment. They can also be changed locally within an item, but the
scope of the change should be explicitly delimited by braces or an environment.

\arraycolsep Half the width of the default horizontal space between columns
in an array environment.

\tabcolsep Half the width of the default horizontal space between columns in
a tabular or tabular* environment.

\arrayrulewidth The width of the line created by a I in the cols argument or
by an \hline, \cline, or \vline command.

\doublerulesep The width of the space between lines created by two successive
I characters in the cols argument, or by two successive \hline commands.

\arraystretch Controls the spacing between rows. The normal interrow space
is multiplied by \arraystretch, so changing it from its default value of 1
to 1.5 makes the rows 1.5 times farther apart. Its value is changed with
\renew command (Section 3.4).

C . 11 Moving Informat ion Around

C . l l . l Files

BZj$ creates a number of ancillary files when processing a document. They all
have the same first name as the root file (Section 4.4). These files are referred
to, and listed below, by their extensions. A \nof i l e s command in the preamble
prevents B ' from writing any of them except the dvi and log files. Knowing
when and under what circumstances these files are read and written can help in
locating and recovering from errors.

208 Reference Manual

aux Used for cross-referencing and in compiling the table of contents, list of
figures, and list of tables. In addition to the main aux file, a separate aux
file is also written for each \include'd file (Section 4.4), having the same
first name as that file. All aux files are read by the \begin(documentl
command. The \begin(document) command also starts writing the main
aux file; writing of an \include'd file's aux file is begun by the \include
command and is ended when the \include'd file has been completely
processed. A \nof iles command suppresses the writing of all aux files.

The table of contents and cross-reference information in the aux files can
be printed by running I4w on the file lablst . tex.

bbl This file is written by BIBT*, not by WQX, using information on the aux
file. It is read by the \bibliography command.

dvi This file contains B"s output, in a form that is independent of any
particular printer. (This printer-independence may be lost when using the
graphics, color, and pict2e packages; see the introduction to Chap
ter 7.) Another program must be run to print the information on the
dvi file. The file is always written unless a ' has generated no printed
output.

glo Contains the \glossaryentry commands generated by \glossary com-
mands. The file is written only if there is a \makeglossary command and
no \nof iles command.

idx Contains the \indexentry commands generated by \index commands.
The file is written only if there is a \makeindex command and no \nof iles
command.

ind This file is written by MakeIndex, not by @ ' , using information on the
idx file. It is read by the \printindex command. See Appendix A.

lof Read by the \list off igures command to generate a list of figures; it
contains the entries generated by all \caption commands in figure envi-
ronments. The lof file is generated by the \endCdocument) command. It
is written only if there is a \list off igures command and no \nof iles
command.

log Contains everything printed on the terminal when I4w is executed, plus
additional information and some extra blank lines. It is always written.
In some systems, this file has an extension other than log.

lot Read by the \listof tables command to generate a list of tables; it con-
tains the entries generated by all \caption commands in table environ-
ments. The lot file is generated by the \endCdocument) command. It
is written only if there is a \listoftables command and no \nofiles
command.

C . l l Moving Information Around 209 -

tot Read by the \tableof contents command to generate a table of contents;
it contains the entries generated by all sectioning commands (except the
*-forms). The toc file is generated by the \endCdocument) command. It
is written only if there is a \tableof contents command and no \nof iles
command.

C. 11.2 Cross-References

The key argument is any sequence of letters, digits, and punctuation symbols;
upper- and lowercase letters are regarded as different. IXQ$ maintains a current
\ref value, which is set with the \ref stepcounter declaration (Section C.8.4).
(This declaration is issued by the sectioning commands, by numbered environ-
ments like equation, and by an \item command in an enumerate environment.)
The \label command writes an entry on the aux file (Section C.ll.l) containing
key, the current \ref value, and the number of the current page. When this aux
file entry is read by the \begin(document) command (the next time is
run on the same input file), the \ref value and page number are associated with
key, causing a \ref (key) or \pageref (key) command to produce the associated
\ref value or page number, respectively.

The \label command is fragile, but it can be used in the argument of a
sectioning or \caption command.

C.11.3 Bibliography and Citation

\bibliography(bib-files)

Used in conjunction with the BIBTG program (Section 4.3.1) to produce a
bibliography. The bib-files argument is a list of first names of bibliographic
database (bib) files, separated by commas; these files must have the extension
bib. The \bibliography command does two things: (i) it creates an entry on
the aux file (Section C.ll.l) containing bib-files that is read by BIBTEX, and
(ii) it reads the bbl file (Section C.ll.l) generated by BIBT~X to produce the
bibliography. (The bbl file will contain a thebibliography environment .) The
database files are used by BIBTEX to create the bbl file.

\begin~thebibliography)(widest-label3 entries \end(thebibliography)

Produces a bibliography or source list. In the standard article document
class, this source list is labeled "References"; in the report and book class, it
is labeled "Bibliography". See Section 6.1.4 for information on how to create a
document-class option to change the reference list's label.

210 Reference Manual

widest-label Text that, when printed, is approximately as wide as the widest
item label produced by the \bibitem commands in entries. It controls the
formatting.

entries A list of entries, each begun by the command

\bibitem [label] (cite-key)

which generates an entry labeled by label. If the label argument is miss-
ing, a number is generated as the label, using the enumiv counter. The
cite-key is any sequence of letters, numbers, and punctuation symbols not
containing a comma. This command writes an entry on the aux file (Sec-
tion C.l l . l) containing cite-key and the item's label. When this aux file
entry is read by the \begin(document) command (the next time BT)$C
is run on the same input file), the item's label is associated with cite-key,
causing a reference to cite-key by a \ c i t e command to produce the ass&
ciated label.

\ c i t e Ctextl (key-list)

The key-list argument is a list of citation keys (see \bibitem above). This
command generates an in-text citation to the references associated with the keys
in key-list by entries on the aux file read by the \begin(document) command.
It also writes key-list on the aux file, causing BIBTEX to add the associated
references to the bibliography(Section 4.3.1). If present, text is added as a
remark to the citation. Fragile.

Produces no text, but writes key-list, which is a list of one or more citation
keys, on the aux file. This causes BIBTEX to add the associated references to the
bibliography (Section 4.3.1). A \nocite(*) command causes B I B T ~ to add
all references from the bib files. The \nocite command must appear after the
\begin(document). It is fragile.

C.11.4 Splitting the Input

\input (file-name)

Causes the indicated file to be read and processed, exactly as if its contents had
been inserted in the current file at that point. The file-name may be a complete
file name with extension or just a first name, in which case the file file-name . tex
is used. If the file cannot be found, an error occurs and I4w requests another
file name.

C . l l Moving Information Around 211

\include(file)
\includeonlyCfile-list)

Used for the selective inclusion of files. The file argument is the first name of a
file, denoting the file file. tex, and file-list is a possibly empty list of first names
of files separated by commas. If file is one of the file names in file-list or if there
is no \includeonly command, then the \include command is equivalent to

except that if file file. tex does not exist, then a warning message rather than an
error is produced. If file is not in file-list, the \include command is equivalent
to \clearpage.

The \includeonly command may appear only in the preamble; an \include
command may not appear in the preamble or in a file read by another \include
command. Both commands are fragile.

\begin(filecontents)(nam) body \end(filecontents)
\beginCf ilecontents*)Cnam) body \endCf ilecontents*)

If a file named nam does not exist, then one is created having body as its contents.
If file nam already exists, then a warning message is printed and no file is
written. The f ilecontents environment writes helpful identifying comments
at the beginning of the file. These comments can cause problems if the file is used
as input to a program that, unlike El$$, does not treat lines beginning with
7, as comments. The f ilecontents* environment does not add any comments.
These environments can appear only before the \documentclass command.

\listf iles

Causes I4.W to print' on the terminal a list of all files that it reads when
processing the document, excluding ancillary files that it wrote. The command
may appear only in the preamble.

C.11.5 Index and Glossary

Appendix A describes how to make an index using the MakeIndex program.

Producing an Index

\begin(theindex) text \end(theindex)

Produces a' double-column index. Each entry is begun with either an \item
command, a \subitem command, or a \subsubitem command.

\printindex

Defined by the makeidx package. This command just reads the ind file.

212 Reference Manual

Compiling the Entries

\makeindex Causes the \indexentry entries produced by \index commands
to be written on the idx file, unless a \nof iles declaration occurs. The
\makeindex command may appear only in the preamble.

\makeglossary Causes the \glossaryentry entries produced by \glossary
commands to be written on the glo file, unless a \nofiles declaration
occurs. The \makeglossary command may appear only in the preamble.

\index{&) If an idx file is being written, then this command writes an
\indexentry{str){pg) entry on it, where pg is the page number. The
str argument may contain any characters, including special characters,
but it must have no unmatched braces, where the braces in \{ and \3 are
included in the brace matching. The \index command may not appear
inside another command's argument unless str contains only letters, digits,
and punctuation characters. The command is fragile.

\glossary{str) If a glo file is being written, then this command writes a
\glossaryentry{str)Cpg) entry on it, where str and pg are the same
as in the \index command, described above. The \glossary command
may not appear inside another command's argument unless str contains
only letters, digits, and punctuation characters. The command is fragile.

C.11.6 Terminal Input and Output

\typeouthsg)

Prints msg on the terminal and in the log file. Commands in msg that are
defined with \newcommand or \renewcommand are replaced by their definitions
before being printed. BT)$ commands in msg may produce strange results.
Preceding a command name by \protect causes that command name to be
printed.

T)$'s usual rules for treating multiple spaces as a single space and ignoring
spaces after a command name apply to msg. A \space command in msg causes a
single space to be printed. The \typeout command is fragile; moreover, putting
it in the argument of another EQX command may do strange things. The msg
argument is a moving argument.

\typein Ccmdl {msg)

Prints msg on the terminal, just like \typeout{msg), and causes to stop
and wait for you to type a line of input, ending with return. If the cmd argument
is missing, the typed input is processed as if it had been included in the input
file in place of the \typein command. If the cmd argument is present, it must
be a command name. This command name is then defined or redefined to be

C.12 Line and Page Breaking 213

the typed input. Thus, if cmd is not already defined, then the command acts
like

The \typein command is fragile; moreover, it may produce an error if it appears
in the argument of a UT)$X command. The msg argument is a moving argument.

C.12 Line and Page Breaking

C.12.1 Line Breaking
\linebreak Cnuml
\nolinebreak hum]

The \linebreak command encourages and \nolinebreak discourages a line
break, by an amount depending upon num, which is a digit from 0 through 4. A
larger value of num more strongly encourages or discourages the line break; the
default is equivalent to a num argument of 4, which either forces or completely
prevents a line break. An underfull \hbox message is produced if a \linebreak
command results in too much space between words on the line. Both commands
are fragile.

\\ Clenl
\ * Clenl
\newline

These commands start a new line without justifying the current one, producing
a ragged-right effect. The optional argument of \\ adds an extra vertical space
of length Een above theaew line. The *-form inhibits a page break right before
the new line. The \newline command may be used only in paragraph mode
and should appear within a paragraph; it produces an underfull \hbox warning
and extra vertical space if used at the end of a paragraph, and an error when
used between paragraphs. The \\ command behaves the same way when used
in paragraph mode. Both commands are fragile.

\ -
Permits the line to be hyphenated (the line broken and a hyphen inserted) at
that point. It inhibits hyphenation at any other point in the current word except
where allowd by another \- command. Robust.

Declares allowed hyphenation points, where words is a list of words, separated
by spaces, in which each hyphenation point is indicated by a - character. It is
a global declaration (Section C.1.4) and is robust.

214 Reference Manual

Declarations that control line breaking. The \fussy declaration, which is the
default, prevents too much space between words, but leaves words extending past
the right-hand margin if no good line break is found. The \sloppy declaration
almost always breaks lines at the right-hand margin, but may leave too much
space between words, in which case T&$ produces an underfull \hbox warning.
Line breaking is controlled by the declaration in effect at the blank line or \par
command that ends the paragraph.

\begin<sloppypar) pars \end(sloppypar)

Typesets pars, which must consist of one or more complete paragraphs, with the
\sloppy declaration in effect.

C.12.2 Page Breaking ,

The \pagebreak command encourages and \nopagebreak discourages column
breaking by an amount depending upon num, where the entire page is a sin-
gle column in a one-column page style. The num argument is a digit from 0
through 4, a larger value more strongly encouraging or discouraging a break; the
default is equivalent to num having the value 4, which forces or entirely forbids
a break. When used within a paragraph, these commands apply to the point
immediately following the line in which they appear. When \flushbottom is
in effect (Section 6.1.1), an underfull \vbox message is produced if \pagebreak
results in too little text on the page. A \nopagebreak command will have no
effect if another BTj@ command has explicitly allowed a page break to occur at
that point. These commands have no effect when used in LR mode or inside a
box. Both commands are fragile.

\enlargethispage (Zen3
\enlargethispage*<len)

These commands increase the height of the page that B ' is currently trying
to produce by Zen, which must be a rigid length and may be negative. The
*-form shrinks the vertical space on the page as much as possible, which is what
you want to do when trying to squeeze a little more onto a page than wants
to put there. For two-sided printing, it is usually best to make facing pages the
same height. These commands are fragile.

C.13 Lengths, Spaces, and Boxes 215

When one-column pages are being produced, these commands all end the cur-
rent paragraph and the current page. Any unfilled space in the body of the page
(Section 6.1.2) appears at the bottom, even with \flushbottom in effect (Sec-
tion 6.1.1). The \clearpage and \cleardoublepage commands also cause all
figures and tables that have so far appeared in the input to be printed, using one
or more pages of only figures and/or tables if necessary. In a two-sided printing
style, \cleardoublepage also makes the next page a right-hand (odd-numbered)
page, producing a blank page if necessary.

When two-column text is being produced, \newpage ends the current col-
umn rather than the current page; \clearpage and \cleardoublepage end
the page, producing a blank right-hand column if necessary. These commands
should be used only in paragraph mode; they should not be used inside a par-
box (Section 6.4.3). The \newpage and \clearpage commands are robust;
\cleardoublepage is fragile.

C.13 Lengths, Spaces, and Boxes

C.13.1 Length

explicit lengths An explicit length is written as an optional sign (+ or -)
followed by a decimal number (a string of digits with an optional decimal
point) followed by a dimensional unit. The following dimensional units are
recognized by T)-$:

cm Centimeters.:

em One em is about the width of the letter M in the current font.

ex One ex is about the height of the letter x in the current font.

i n Inches.

pc Picas (lpc = 12pt).

p t Points (l i n = 72.27pt).

mm Millimeters.

\ f i l l A rubber length (Section 6.4.1) having a natural length of zero and the
ability to stretch to any arbitrary (positive) length. Robust.

\stretchCdec-num) A rubber length having zero natural length and dec-num
times the stretchability of \ f i l l , where dec-num is a signed decimal num-
ber (an optional sign followed by a string of digits with an optional decimal
point). Robust.

216 Reference Manual

\newlength(cmd) Declares cmd to be a length command, where cmd is the
name of a command not already defined. The value of cmd is initialized
to zero inches. Fragile.

\setlengthIcmd)Ilen) Sets the value of the length command cmd equal to
len. Robust.

\addtolengthCcmd)(len) Sets the value of the length command cmd equal to
its current value plus len. Robust.

\settowidth Ccmd)(text)
\settoheight{cmd){tezt)
\settodepth {cmd)(text) Set the value of the length command crnd equal to

the natural width, height, and depth, respectively, of the output generated
when text is typeset in LR mode. Robust.

C.13.2 Space

Produce a horizontal space of width len. The space produced by \hspace is
removed if it falls at a line break; that produced by \hspace* is not. These
commands are robust.

\vspace {Zen)
\vspace*Clen)

Add a vertical space of height len. If the command appears in the middle of
a paragraph, then the space is added after the line containing it. The space
produced by \vspace is removed if it falls at a page break; that produced by
\vspace* is not. These commands may be used only in paragraph mode; they
are fragile.

These commands are equivalent to the three commands

where the three length commands \bigskipamount, \medskipamount, and
\smallskipamount are style parameters. These space-producing commands can
be used in the definitions of environments to provide standard amounts of ver-
tical space. They are fragile.

C.13 Lengths, Spaces, and Boxes

This command normally adds a vertical space of height Zen. However, if vertical
space has already been added to the same point in the output by a previous
\addvspace command, then this command will not add more space than needed
to make the natural length of the total vertical space equal to Zen. It is used to
add the extra vertical space above and below most I4w environments that start
a new paragraph. It may be used only in paragraph mode between paragraphs-
that is, after a blank line or \par command (in W ' s vertical mode). Fragile.

\hf ill

Equivalent to \hspace(\f ill).

\vf ill

Equivalent to a blank line followed by \vspace(\f ill); it should be used only
in paragraph mode.

C.13.3 Boxes

A box is an object that is treated by Tfi as a single character, so it will not be
broken across lines or pages.

\mbox(text 3
\makebox (wdthl [posl (text)

Typesets text in LR mode in a box. The box has the width of the typeset
text except for a \makebox command with a wdth argument, in which case it
has width wdth. In thk latter case, the position of the text within the box is
determined by the one-letter pos argument as follows:

1 Flush against left edge of box.

r Flush against right edge of box.

s Interword space in text is stretched or shrunk to try to fill the box exactly.

The default positioning is centered in the box. The \mbox command is robust;
\makebox is fragile.

\f box(text)
\f ramebox [wdthl [posl (text)

Similar to \mbox and \makebox, except that a rectangular frame is drawn around
the resulting box. The \fbox command is robust; \framebox is fragile.

218 Reference Manual

Declares cmd, which must be a command name that is not already defined, to
be a bin for saving boxes. Fragile.

\sboxCcmd)I text)
\savebox-(cmd) [wdthl [posl (text)
\begin(lrbox)Ccmd) text \endClrbox)

Typeset text in a box just as for \makebox. However, instead of printing the
resulting box, they save it in bin cmd, which must have been declared with
\newsavebox. In the lrbox environment, spaces are removed from the beginning
and end of text. The \sbox command is robust; \savebox is fragile.

\usebox(cmd)

Prints the box most recently saved in bin cmd. Robust.

\parbox [posl (wdth1Ctext)
\begin(minipage) [posl Cwdth) text \endIminipage)

They produce a parbox-a box of width wdth formed by typesetting text in
paragraph mode. The vertical positioning of the box is specified by the one-
letter pos argument as follows:

b The bottom line of the box is aligned with the current line of text.

t The top line of the box is aligned with the current line of text.

The default vertical positioning is to align the center of the box with the center
of the current line of text.

The list-making environments listed in Section 6.6 and the tabular envi-
ronment may appear in text with the minipage environment, but not with the
\parbox command. (If text consists of only a tabbing environment, then the
width of the resulting box is the actual width of the longest line rather than the
wdth argument.) A \footnote or \ footnotetext command appearing in text
in a minipage environment produces a footnote at the bottom of the parbox
ended by the next \end(minipage) command, which may be the wrong place
for it when there are nested minipage environments. These footnote-making
commands may not be used in the text argument of \parbox.

A minipage environment that begins with a displayed equation or with an
eqnarray or eqnarray* environment will have extra vertical space at the top
(except with the f leqn document-class option). This extra space can be removed
by starting text with a \vspace(-\abovedisplayskip) command.

The \parbox command is fragile.

C.14 Pictures and Color 219

Generates a solid rectangle of width wdth and height hght, raised a distance of
raise-Zen above the bottom of the line. (A negative value of raise-Zen lowers it.)
The default value of raise-Zen is zero inches. Ragile.

\raisebox(raise-Zen) Chghtl Cdpthl { tex t)

Creates a box by typesetting text in LR mode, raising it by raise-Zen, and pre-
tending that the resulting box extends a distance of hght above the bottom of
the current line and a distance of dpth below it. If the dpth argument or both
optional arguments are omitted, uses the actual extent of the box. Fragile.

Length commands that can be used only in the wdth argument of \makebox,
\framebox, and \savebox, and in the raise-Zen, hght, and dpth arguments of
\raisebox. They refer to the dimensions (width, height, depth, and height +
depth) of the box obtained by typesetting the text argument.

Style Parameters

\fboxrule The width of the lines forming the box produced by \fbox and
\framebox. However, the version of \framebox used in the picture en-
vironment (Section 7.1) employs the same width lines as other picture
commands.

\fboxsep The amount of space left between the edge of the box and its contents
by \fbox and \framebox. It does not apply to the version of \f ramebox
used in the picture environment (Section 7.1).

C.14 Pictures and Color

C.14.1 ' The picture Environment

A coordinate is a decimal number-an optional sign followed by a string of
digits with an optional decimal point. It represents a length in multiples of
\unitlength. All argument names in this section that begin with x or y are
coordinates.

220 Reference Manual

\newcounter{cms3
. . .
\setlength~\unitlength3{lmml
\beginCpicture3(50, 39)
\put (0 $7) C\ma.kebox(O,O) Cbll Ccm33

0 0 \multiput (lO,7) (10,0)~5~{\addtocounter
Ccms3Cl3\makebox(O ,O) Cbl {\arabic{cms)))

\put (l5,2O) {\circleCG))

cm 1 2 3 4 5 \put (30,20) {\circle{G))
\put (15,201 C\circle*W
\put(30,20)C\circle*~233
\put (lO,24)(\f ramebox(25,S)Ccar))
\put (IOs32~C\vector(-2, I)C1033
\multiput (I ,O) (I ,O)C493C\1ine(Os 11C2.533
\multiput (5,O) (1Os0)C53C\line (0, I) C3.533
\thicklines
\put (0 ,O)C\line(l ,0)15033
\multiput(O,O~(lO,O)CG)C\line(O,l)C5))
\end{picture3

Figure C.8: A sample picture environment.

\begin(picture> (x-dimen , y-dimen) (x-offset , y-offset)
pict-cmds

\end(picture>

Creates a box of width x-dimen and height y-dimen, both of which must be non-
negative. The (x-offset, y-offset) argument is optional. If present, it specifies
the coordinates of the lower-left corner of the picture; if absent, the lower-left
corner has coordinates (0,O). (Like all dimensions in the picture environment,
the lengths specified by the arguments of the picture environment are given
in multiples of \unitlength.) The picture environment can be used anywhere
that ordinary text can, including within another picture environment.

The pict-cmds are processed in picture mode-a special form of LR mode-
and may contain only declarations and the following commands:

Figure C.8 illustrates many of the picture-drawing commands described below.

Picture-Mode Commands

The following are the only commands, other than declarations, that can be used
in picture mode.

C.14 Pictures and Color 221

\put (x-coord , y-coord) (picture-object3

Places picture-object in the picture with its reference point at the position speci-
fied by coordinates (x-coord, y-coord). The picture-object can be arbitrary text,
which is typeset in LR mode, or else one of the special picture-object commands
described below. The \put command is fragile.

\multiput (x-coord , y-coord) (x-incr , y-incr) (num)(picture-object3

Places num copies of picture-object, the ith one positioned with its reference
point having coordinates (x-coord + [i - l]x-incr, y-coord + [i - 1] y-incr). The
picture-object is the same as for the \put command above. It is typeset num
times, so the copies need not be identical if it includes declarations. (See Fig-
ure C.8.) Fragile.

\qbezier [numl (x-coordl , y-coordl) (x-coorda , y-coorda) (x-coords , y-coord3)

Draws a quadratic Bezier curve whose control points are specified by the manda-
tory arguments (see Section 7.1.3). The num argument specifies the number of
points plotted on the curve. If it is absent, a smooth curve is drawn, with
the maximum number of points determined by the value of \qbeziermax. Use
\renewcommand to change \qbeziermax:

(With the pict2e package, there is no limit to the number of points plotted.)

\graphpaper Cspcingl (x-coord , y-coord) (x-dimen , y-dimen)

Defined by the graphpap package. It draws a coordinate grid with origin at
(x-coord, y-coord), extending x-dimen units to the right and y-dimen units up.
Grid lines are spaced every spcing units; the default value is 10. All arguments
must be integers.

Picture Objects

\makebox (x-dimen , y-dimen) Cposl (text)
\f ramebox (x-dimen, y-dimen) Cposl (text)
\dashbox {dash-dimen) (x-dimen , y-dimen) Cposl (text3

Produce a box having width x-dimen and height y-dimen (in multiples of
\unitlength) with reference point at its lower-left corner. The text is type-
set in LR mode, positioned in the box as specified by the one- or two-letter pos
argument as follows:

1 Horizontally positioned flush against the left edge of the box.

r Horizontally positioned flush against the right edge of the box.

Reference Manual

t Vertically positioned flush against the top edge of the box.

b Vertically positioned flush against the bottom edge of the box.

The default horizontal and vertical positioning is to center text in the box.
The \framebox command also draws a rectangle showing the edges of the box,
and \dashbox draws the rectangle with dashed lines, composed of dashes and
spaces of length dash-dimen (in multiples of \unitlength), where dash-dimen
is a positive decimal number. For best results, x-dimen and y-dimen should be
integral multiples of dash-dimen. The thickness of the lines drawn by \f ramebox
and \dashbox equals the width of the lines produced by other picture commands;
it is not determined by \fboxrule. All three commands are fragile.

\ l ine (h-slope , v-slope) (dimen3
\vector (h-slope , v-slope) (dimen)

Draw a line having its reference point at the beginning and its slope determined
by (h-slope, v-slope), where h-slope and v-slope are positive or negative integers
of magnitude at most 6 for \ l ine and at most 4 for \vector, with no common
divisors except f 1. (These restrictions are eliminated by the pict2e package.)
In addition, \vector draws an arrowhead at the opposite end of the line from
the reference point. The horizontal extent of the line is dimen (in multiples of
\unitlength) unless h-slope is zero, in which case dimen is the (vertical) length
of the line. However, a line that is neither horizontal nor vertical may not be
drawn unless dimen times \unitlength is at least 10 points (117 inch). (This
does not apply when the pict2e package is loaded.) The \vector command
always draws the arrowhead. Both commands are fragile.

The pos argument must be either 1, r, or c, the default being equivalent to c.
This command produces the same result as

\begin(tabular) [bl (pos) col \end(tabular)

(Section 3.6.2) except that no space is left on either side of the resulting box
and there is usually less interrow space. The reference point is at the left edge
of the box, level with the reference point of the bottom line. Fragile.

\ c i r c l e (diam)
\circle*(diaml

Draw a (hollow) circle and a disk (filled circle), respectively, with diameter as
close as possible to diam times \unitlength and reference point in the center of
the circle. The largest circle UQX can draw has a diameter of 40 points (about
112 inch) and the largest disk has a diameter of 15 points (about .2 inch). (With
the pict2e package, any size circle or disk can be drawn.) Both commands are
fragile.

C.14 Pictures and Color

\oval hadl (x-dimen , y-dimen) [part]

Draws an oval inscribed in a rectangle of width x-dimen and height y-dimen, its
corners made with quarter circles of the largest possible radius less than or equal
to rad. An explicit rad argument can be used only with the pict2e package; the
default value is the radius of the largest quarter-circle B ' can draw without
the pict2e package. The part argument consists of one or two of the following
letters to specify a half or quarter oval: 1 (left), r (right), t (top), b (bottom).
The default is to draw the entire oval. The reference point is the center of the
(complete) oval. Fragile.

Puts a rectangular frame around picture-object. The reference point is the bot-
tom left corner of the frame. No extra space is put between the frame and
picture-object. Fragile.

Picture Declarations

The following declarations can appear anywhere in the document, including in
picture mode. They obey the normal scope rules.

\savebox(cmd) (x-dimen, y-dimen) [posl (text3

Same as the corresponding \makebox command, except the resulting box is
saved in the bin cmd, which must be defined with \newsavebox (Section 6.4.3).
Fragile.

\ t h in l ines
\ th ick l ines

They select one of the two standard thicknesses of lines and circles in the p i c tu re
environment. The default is \ th in l ines . Robust.

Declares the thickness of lines in a p ic ture environment to be Zen, which must
be a positive length. With the p ic t2e package, it applies to all lines; otherwise,
it applies only to horizontal and vertical lines and does not affect the thickness
of slanted lines and circles, or of the quarter circles drawn by \oval to form the
corners of an oval.

C.14.2 The graphics Package

The following commands are provided by the graphics package. They are all
fragile. This package requires special support from the device driver.

224 Reference Manual

\scalebox(h-scale) [v-scale] (t ex t)

Produces a box by typesetting text in LR mode and scaling it horizontally by
a factor of h-scale and vertically by a factor of v-scale. The default value of
v-scale is h-scale.

\resizebox (wdth)(ht)€ tex t)
\resizebox*(wdth)(ht)(text3

Produce a box of width wdth and height ht by typesetting text in LR mode and
scaling it horizontally and vertically to fit. In the *-form, ht specifies the height
+ depth. If either argument is !, then the corresponding dimension is the one
that maintains the aspect ratio of text.

\rotatebox(ang)Ctext)

Produces a box formed by typesetting text in LR mode and rotating it coun-
terclockwise through an angle of ang degrees. The bgx is the smallest one
containing the rotated box; its reference point is at the same height as that of
the rotated box.

Produces a box by typesetting text in LR mode and reflecting it about a vertical
line.

\ includegraphics [x-Zenl, y-Zenl] [x-Zenz, y-Zen2] (file-name)
\includegraphics* Cz-Zenl, y-Zenl] Cx-lew2, y-Zen21 (file-name)

Produces a box containing the graphic material in the file named file-name. With
no optional arguments, the reference point and size of the box are specified by
the file. The optional arguments specify a box of width x-Zen2 - x-lenl and
height y-Zena - y-Zenl whose reference point is shifted a distance of x-Zenl to
the right and y-Zenl up from the lower-left corner of the contents of the file.
Specifying only one optional argument is the same as giving a first optional
argument of [Opt, Opt] . The *-form clips the material by removing everything
outside the specified box; the normal form does not.

C.14.3 The color Package

The following commands are provided by the co lor package. They are all fragile.
This package requires special support from the device driver.

Defines clr, which may be any sequence of letters and numbers, to be the name of
the color specified by the color model mdl and color value val. ~ ~ ' s standard
color models are:

C.15 Font Selection 225

gray A color value is a number from 0 to 1 that specifies a shade of gray,
where 0 is black.

rgb A color value is a list of three numbers from 0 to 1, separated by commas,
that describe intensities of red, green, and blue light.

cmyk A color value is a list of four numbers from 0 to 1, separated by commas,
that specify amounts of cyan, magenta, yellow, and black ink.

Other color models may also be supported. The package predefines the following
color names: black, white, red, green, blue, yellow, cyan, and magenta. All
other color names must be defined before they are used.

\color(clr)

Declares clr to be the current text color. It obeys the normal scoping rules.

\textcolor(clr)Ctext)

Equivalent to (\color(clr) text).

\colorbox(blcgd-clrH text)

Produces a box by typesetting text in LR mode on a background of color bkgd-clr.
The box includes a border of width \fboxsep.

\f colorbox(lzne~c~r)~ bkgd-clr)(text)

Like \colorbox, except it also puts a line of width \fboxrule and color line-clr
around the box.

\pagecolor(clr)

Declares clr to be the page's background color. It is a global declaration.

C.15 Font Selection

A font is a size and style of type. A text font is selected by specifying the size
and style. There are also special symbol fonts that are selected implicitly by
math-mode commands. It is possible to select a font that is not available, in
which case types a warning and substitutes a similar font.

C.15.1 Changing the Type Style

A type style is specified by three separate components: shape, series, and family.
Changing one component does not affect the others. These components are
changed by the following declarations, which obey the normal scope rules:

226 Reference Manual

\mdseries Medium Series \ upshape Upright Shape
\bf s er i e s Boldface Series \itshape Italic Shape
\rmfamily Roman Family \slshape Slanted Shape
\sffamily Sans Serif Family \scshape SMALL CAPS SHAPE
\ttfamily Typewriter Family \normalf ont Normal Style

The \normalfont declaration sets series, family, and shape to that of the doc-
ument's main text font.

Each of these declarations has. a corresponding command \ t e x t . . .(text3
that typesets text in the scope of the declaration. The commands and their
corresponding declarations are:

\textmd(tezt) \mdseries
\textbf (text) \bf s er i e s
\textrm(tezt) \rmfamily
\ textsf (tezt) \sf f amily
\texttt(tezt) \ t t f amily

\textupCtext) \upshape
\textitCtext) \it shape
\textslCtext) \slshape
\textscCtext3 \scshape
\textnormalCtezt3 \normalf ont

Words typeset in typewriter style will not be hyphenated except where permitted
by \- commands.

None of these commands or declarations can be used in math mode. They
are all robust.

C.15.2 Changing the Type Size

The following declarations select a type size, but leave the type style unaffected.
They are listed in nondecreasing size; in some document-class options, two dif-
ferent size declarations may have the same effect.

\ t iny \small
\ scr ipts ize \normalsize
\f ootnotesize

These commands may not be used in math mode; they are all fragile.

C.15.3 Special Symbols

Special symbols can be obtained from special fonts. The W&X Companion
explains how to get B ' to use such a font.

\symbol(num3

Chooses the symbol with number num from the current font. Octal (base 8) and
hexadecimal (base 16) numbers are preceded by ' and ", respectively. Robust.

APPENDIX D

What's New

228 What's New

This appendix lists most of the differences between HT)$ 2.09, the original ver-
sion of H ' , and the current version, H ' 2 & .

Document Styles and Style Options

Documents prepared for HT)$2& begin with a \documentclass command (Sec-
tion 2.2.2). H w 2 & realizes it is processing a BTjjX2.09 input file and enters
compatibility mode when it encounters a BT)$ 2.09 \documentstyle command.
Most H'2.09 input files will work with B'J33X2&. However, an error may
occur if H' ZE reads an auxiliary file produced by HT)$ 2.09, so it's a good
idea to delete such files before running HT)$2&.

The document styles of H7QjX2.09 have become document classes. SLIT)#
has been eliminated; slides are produced using the slides document class. Stan-
dard document-style options that controlled formatting, such as twoside, have
become document-class options, and are specified as optional arguments to the
\documentclass command. Other document-style options have become pack-
ages, loaded with the \usepackage command (Section 2.2.2). Most nonstandard
document-style options will work as BT)$2& packages.

Type Styles and Sizes

The H'2.09 commands for changing type style, such as \tt, will still work
more or less the same as before. The major difference is that \sc and \sl
can no longer be used in math mode (except when HT)$2& is in compatibility
mode). However, instead of using these commands, you should switch to the
more rational commands described in Sections 3.1 and 3.3.8 for changing type
style. The new commands treat the different aspects of type style separately-
for example, allowing you easily to specify bold sans serif type. The commands
for changing type size are the same, but they no longer change the type style
(except in compatibility mode). The \boldmath command now works better
(Section 3.3.8).

Pictures and Color

The picture environment has been enhanced by the addition of the \qbezier
command for drawing curves (Section 7.1.3). The pict2e package also removes
many restrictions on picture environment commands, such as limitations on
the slopes of lines and arrows. The graphics package allows you to insert
pictures produced by other programs (Section 7.2). It also defines commands
for scaling and rotating text and pictures. The color package defines commands
for producing colored text (Section 7.3).

Other New Features

You can now define a command or environment that has an optional argument.
The \ensuremath command is useful for defining a command that can appear
in or out of math mode. See Section 3.4.

Control of the placement of floats (figures and tables) has been enhanced
with a new float-location option ! that encourages I4rI]Ex to print the float as
soon as possible, and with the \suppressf loats command to prevent additional
floats on the current page.

When sending your document electronically, you can bundle other files along
with your input file using the f ilecontents environment (Section 4.7).

Analogs of the \settowidth command have been added for determining the
dimensions of text other than the width (Section 6.4.1). In the length arguments
of various box-making commands, it is now possible to refer to the dimensions
of the text argument using commands such as \width (Section C.13.3).

The ifthen package defines commands for writing simple programs (Sec-
tion C.8.5).

The \enlargethispage command has been added to help in correcting bad
page breaks (Section 6.2.2). The \samepage command still works, but is now of
little use.

A few commands and options have been added to the book document class
(Section 5.1).

APPENDIX E

Usin Plain rB m m d T~ Co s

232 Using Plain Commands

is implemented as a m "macro packagev-a series of predefined "Q@
commands. Plain 'QX is the standard version of m, consisting of "raw" 7$@
plus the plain macro package. You can use Plain 'QX commands to do some
things that you can't with standard ST)jX commands. However, before using
Plain w , check the I 4 m Companion to see if there is a package that does
what you want.

Most Plain T)$C commands can be used in BT)$C, but only with care. B w
is designed so its commands fit together as a single system. Many compromises
have been made to ensure that a command will work properly when used in any
reasonable way with other I4m commands. A H m command may not work
properly when used with Plain 7&X commands not described in this book.

There is no easy way to tell whether a Plain T)$C command will cause trou-
ble, except by trying it. A general rule is not to combine a HT)$ command
or environment with Plain T&X commands that might modify parameters it
uses. For example, don't use a Plain 'QX command such as \hangindent that
modifies 'JJijX's paragraph-making parameters inside one of J4"'s list-making
environments.

You should not modify any parameters that are used by H ' ' s \output
routine, except as specified in this book. In particular, you should forget about
most of Chapter 15 of The w b o o k . However, H ' does obey all of m ' s
conventions for the allocation of registers, so you can define your own counts,
boxes, etc., with ordinary T)jX commands.

Listed below are all the Plain TE;X commands whose definitions have been
eliminated or changed in a'. Not listed are ST)$ commands that approx-
imate the corresponding Plain 'I)$ versions, and some "internal" commands
whose names contain QD characters.

Tabbing Commands

The following commands are made obsolete by I4" ' s tabbing environment:

Output, Footnotes, and Figures

The following commands that require Plain 'I)$'s output routine are obsolete.
They have been replaced by I4'T)$Ys footnote-making commands and its figure
and table environments.

\pageno \nopagenumbers \makeheadline \topins
\headline \advancepageno \makefootline \topinsert
\f ootline \pagebody \dosupere j ect \midinsert
\normalbottom \plainoutput \footstrut \pageinsert
\folio \pagecontents \vf ootnote \endinsert

Font-Selecting Commands

The following Plain T)jX commands are not defined in B ' :

\f ivei \f ivebf \sevensy
\f iverm \seveni \teni
\f ivesy \sevenbf \oldstyle

Aligned Equations

The following Plain commands have been made obsolete by the eqnarray
and eqnarray* environments:

Miscellaneous

Plain T)jX's $$ does not work properly; it has been replaced by the WQX com-
mands \ [and \ I . Plain W ' s \beginsection command has been replaced by
B w ' s sectioning commands; its \end and \bye commands have been replaced
by \endCdocument). The Plain T)jX commands \centering and \line have
had their names usurped by Ii%w commands, and the syntax of the \input
command has been changed to conform to B%&$ conventions. Most functions
performed by Plain %&$'s \line command can be achieved by the center,
f lushlef t, and f lushright environments. The \magnification command of
Plain has no counterpart in l4'. M a d c a t i o n of the output can often
be done by the program that prints the dvi file.

[I] Theodore M. Bernstein. The Careful Writer: A Modern Guide to English
Usage. Atheneum, New York, 1965.

12) The Chicago Manual of Style. University of Chicago Press, fourteenth edi-
tion, 1993.

[3] Michel Goossens, Rank Mittelbach, and Alexander Samarin. The B '
Companion. Addison-Wesley, Reading, Massachusetts, 1994.

[4] Donald E. Knuth. The W b o o k . Addison- Wesley, Reading, Massachusetts,
1994.

151 N. E. Steenrod, P. R. Halmos, M. M. Schiffer, and J. A. Dieudonn6. How to
Write Mathematics. American Mathematical Society, London, 1983.

[6] William Strunk, Jr. and E. B. White. The Elements of Style. Macmillan,
New York, third edition, 1979.

[7] Mary-Claire van Leunen. A Handbook for Scholars. Oxford University Press,
New York, Oxford, revised edition, 1992.

[8] Words Into Type. Prentice-Hall, Englewood Cliffs, New Jersey, third edition,
1974.

����� ���	��

��� ����������� ���	��� � ��� ��� ����� ���
�

(space character), 13, 32
ignored in math mode, 36, 50
in LR mode, 36
printing, 64

\u (interword space), 14, 16, 32, 33, 51,
170

used with \thanks, 181
(hash mark), 12, 32, 166

in definition, 54, 56, 192, 193
misplaced, 141, 145
printing, 15, 171

\# (#), 15, 39, 171
$ (dollar sign), 12, 32, 166

delimiting formula, 18, 33, 39, 187
delimits scope of declaration, 168
missing, 142
not fragile, 22
printing, 15, 171
unmatched, 141

\$ ($), 15, 39, 171
$$ ('$X command), 233
% (percent sign), 12, 19, 32, 166

for ending line without adding space,
33, 109

in \index argument, 154
printing, 15, 171

\% (%), 15, 39, 171
& (ampersand), 12, 32, 166

in array or tabular environment, 45,
206

misplaced,' 141
printing, 15, 171
too many in row, 141

\& (&), 15, 39, 171
" (tilde), 12, 17, 32, 33, 166, 170

used with \ref and \pageref, 68
\- (- accent), 38

- (underscore), 12, 32, 166
for subscript, 18, 33, 40, 189
printing, 15, 171

\- (-1, 15, 39, 171
^ (circumflex), 12, 32, 166

for superscript, 18, 33, 40, 189
\^ (^ accent), 38
\ (backslash), 12, 16, 32, 166
\\ (new line), 25-26, 34, 169-170, 213

C after, 26
* after, 167
after last row of array or tabular ,

62, 206
bad use of, 147
between paragraphs, 139
in \address argument, 84
in array environment, 45, 169
in \author argument, 169
in center environment, 111, 169
in eqnarray environment, 47, 169
in f lushlef t environment, 169
in f lushr ight environment, 169
in p column of array or tabular , 205
in paragraph mode, 96, 213
in \shortstack argument, 169
in \signature argument, 84
in tabbing environment, 61, 169, 202
in tabular environment, 62, 169
in \ t i t l e argument, 181
in verse environment, 169, 184
is fragile, 33
missing, 141
optional argument of, 167
two in a row, 169

\ * (new line), see \\
< (left brace), 12, 32

enclosing argument, 33, 166

Index Order
u (space)

$
1
&
" (tilde)
- (underscore)
^ (circumflex)

\ (backslash)

1
. (period)
: (colon)
; (semicolon)
, (comma)
?
!

(left quote)
' (right quote)

(
1
C
1
- (dash)

/ (slash)
*
Q
+
- -
I (vertical line)
<
>
I' (double quote)

0 ... 1
A a B . . . z

238 INDEX

Index Order
u (space)

$
%
&

(tilde)

- (underscore)

(circumflex)

\ (backslash)

<
>
. (period)

: (colon)
; (semicolon)

, (comma)
?
!
' (left quote)

' (right quote)

(
1
C
1
- (dash)

/ (slash)
*
(Q

+
- -

I (vertical line)
<
>
" (double quote)
0 . . . 1
A a B ... z

in bib file, 158
in \index argument, 75
missing, 142
printing, 15, 171
scope delimited by, 27-28

\C ({), 15, 39, 47, 171
in bib file, 156
in \index argument, 212

1 (right brace), 12, 32
enclosing argument, 33, 166
in bib file, 158
in \index argument, 75
missing, 142
printing, 15, 171
scope delimited by, 27-28, 168
unmatched, 141

\1 (I), 15, 39, 47, 171
in bib file, 156
in \index argument, 212

. (period), 12, 32, 33
invisible delimiter, 47

. . . , see ellipsis
\ . (' accent), 38
: (colon), 12, 32
\ : (medium space), 51, 191
; (semicolon), 12, 32
\ ; (thick space), 51, 191
, (comma), 12, 32

not allowed in citation key, 69
\, (thin space), 14, 33, 51, 170, 191
? (question mark), 12, 32, 33

in error message, 29
?' (i) , 39
$+om, 32
! (exclamation point), 12, 32, 33

in error message, 29
in figure or table argument, 197
in \index argument, 152
in \resizebox argument, 129, 224

! ' (i), 39
\ ! (negative thin space), 51, 191
! h float specifier changed, 146
' (left quote), 12, 13, 32, 33, 170
\' (' accent or tabbing command), 38,

203
in parbox, 203

' (right quote), 12, 13, 32, 33, 170
in formula, 18, 189
period before, 15
specifying octal number, 226

\ ' (' accent or tabbing command), 38,
203

in parbox, 203
((left parenthesis), 12, 32

delimiter, 47
in terminal output, 134

\ ((begin formula), 18, 33, 39, 187
in i f then package expression, 196
in math mode error, 136
is fragile, 22, 33
(right parenthesis), 12, 32
delimiter, 47
in terminal output, 134
period before, 15

\) (end formula), 18, 33, 187
delimits scope of declaration, 168
in i f then package expression, 196
is fragile, 22, 33
not in math mode error, 136

C (left bracket), 12, 32, 33, 166
ambiguous, 25
delimiter, 47
printed on terminal, 135

\ C (begin displayed formula), 26, 34, 39,
188

in math mode error, 136
is fragile, 33
(right bracket), 12, 32, 33, 166
ambiguous, 25
delimiter, 47
delimiting optional argument, 168
in \item argument, 167
printed on terminal, 135

\I (end displayed formula), 26, 34, 39,
188

delimits scope of declaration, 168
is fragile, 33
not in math mode error, 136

- (dash or minus), 12, 14, 32, 33, 170
in overfull \hbox message, 93
space around, 48
unary, 48

-- (number-range dash), 14, 33, 170

INDEX 239

--- (punctuation dash), 14, 33, 170
\- (hyphenation or tabbing command),

93, 202, 213
error in, 140
in parbox, 203
in tabbing environment, 203
instead of \hyphenation, 143
needed in typewriter style, 226

/ (slash), 12, 32
delimiter, 47
quotient symbol, 40, 51

* (asterisk), 12, 32, 167
acts like optional argument, 26
after command name, 26
argument to \nocite, 70
in array or tabular argument, 205
written on terminal, 30

*-expression, 205
*-form

of command, 26, 33, 167
of environment, 167
of sectioning command, 174

O (at sign), 12, 32
command name with, 91, 166
in \index argument, 153
regarded as letter in s t y file, 91

\@, 14, 33, 170
@-expression, 205

error in, 145
fragile command in, 168
missing, 138

\@array, 145
\@chapter, 92
\Qmakechapterhead, 92
\@schapter, 92
Ostring, 159
+ (plus), 12, 32

space around, 48
unary, 48

\+ (tabbing command), 202
error in, 140
in Plain 'I)$, 232

= (equals), 12, 32
in bib file, 156
in i f then package expression, 195
in \lengthtest expression, 196

\= (- accent or tabbing command), 38,
61, 201, 202

in parbox, 203
too many, 139

I (vertical line), 12, 32
delimiter, 47
in array or tabular argument, 62,205

I I in array or tabular argument, 207
< (less than), 12, 32

in i f then package expression, 195
in \lengthtest expression, 196

\< (tabbing command), 202
error in, 140

> (greater than), 12, 32
in if then package expression, 195
in \lengthtest expression, 196

\> (tabbing command), 61, 201, 202
error in, 140

" (double quote), 12
in bib file, 156
in index entry, 154
specifying hexadecimal number, 226

\" (" accent), 38

0 (zero), 12
incorrect use as length, 99, 141

1 (one), 12
lOpt document-class option, 177
l l p t document-class option, 19, 115, 177
12pt document-class option, 19, 115, 177
2.09, 2
2e, 2

\ ac (' accent in tabbing environment),
203

\a' (' accent in tabbing environment),
203

\a= (- accent in tabbing environment),
203

A4 paper size, 177
a4paper document-class option, 177
A5 paper size, 177
aspaper document-class option, 177
\AA (A), 39
\aa (A), 39
abbreviation, 14

in bib file, 158-159

Index Order
u (space)

$
%
&
" (tilde)
- (underscore)

(circumflex)
\ (backslash)
C
3
. (period)
: (colon)
; (semicolon)
, (comma)
?
!

(left quote)
' (right quote)
(
1
C
1
- (dash)
/ (slash)
*
Q
+
- -
1 (vertical line)
<
>
" (double quote)
0 ... 1
A a B ... z

240 INDEX

abbrv bibliography style, 70
\abovedisplayshortskip, 189
\abovedisplayskip, 188
abstract, 90, 181-183

not in book document class, 183
on separate page, 88, 177

abstract environment, 90, 183
effect of t i t lepage option, 88

accent, 38
dotless i and j for, 38, 50, 190
in bib file, 158
in tabbing environment, 203
math mode, 49-50, 190
not available in typewriter style, 38
wide math, 49

acknowledgment of support, 181
\acute ('math accent), 50
\addcontentsline, 175

argument too long, 143
moving argument of, 168

address field (in bib file), 162
\address, 84
\addtime, 83
\addtocontents, 67, 176

argument too long, 143
moving argument of, 168

\addtocounter, 98, 194
error in, 138
\protect not used in argument of, 168
scope of, 98, 168

\addtolength, 101, 216
\addvspace, 217
\advancepageno ('QjX command), 232
\AE (B) , 39
\ae (z), 39
\aleph (N), 43
aligning

formulas on left, 88, 177
in columns, 60-63, 201-207

alignment tab error, 141
a l l t t environment, 187
a l l t t package, 178, 187
\Alph, 98, 195
\alph, 98, 195
alpha bibliography style, 70
\alpha (a), 41
alphabetic page numbers, 180

\amalg (LI), 42
ambiguous C or I , 25
American Mathematical Society, 52
ampersand, see &
amstex package, 52, 178
and separating names in bib file field,

158
\and, 21, 34, 181

in if then package expression, 196
and others, 158
\angle (L) , 43
annote field (in bib file), 162
apostrophe, 14, 170
appendix, 22, 175
\appendix, 22, 175
\approx (E), 43
arabic page numbers, 89, 180
\arabic, 98, 195
\arccos (arccos), 44
\arcsin (arcsin), 44
\arctan (arctan), 44
\arg (arg), 44
argument (of command), 16, 33, 166-167

braces enclosing, 33, 55, 166
coordinate pair as, 119
mandatory, 166
missing, 142

in thebibliography environment,
138

moving, see moving argument
of picture command, 119
omitted, 141
optional, see optional argument
positioning, 205, 217-218, 221-222
processed multiple times, 110
scope of declaration in, 27, 168
\verb in, 140

array, 45-46
array environment, 45-46, 204-207

\\ in, 45, 169
box made by, 103
error in, 137, 138, 141, 145
extra space around, 205
illegal character in argument, 137
interrow space in, 169
large, 143
making symbol with, 42

INDEX 241

scope of declaration in, 45
strut in, 169
versus tabular , 46, 60, 62

\arraycolsep, 207
\arrayrulewidth, 207
\arraystretch, 207
arrow

accent, see \vec
in formula, 53
in margin, 59
in picture, 123, 222
symbols, 43
zero-length, 123

arrowhead, 123
a r t i c l e bibliography entry type, 161
a r t i c l e document class, 19, 176

appendix in, 175
\chapter not defined in, 21, 174
default page style, 89
thebibliography environment in, 209
used in examples, 21

ASCII file, 144
assumption, 56
\as t (*), 42
\asymp (x), 43
at sign, see (D

author, 20
author field (in b ib file), 162
author's address in title, 181
\author, 20, 34, 181

\\ in argument, 169
missing, 146

authors, multiple, 21
aux file, 208

entry generated by \ label , 209
entry written by \ c i t e and \nocite,

210
error when reading, 135, 138

auxiliary file, error reading, 135, 228
axiom, 56

b (bottom) .
float specifier, 197
oval-part argument, 124, 223
positioning argument, 46, 105, 121,

218, 222
\b (- accent), 38

B5 paper size, 177
b5paper document-class option, 177
babel package, 38, 94, 178
back matter (of a book), 80
\backmatt e r , 80
backslash, 12, 16, 32, 166
\backslash (\), 43, 47
backspace, 51, 101
bar over a symbol, 49
\bar (-math accent), 50
\baselineskip, 100, 172
\basel inestretch, 172
\batchmode, 30
bbl file, 71, 156, 208

read by \bibliography, 209
\begin, 23, 167

delimits scope of declaration, 27-28
is fragile, 22, 33
of nonexistent environment, 137
unmatched, 136

\beginCdocument), 19, 170
aux file read by, 208
error while processing, 135
extra, 136
missing, 138

\beginsection (w command), 233
\belowdisplayshortskip, 189
\belowdisplayskip, 189
\beta (P) , 41
Bezier curve, 125-126, 221
\bfseries , 37, 226
b ib file, 70, 155-164

abbreviations in, 158-159
entry, 156
keeping data in, 161
specified by \bibliography, 156, 209

\bibindent, 178
\bibitem, 71, 210

moving argument of, 72, 168
bibliographic database, see bib file
bibliography, 69-72, 209-210

open format, 71, 177
produced by thebibliography

environment, 209
style, 70-71

\bibliography, 70, 209
bbl file read by, 208

242 INDEX

specifies bib files, 156
\bibliographystyle, 70
BIBTS, 69-71, 155-164

bbl file written by, 208
producing bibliography with, 209

big delimiter, 46
\bigcap (n), 44
\bigcirc (O), 42
\bigcup (U), 44
\bigodot (a), 44
\bigoplus ($), 44
\bigotimes (@), 44
\bigskip, 216
\bigskipamount, 216
\bigsqcup (U), 44
\bigtriangledown (v), 42
\bigtriangleup (A), 42
\biguplus ((tj), 44
\bigvee (V), 44
\bigwedge (A), 44
black, 132, 225
blank line, 13, 33

above or below environment, 23
before displayed formula, 26
in formula, 142, 171
in input, 166
in sectioning command, 171
\par equivalent to, 171
paragraph-ending, 95, 166, 171

blank page, 97
made by \cleardoublepage, 215
with t i t lepage environment, 180

blob of ink, rectangular, 106
blue, 132, 225
\bmod, 44, 190
body, page, 89, 179

height of, 100
boldface type series, 37, 226

in math mode, 51, 191
\boldmath, 51, 191

font warning caused by, 52, 145
book, 80
book bibliography entry type, 161
book document class, 80, 176

appendix in, 175
no abstract in, 183
thebibliography environment in, 209

booklet bibliography entry type, 161
bookti t le field (in bib file), 162
boolean register, 196
\boolean, 196
\bot (L), 43
bottom of line, 107
\bottomfraction, 200
bottomnumber counter, 199
\bowtie (w), 43
box, 103-108, 217

dashed, 121, 222
declaration local to, 103
dimensions of, 103
displaying, 104
framed, 104, 217

in picture environment, 222
in formula, 103
LR, 103-104, 107
rule, 103, 106
saving, 107, 127, 218
typeset in paragraph mode, 104
with specified width, 104
zero-width, 121

\Box (U), 43
boxes, 217-219

formatting with, 108-11 1
brace, curly, 12

enclosing command argument, 33, 55,
166

error caused by unbalanced, 136
horizontal, 49
in b ib file, 158
in \index argument, 75, 153
missing, 142
removed from first argument of

\newcommand, 92
bracket, square, 12

enclosing optional argument, 20, 166
mistaken for optional argument, 142
printed on terminal, 135

break, line, 93-96, 213-214
interword space without, 17, 170
permitting, 95
preventing, 17, 95, 171
with \\, 26

break, page, 96-97, 214-215
bad, 147

INDEX 243

in tabbing environment, 60
\breve ("math accent), 50
Brinch Hansen, Per, 157
buffer size, 143
bug, B ' , 139
\bullet (a), 42
Bush, George, 24
\bye (w command), 233

c (center) positioning argument, 45, 205
\c (. accent), 38
calligraphic letter, 42
calligraphic type style, 51, 191
\cap (n), 42
capacity exceeded, 142-144
caps, small, 37, 226
caption

cross-reference to, 68
figure or table, 58
multiple, 59

\caption, 58, 198
argument too long, 143
fragile command in, 135
in parbox, 199
\label in argument, 209
list of figures or tables entry, 175, 208
moving argument of, 58, 168
precedes \label, 68

case of letters
in command name, 16,,32
in key, 68, 69

catching errors with text editor, 32
\cc, 85
\cdot (a) , 42
\cdots (- -.), 40, 189
center environment, 11 1

\\ in, 111, 169
as displayed paragraph, 183
as list, 112
displaying a box with, 104
in title page, 90
tabular environment in, 63

center line of formula, 46
centered

array column, 45
ellipsis, 40, 189

centering a figure or table, 112

\centering, 112
in p column, 205

command, 233
centimeter (cm), 99, 215
chapter, in separate file, 74
chapter counter, 97
chapter field (in bib file), 163
\chapter, 21, 174

changes current page style, 89
in front and back matter of a book, 80
not in a r t i c l e document class, 174
uses \clearpage, 97

character
code, 116
control, 144
end of line, 12
illegal, in array or tabular, 137
input, 32
invalid, 144
invisible, 12, 32
nonprinting, 144
punctuation, 12, 32

in key, 68
space, see space character
special, see special character

\check (" math accent), 50
chgsam. tex file, 9
\chi (x), 41
\c i rc (o), 42
circle, 124, 222
\circle, 124, 222
\circle*, 124, 222
circular reference, 263
citation, 69-72, 209-210

key, 69, 71, 156
undefined, 145, 147

\ci te, 69, 210
wrong number printed by, 146

class, document, 19-20
nonexistent, 137

classes. dtx file, 92
\cleardoublepage, 97, 215

figures and tables output by, 198
\clearpage, 97, 215

checking capacity exceeded error, 143
figures and tables output by, 198
used by \chapter, 97

244 INDEX

used by \include, 97
used by \onecolumn, 181
used by \twocolumn, 180

\cleartabs (T'X command), 232
\cl ine, 62, 206
clipping, 224
clock document-class option, 83
\closing, 85
c l s (class) file, missing, 137
\clubsuit (41, 43
cm (centimeter), 99, 215
cmyk color model, 132, 225
code, character, 116
colon, see :
color, 131-132

background, 132
model, 132, 224

undefined, 140
undefined, 140
value, 224

color package, 131-132, 178, 224-225
\color, 131, 225
\colorbox, 132, 225
column

aligning text in, 60-63, 201-207
of text in picture, 123

\columnsep, 178
\columnseprule, 178
comma (,), 12, 32

not allowed in citation key, 69
command, 32-33, 166-170

*-form of, 26, 33, 167
adding to table of contents, etc., 176
argument, see argument
definition, 7, 53-55, 192

in, 54
in preamble, 55
space character in, 54
with optional argument, 192
with \typein, 212

environment made from, 108
form, 166
fragile, 22, 25, 26, 33, 167-168

in @-expression, 168
invisible, 169
length, 99

defining, 101

not preceded by \protect, 168
name, 16, 32, 166-167

* after, 26
already used error, 137
beginning with \end, 55
case of letters in, 16, 32
correcting misspelled, 144
ending with space or end of line, 16
misspelled, 31
one-character, 166
with (0, 91, 166

names, too many, 143, 144
nested too deeply, 144
nesting, 16
parameter, 54, 192
picture, argument of, 119
Plain 'I)$, 231-233
preloaded, 91 '
printing on terminal, 212
redefining, 55
robust, 22, 167
sectioning, see sectioning command
spacing, 170
text-generating, 15
with two optional arguments, 166

commas, ellipsis between, 40
comment, 19, 166

printed on terminal, 76
common errors, 31
compatibility mode, 228
compressed bibliography style, 71
Computer Modern font, 115
computer program, formatting, 60
concept index, 150
concepts versus notation, 31
\cong (%), 43
conjecture, 56
contents, table of, 66-67, 175-176

adding commands to, 67
control character, 144
control sequence error, 142, 144
coordinate, 118, 219

geometry, 118
grid, 126-127
local, 129
pair, 118

as argument, 119

\coprod (U), 44
copy editing, double-spacing for, 172
\copyright (@), 39, 173
corner, rounded, 124-125
\cos (cos), 44
\cosh (cosh), 44
\cot (cot), 44
\coth (coth), 44
counter, 97-99

command, error in, 144
created by \neaheorem, 97
creating a new, 99
for theorem-like environment, 97, 193
list, 114
reset by \stepcounter and

\ref stepcounter, 194
too large, 137
value of, 98, 194

cross-reference, 66-69, 209
in bib file, 159-160
in index, 152
information, printing, 208
labels, too many, 143, 144
to page number, 68
use of aux file for, 208

crossref field (in bib file), 163
\csc (csc), 44
\cup (u), 42
curly brace, see brace, curly
curve, Bezier, 125-126, 2?1
customizing style, 91-93
cyan, 132, 225

\d (accent), 38
\dag (t), 39, 173
\dagger (t), 42
dash, 14, 33, 170

intraword, 14, 170
number-range, 14
punctuation, 14

\dashbox, 121, 221
dashed box, 121, 222
\dashv (-I), 43
data, keeping in bib file, 161
database, bibliographic, see bib file
date, 20

generating with \today, 15, 171

in title, 20
in title page, 90
on letter, 86

\date, 20, 34, 181
\\ in, 169

\dblfloatpagefraction, 200
\dblfloatsep, 200
\dbltextf loatsep, 200
\dbltopf raction, 200
dbltopnumber counter, 200
\ddag ($), 39, 173
\ddagger ($), 42
\ddot (" math accent), 50
\ddots (".), 41, 189
declaration, 27-28, 33, 168

color, 131, 225
global, 168
local to a box, 103
picture, 223
scope of, see scope
type-size changing, 115

declarations, file of, 73
\def (m command), 92, 93
default

argument, 166
page style, 179
type size, 115

\def inecolor, 132, 224
defined, multiply, 146
definition

command, see command
environment, see environment
recursive, 54
use doesn't match, 145

\deg (deg), 44
delimiter, 46-47, 190

bad, 136
unmatched math mode, 141

\Delta (A), 41
\delta (S) , 41
depth

changing apparent, 107
of a box, 103

\depth, 219
description environment, 24-25, 34,

184
as list, 112

246 INDEX

item label overprinting text in, 184
used for glossary, 76

design
logical, 7
typographic, 91
visual, 7, 88

designer, typographic, 5
\det (det), 44

subscript of, 190
determinant, 45
device driver, 118
device-independent file, see dvi file
diacritical mark, see accent
diagonal ellipsis, 40, 189
\Diamond (O), 43
\diamond (o), 42
\diamondsuit (o), 43
dictionary, exception, 143
differential, 50
digit, 12, 32
\dim (dim), 44
dimen (w term), 100
dimensional unit, 215
disk (filled circle), 124, 222
diskette, sending document on, 77
display math style, 52, 188, 191
displayed

formula, 26, 34, 39
blank line before, 26
math style for, 52, 191
multiline, 47-49
numbered, 39
space above and below, 107, 183,

188, 189, 218
paragraph, 183-187
quotation, 23, 34
text, 23-26

displaying a box, 104
displaymath environment, 26, 34, 39,

188
anomalous vertical space after, 183
displaying a box with, 104
size of symbols in, 42

\displaystyle, 52, 191
distance, see length
\div (+), 42

document
class, 19-20, 176-178

nonexistent, 137
multilanguage, 38
non-English, 38
structure of, 170
style (@W2.09), 228 .

document environment, 34
document-class option, 19, 88, 176

unused, 147
document-style option (I47l$jX2.09), 228
\documentclass, 19,34, 170, 176-178

in \input file, 73
missing, 144
unused option, 147

\document s ty le (lH$$2.09 command),
228

\dosupereject ('I@ command), 232
\dot (' math accent), 50
\doteq (=), 43
\dotf ill, 102
dotless i and j, 38, 50, 190
dots, space-filling, 102
double quote, 13, 170
double spacing, 172
double sub- or superscript error, 140, 141
double-column, see two-column
\doublerulesep, 207
\Downarrow (J.), 43, 47
\downarrow (J), 43, 47
draft document-class option, 93, 177
d ra f t package option, 131
drawing curves, 125-126
drawing pictures, 118-129
driver, device, 118
dtx file, 92
dvi (device-independent) file, 6, 208

page written to, 135

e-mail
sending document by, 77
sending file by, 32

editing, copy, double-spacing for, 172
edit ion field (in bib file), 163
edi tor field (in bib file), 163
l l p t document-class option, 19
eleven-point type, 19, 115

INDEX 247

\ e l l (e) , 43
ellipsis, 15, 33, 40-41, 189
em (unit of length), 99, 215
\em, 27
\emph (emphasis), 16, 33, 171

in slides, 81
emphasis, 16, 33, 171
empty \mbox, 97
empty page style, 89, 179

for title page, 90
\emptyset (49, 43
\ e n d , 85
end of line

character, 12
ending command name with, 16
space character at, 19

end of paragraph, 13, 166, 171
end of sentence, 13
end of word, 13
\end, 23, 167

delimits scope of declaration, 27-28,
168

is fragile, 22, 33
T@ command, 233
unmatched, 136

\endIdocument), 19, 170
error while processing, 135, 143
figures and tables output by, 198
lof file written by, 208,
l o t file written by, 208
missing, 30
toc file written by, 209

\end(verbatim), no space allowed in, 64
\end. . . , defining, 55
\endinsert (T@ command), 232
\enlargethispage, 214
\enlargethispage*, 96, 214
\ensuremath, 53, 187
enter key, 12
entry

bib file, 156
field, bibliography, 156, 160-164
index, 75
type, bibliography, 156, 160-162

enumerate environment, 24-25, 34, 184
as list, 112

counters, 97
suppressing advance of, 185

cross-reference to item number, 68
enumerated list, long, 137
enumi . . . enumiv counters, 97, 184
environment, 23, 33, 167

*-form of, 167
\begin of nonexistent, 137
blank line above or below, 23
defining in terms of a command, 108
definition, 55-56, 192-193

with optional argument, 193
invisible, 169
list-making, 24-25, 112-1 15
made from declaration, 27, 33
math mode, 187-189
nested too deeply, 144
paragraph-making, 183-187
parameter, 56, 193
redefining, 56
theorem-like, 56-57, 193-194

as displayed paragraph, 183
cross-reference to, 68

undefined, 137
\epsilon (E) , 41
\eqalign ('QX command), 233
\eqalignno (T@ command), 233
eqnarray environment, 47, 188

\\ in, 169
anomalous vertical space after, 184
cross-reference to equation number, 68
formula numbers in, 88
in leqno document-class option, 177
space between rows in, 188
too many columns, 139

eqnarray* environment, 48, 188
\equal, 195
equation counter, 97, 188
equation environment, 26, 34, 39, 188

anomalous vertical space after, 184
cross-reference to number, 68
formula numbers in, 88
in leqno document-class option, 177

\equiv (=), 43
error, 133-147

catching with text editor, 32
common, 31

248 INDEX

finding, 134-136
in crossreferencing file, 66
indicator, 29, 134
I4QX versus 29
locator, 29, 134, 135
message, 29-30

I4'l&X, 136-140
MakeIndex, 154
m, 140-145

outputting, 135
QX versus BQX, 29
typographic, 91

errsam. tex file, 28
et al., 158
\e ta (q), 41
\evensidemargin, 181, 182
ex (unit of length), 99, 215
exception dictionary, 143
exclamation point, see !
executive paper size, 177
executivepaper document-class option,

177
\exis ts (3, 43
\exp (exp), 44
extension, file, 12
\extracolsep, 205

face example, 108-1 10
\face, 108-110
family of type, 36, see type
fat, making things, 129
\fbox, 104, 125, 217

width of line, 219
\fboxrule, 219

not used in picture commands, 222
used by \f colorbox, 225

\fboxsep, 219
used by \colorbox, 225

\f colorbox, 132, 225
field, bibliography entry, 156, 160-164
figure, 58-59, 197-200

centering, 112
in two-column format, 197
placement of, see float
too tall, 145
vertical space in, 58

f igure counter, 97

f igure environment, 58-59, 197
in parbox, 138
misplaced, 138
parbox made by, 104
space around, 169
too many, 139

figure* environment, 197 '

figures, list of, 67, 175-176
generated from lof file, 208

file, 207-209
ASCII, 144
auxiliary, error when reading, 135, 228
bibliographic database, see bib file
chapter in separate, 74
cross-referencing, 66
device-independent , see dvi file
extension, 12
\include'd, 73
input, see input
inserting, 72
name, 12
needs format error, 139
nonexistent, 137, 141
not found error, 137
of declarations, 73
prepended, 170
root, 72
sample input, 2, 8
sending by e-mail, 32
text, 12, 144

f ilecontents environment, 77, 170, 211
f ilecontents* environment, 211
files, listing ones used, 77
files, multiple input, 72-74
\ f i l l , 100, 102, 215

in tabular* environment, 205
f i n a l document-class option, 177
f i n a l package option, 131
finding an error, 134-136
first name of file, 12
first page, right head for, 180
\f ivebf (Q X command), 233
\f ive i (l'&$ command), 233
\f iverm ('&X command), 233
\f ivesy (w command), 233
\ f l a t (b), 43

INDEX 249

f leqn document-class option, 88, 177,
188, 189

indentation in, 178, 188
float, 58-59, 199

page, 199
made by \clearpage, 97

placement of, 59, 197
specifier, 197
too tall, 145

\f loatpagef rac t ion, 200
floats, too many, 139
\ f loat sep, 200
floppy disk, see diskette
flush left

array column, 45
text, 111

flush right
array column, 45
text, 111
in tabbing environment, 203

\f lushbottom, 88
bad page break with, 96
ignored by \newpage, 97
\parskip value for, 172
space between paragraphs, 100

f lushlef t environment, 11 1
\ \ in, 169
as displayed paragraph, 183
as list, 112

f lushright environment, 11 1
\\ in, 169
as displayed paragrQh, 183
as list, 112

\fnsymbal, 195
\ fo l io (m command), 232
font, 115-116, 225-226

Computer Modern, 115
for slides, 81
length dependent on, 99
selecting in Plain !l&X, 233
shape not available, 145, 146
special, 116
warning caused by \boldmath, 52, 145

foot, page, 89, 179
\f ootline (m command), 232
footnote, 17, 172-173

colors in, when split across pages, 132

example of difficult, 173
in minipage environment, 105, 218
in parbox, 105
line above, 173
mark, 172
symbols, 195

too many, 137
type size in, 116

footnote counter, 97
for minipage environment, 97

\footnote, 17, 33, 172
in minipage environment, 105, 218
is fragile, 22, 33

\f ootnotemark, 172
for footnote in parbox, 105

\f ootnoterule, 173
\f ootnotesep, 173
\f ootnotesize, 115, 226
\f ootnotetext, 173

for footnote in parbox, 105
in minipage environment, 218

\f ootskip, 182
\f ootstrut (w command), 232
\ fo ra l l (V), 43
foreign language, see non-English

language
forests, preserving, 6
form, command, 166
format

open bibliography, 177
this file needs, 139
two-column, 20, 59, 88, 180, 197

formatting the input file, 31
formatting, visual, 64

for slides, 81
formula, math, 18, 33, 39-53, 187-191

aligning on left, 88, 177
arrow in, 53
blank line not allowed in, 142, 171
bold subformula of, 52
box in, 103
center line of, 46
changing type size in, 116
complicated, 52
delimiter in, 190
displayed, see displayed formula

250 INDEX

formatting with p ic ture environment,
52

lines in, 53
logical structure of, 50
\mbox in, 38, 39
multiline, 47-49
number on left, 177
numbered, 39
overprinting of number, 188
space character in, 18, 50
space in, 50-51
splitting across lines, 188
using graphics package for, 53
vertical space in, 106
visual formatting of, 49, 52

\frac, 40, 189
fraction, 40, 189
fragile command, 22, 25, 26, 33, 167-168

in @-expression, 168
in moving argument, 135
protecting, 22

\frame, 125, 223
\framebox, 104, 125, 217

in p ic ture environment, 120, 221
use of \width, \height, \depth, and

\ totalheight in, 219
width of line, 219

framed box, 104, 217
in p ic ture environment, 222

framing, 125
\f renchspacing, 171
Fromu, line beginning with, 32
jFrom, 32
front matter (of a book), 80
\f rontmatter, 80
\f rovn (n), 43
function, log-like, 44-45, 190
\fussy, 95, 214

galley, 135
\Gamma (I?), 41
\gamma (71, 41
\gcd (gcd), 44

subscript of, 190
geometric transformation, 129
geometry, coordinate, 118
\geq (3, 43

\gg (B), 43
Gilkerson, Ellen, iii, xv, 130
g lo (glossary) file, 75, 208

suppressed by \nof i l e s , 212
written by \makeglossary, 212

global declaration, 168
global option, unused, 147
glossary, 74-76, 21 1-212
\glossary, 75, 212

g lo file entry written by, 208
space around, 169
too many on page, 143

\glossaryentry, 75, 208, 212
gnomonly, 93
gnu, 37
Goossens, Michel, xv, 2
Gordon, Peter, xvi
graphic, determining size of, 137
graphics package, 129-131, 178,

223-224
making figures with, 58
making formulas with, 53

graphics, unknown extension, 140
graphpap package, 126, 178, 221
\graphpaper, 126-127, 221
\grave (' math accent), 50
gray color model, 132, 225
Greek letter, 41
green, 132, 225
grid, coordinate, 126-127

h float specifier, 197
changed, 146

\H (" accent), 38
half oval, 124
hash size, 143
\hat (^ math accent), 50
\hbar (h) , 43
\hbox, overfull, 30, 93, 147

marked with d r a f t option, 93
\hbox, underfull, 95, 147
head, of arrow, 123
head, page, 89, 179

in two-sided printing, 89
set by sectioning command, 22, 90,

174
\headheight, 182

INDEX 251

heading, see head
headings page style, 89, 179, 180
\headline (w command), 232
\headsep, 182
\heartsuit (Q), 43
height

changing apparent, 107
of a box, 103
of page body, 100, 214

\height, 219
Helvetica, see sans serif type family
hexadecimal character code, 116
\hf i l l , 102, 217

in marginal note, 59
positioning item label with, 114
used with \vline, 206

\hline, 62, 206
\horn (horn), 44
\hooklef tarrow (w) , 43
\hookrightarrow (-), 43
horizontal

brace, 49
line

drawn with \rule, 106
in array or tabular environment,

62, 206
space-filling, 102

mode, 36
positioning of text, 121
space, 101 i

around array or tabular
environment, 205

in formula, 51, 191
howpublished field (in b ib file), 163
\hrulef i l l , 102
\hspace, 101, 216

rubber length in, 102
\hspace*, 102, 216
\Huge, 115, 226
\huge, 115, 226
hyphen, 14.

inserted by T)i$, 17
hyphenation, 93

correcting error in, 94
of non-English words, 94
permitting with \-, 213
suppressed in typewriter style, 226

\hyphenation, 94, 213
\- instead of, 143
error in, 142
exceeding capacity with, 143
scope of, 168

i, dotless (for accents), 38, 43, 50, 190
\i (I), 38
idx (index) file, 74, 150, 208

suppressed by \nof i l e s , 212
written by \makeindex, 212

i f then package, 178, 195-196
\ i f thenelse, 195
ignored bibliography field, 161
ignoring input, 19
illegal

character in array argument, 137
parameter number, 141
unit of measure, 141

\ I m (S), 43
\imath (z), 43, 50, 190
i n (inch), 99, 215
\ in (E), 43
in-text formula, 39
inbook bibliography entry type, 161
inch (in), 99, 215
\include, 73, 211

cannot be nested, 137
numbering with, 74
of nonexistent file, 137
sending files read by, 77
uses \clearpage, 97

\include'd file, 73
\newcounter in, 138

\includegraphics, 130, 224
cannot determine size of error, 137

\includegraphics*, 224
\includeonly, 73, 211

entered from terminal, 76
entering arguments with \typein, 74
misplaced, 136

incollection bibliography entry type,
161

ind file, 150, 208
read by \printindex, 211

\indent, 171
indentation, in f leqn option, 178

252 INDEX

indentation, paragraph, see paragraph
index, 30, 74-76, 15G154, 211-212
\index, 74, 212

curly brace in argument, 75
idx file entry written by, 208
in command argument, 153
space around, 169
special character in argument, 75
too many on page, 143

\indexentry, 75, 212
on idx file, 208

\indexspace, 75
indicator, error, 29, 134
\inf (inf), 44

subscript of, 190
infinite loop, 252
infinitely stretchable length, 100, 102,

215
information, moving, 65-77, 207-209
\inf t y (oo), 43
ink, rectangular blob of, 106
inproceedings bibliography entry type,

161
input

character, 32
file, 12

displaying logical structure, 53
formatting, 31
page of, 13

files, multiple, 72-74
finding error in, 134

from terminal, 76-77, 212-213
ignoring, 19
processing part of, 73-74
sample, 2, 8

\input, 72, 210
braces missing from argument, 141
differs from Plain version, 233
of nonexistent file, 137
sending files read by, 77

inserting a file, 72
i n s t i t u t i o n field (in b ib file), 163
\ i n t (J), 44, 51
integral sign, space around, 51
interaction, 76-77
intercolumn space, 178

in array or tabular environment, 205

interrow space
in array or tabular environment,

169, 207
in eqnarray environment, 188
in \shortstack, 124

interword space, 14, 170
before or after \hspace command, 101
in math mode, 51
produced by invisible command, 169
too much with \sloppy, 214
without line break, 17, 170

\intextsep, 200
intraword dash, 14, 170
invalid character error, 144
invisible

character, 12, 32
command, 169
delimiter, 47
environment, 169
term made with \mbox, 48
text, 82, 97

\ i o t a (L) , 41
\isodd, 196
italic type shape, 16, 37, 226

in math mode, 51, 191
used for emphasis, 171

\item, 24-25, 34, 184
C following, 25
in index, 21 1
in theindex environment, 75
in t r i v l i s t environment, 115
is fragile, 33
lonely, 137
missing, 138
optional argument of, 25, 167
outside list environment, 137
\ref value set by, 209

item, label, 24-25, 184
extra-wide, 114
positioning with \hf ill, 114

\itemindent, 113, 186
in t r i v l i s t environment, 115

itemize environment, 24-25, 34, 184
as list, 112
default labels of, 184

\itemsep, 113, 185
\itshape, 37, 226

INDEX 253

j, dotless (for accents), 38, 43, 50, 190
\ j (J), 38
\jmath (j) , 43, 50, 190
\Join (W), 43
\ j o t , 188
journal field (in b ib file), 163
Jr., 157
justifying lines, 95, 100

\kappa (n), 41
\ker (ker), 44
Kernighan, Brian, 7
key

citation, 69, 71, 156
cross-reference, 67
enter, 12
return, 12

key field (in b ib file), 162, 163
keyboard, see terminal
keys, listing, 69
\ k i l l , 61, 202
Knuth, Donald Ervin, xvi, 5, 115

1 (left)
oval-part argument, 124, 223
positioning argument, 45, 217, 221

in array or tabular argument, 205
of \makebox, 104, 121
of \shortstack, 124

1 (letter el), 12
\L (L), 39
\l (I), 39
label

item, 24-25, 184
extra-wide, 114
positioning with \hf i l l , 114

mailing, 86
multiply-defined, 146
produced by \ c i t e , 210
source, 69

\ label , 67, 209
in \caption argument, 209
in eqnarray envirmment, 188
in f igure or t ab l e environment, 68
missing, 146
preceded by \caption, 68
similar to \bibitem, 71

space around, 169
label i temi . . . labelitemiv counters,

184
labels may have changed warning, 146
labels, cross-reference, too many, 143,

144
\labelsep, 113, 186
\labelwidth, 113, 186

in t r i v l i s t environment, 115
l a b l s t . t ex file, 69, 208
\Lambda (A), 41
\lambda (A), 41
Lamport, Jason, 131
Lamport, Leslie, 131
landscape document-class option, 177
landscape printing, 177
\langle (0, 47
language, non-English, 38, 94
\LARGE, 115, 226
\Large, 115, 226
\ large, 115, 226
BmJ

bug, 139
distinguished from 'I'EX, 5
error message, 136-140
error versus l?i$ error, 29
logo, 5, 15, 33, 171
pronunciation of, 5
running on part of document, 31,

73-74
running unattended, 30
stopping, 30, 136
version, 2
warning message, 135, 145-147

I4mJ Companion, The, 2
\LaTeX, 15, 33, 171
Bl?i$2.09 versus Bl?i$2~, 2, 228-229
I4mJ 2 ~ , xv, 2, 118, 132
latexsym package, 42, 178
law (mathematical), 56
\ l c e i l (r), 47
\ ldots , 15, 33
\ ldots (. . .), 40, 189
\ leadst0 (w), 43
leaving math mode, 36
left margin, prevailing, 201
left-margin-tab, 201

254 INDEX

\ l e f t , 47, 190
left, flush, see flush
left-hand page, 179
left-to-right mode, see LR mode
\Lef tarrow (+), 43
\leftarrow (c), 43
\lefteqn, 48, 188
\lefteye, 109
\leftharpoondown (-), 43
\lef tharpoonup (-), 43
\lef tmargin, 113, 185

in t r i v l i s t environment, 115
\lef tmargini . . . \lef tmarginvi, 185
\Leftrightarrow (H) , 43
\leftrightarrow (tt), 43
legal paper size, 177
legalpaper document-class option, 177
lemma, 56
length, 99-101, 215-216

command, 99
defining, 101
not preceded by \protect, 168

font-dependent , 99
infinitely stretchable, 100, 215
natural, 100
of line in picture, 122
parameter, 100
rigid, 100
rubber, 100

in \hspace or \vspace, 102
in \lengthtest expression, 196
infinitely stretchable, 102

unit (in picture environment), 118
unit of, 215
zero, 99

\lengthtest, 196
\leq (I), 43
\leqalignno (l$jX command), 233
leqno document-class option, 88, 177,

188
letter, 32

case of, 68, 69
for mailing, 84-86
Greek, 41
lowercase, 12
not a, 142
script, 42

uppercase, 12
l e t t e r document class, 84-86, 176

\parskip in, 100
letter environment

moving argument of, 168
l e t t e r environment, 85
letter paper size, 177
let terpaper document-class option, 177
level number of sectional unit, 176
\If loor (L), 47

(W, 44
\ ~ h d (a), 42
\ l i m (lim), 44

subscript of, 190
\liminf (lim inf), 44

subscript of, 190
\limsup (lim sup), 44

subscript of, 190
line

blank, see blank line
bottom of, 107
break, see break, line
horizontal, see horizontal
in formula, 53
in picture, 122-123

thickness of, 118
justifying, 95, 100
none to end error, 139
slanted, minimum size of, 123
space at beginning or end of, 102
vertical, see vertical
width, see width

\ l ine, 122, 222
error in, 136
'&X command, 233

\linebreak, 95, 213
optional argument of, 167
space around, 169
warning caused by, 147

lines, distance between, 100
\linethickness, 223
\linewidth, 171
lining up, see aligning
list, 24-25, 34

counter, defining, 114
long enumerated, 137
margins of nested, 114

INDEX 255

of figures or tables, 67, 175-176, 208
adding an entry, 175
adding commands to, 67, 176
error in, 135

source, 70
list environment, 112-114, 185

style parameters for, 185
list-making environment, 24-25, 112-1 15

defining, 114
in parbox, 105, 218
nested too deeply, 139
primitive, 112

\ l i s t f i l e s , 77, 211
listing keys, 69
\ l i s toff igures, 67, 175-176

error when processing, 143
lof file read by, 208

\ l i s tof tables , 67, 175-176
error when processing, 143
l o t file read by, 208

\listparindent, 113, 185
\ll (a), 43
\In (In), 44
local coordinates, 129
Local Guide, 2, 6, 8, 12, 20, 28, 30, 69,

71, 77, 86, 88, 91-93, 115, 116,
118, 124, 132, 136, 139, 140, 151,
156, 159, 163, 178

locator, error, 29, 134, 135
lof (list of figures) file, 67, 175, 208

editing, 67
error in, 135

log file, 28, 76, 208
\log (log), 44, 51
log-like function, 44-45, 190
logical design, 7
logical structure, 6, 88

displaying in input file, 53
of formula, 50
repeated, 53

logo, 5, 15, 33, 171
logo, 'QjX, 5, 15, 33, 171
lonely \item, 137
\Longlef tarrou (e), 43
\longlef tarrow (c), 43
\Longleftrightarrow (*), 43
\longlef trightarrow (-), 43

\longmapsto (H), 43
\Longrightarrow (a), 43
\longrightarrow (-), 43
l o t (list of tables) file, 67, 175, 208

editing, 67
error in, 135

low ellipsis, 40, 189
lowercase letter, 12
lowering text, 107
LR box, 103-104, 107
LR mode, 36, 39

in tabbing environment, 201
space character in, 36
tabular item processed in, 62

lrbox environment, 108, 218

macho T)ijX programmer, 92
macro parameter character error, 145
magenta, 132, 225
magnification of output, 233
\magnification (Tj$ command), 233
magnifying a picture, 118
Magritte, Renk, 131
mailing label, 86
main matter (of a book), 80
main memory size, 143
\mainmat t er, 80
\makebox, 104, 217

in picture environment, 120, 221
use of \width, \height, \depth, and

\totalheight in, 219
\rnakef ootl ine (QX command), 232
\makeglossary, 75, 212

glo file produced by, 208
\makeheadline (T)ijX command), 232
makeidx package, 150

defines \print index, 211
MakeIndex, 74, 150-154

ind file written by, 208
\makeindex, 74, 150, 212

idx file produced by, 208
misplaced, 136

\makelabel, 186
\makelabels, 86
\maketitle, 20, 34, 90, 181

effect of t i t lepage option, 88
not preceded by \author, 146

256 INDEX

not preceded by \ t i t l e , 138
mandatory argument, 166
manual bibliography entry type, 162
\mapsto (-), 43
margin

arrow in, 59
changing in tabbing environment, 202
determined by \textwidth and

\textheight, 100
of nested lists, 114
prevailing, 201, 203

marginal note, 59-60, 200-201
\hf ill in, 59
moved, 146
overprinting of, 201

marginpar moved warning, 59, 146
\marginpar, 59-60, 200

incorrectly placed, 146
space around, 169
too many on page, 139

\marginparpush, 201
\marginparsep, 182, 201
\marginparwidth, 182, 201
mark, footnote, 172
\markboth, 89, 90, 179

moving argument of, 90, 168
with myheadings page style, 179

\markright, 89, 90, 179
moving argument of, 90, 168
with myheadings page style, 179

mastersthesis bibliography entry type,
162

math
formula, see formula, math
mode, 36, 39

accent in, see accent
bad command in, 137, 145
blank line not allowed in, 142, 171
defining commands for use in, 53
environment, 187-189
leaving, 36
space character ignored in, 36, 50

style, 52, 191
display, 52, 188, 191
for sub- and superscripts, 52, 191
of array environment item, 191
text, 52, 187, 191

symbol, 41-45
variable-sized, 42, 52

math environment, 18, 39, 187
\mathbf, 51, 191
\mathcal, 42, 51, 191
mathematical, see math
\mathindent, 178, 188
\mathit, 51, 191
\mathrm, 51, 191
\mathsf, 51, 191
\mathtt, 51, 191
matrix, 45
\max (max), 44

subscript of, 190
\mbox, 17, 33, 104, 171, 217

bold subformula in, 52
empty, 97
for changing type size in formula, 116
how it works, 36, 103
in formula, 38, 39
invisible term made with, 48

\mdseries, 37, 226
medium space, 51, 191
medium type series, 37, 226
\medskip, 216
\medskipamount, 216
memory size, 143
message
BT)$ error, 136-140
IS= warning, 145-147

page number in, 135
MakeIndex error, 154
printing on terminal, 76
T)$ error, 140-145
Q j C warning, 30, 147

\mho (U), 43
\mid (I), 43
\midinsert (T@ command), 232
millimeter (mm), 99, 215
\min (min), 44

subscript of, 190
minipage environment, 104, 105, 218

footnote counter for, 97
footnote in, 172
in p column of array or tabular

environment, 205
nested, 106

INDEX 257

/

tabbing environment in, 106
versus \parbox, 105

minus sign, 14
mirror image, 130
misc bibliography entry type, 162
misplaced

It, 141, 145
&, 141
alignment tab, 141
figure environment, 138
\includeonly, 136
\makeindex, 136
\marginpar, 138
\nof i l e s , 136
table environment, 138
\usepackage, 136

missing
$ error, 142
\\, 141
C error, 142
1 error, 142
&expression, 138
argument, 138, 142
\beginCdocument 1 error, 138
brace, 142
control sequence error, 142
\document class, 144
\endCdocument), 30
\item, 138
\label, 146
number error, 142
parg error, 138
\usepackage, 144

misspelled command name, 31
correcting, 144

Mittelbach, Frank, xv, 2
mm (millimeter), 99, 215
mod, 44, 190
mode, 36

compatibility, 228
horizontal, 36
left-to-right, see LR mode
LR, see LR mode
math, see math
paragraph, see paragraph
picture, 120, 220-221
vertical, 36

model, color, 132, 224
undefined, 140

\models (k), 43
modulo, 44, 190
month field (in bib file), 163
moved marginal note, 146
moving argument, 22, 33, 167

fragile command in, 135
of Q-expression, 205
of \bibitem, 72
of \caption, 58
of l e t t e r environment, 85
of \markboth and \markright, 90
of \typein and \typeout, 77, 212, 213

moving information around, 65-77,
207-209

\.P (r), 42
mpf ootnote counter, 97
\mu (PI , 41
\multicolumn, 62, 206

error in, 137, 138
not allowed in eqnarray, 188

multilanguage document, 38
multiline formula, 47-49
multiple

authors, 21
captions, 59
column item, 62, 206
input files, 72-74

finding error in, 134
names in bib file field, 158

multiply-defined label warning, 146
\multiput, 127-128, 221
myheadings page style, 89, 179

\nabla (V), 43
name

command, see command
in bib file field, 157-158
of file, 12

named theorem, 57
names, multiple, in bib file field, 158
natural length, 100
\natural (h), 43
\nearrow (/), 43
\neg (T), 43
negative thin space, 51, 191

258 INDEX

\nes (#I, 43
nested

commands, 16
lists, margins of, 114
minipage environments, 106
too deeply, 139, 144

nesting depth error, 139
\newboolean, 196
\newcommand, 53, 168, 192

braces removed from, 92
error in, 137, 141, 142

\newcounter, 99, 194
error in, 137, 138
in included file, 138
optional argument of, 167
scope of, 168

\newenvironment, 55-56, 114, 192
error in, 137, 141, 144

\newlength, 101, 216
error in, 137, 142
scope of, 168

\newline, 95, 213
bad use of, 147
error in, 139

\newpage, 97, 215
in two-column format, 97

\newsavebox, 107, 218
error in, 137, 142
scope of, 168

newt, 68
\newtheorem, 56, 193

counter created by, 97
cross-reference to environment defined

by, 68
environment defined by, 183
error in, 137, 138, 144
optional argument of, 167
scope of, 168

n e x t - t a b M 201
\&@), 43
' Nixon, Richard, 24

no counter error, 138
\nocite, 70, 210
\nof i l e s , 207

misplaced, 136
suppresses glo file, 212
suppresses idx file, 212

used when editing toc file, 67
\noindent, 171, 183
\nolinebreak, 95, 213

optional argument of, 167
space around, 169

non-English symbol, 38-39 ,

in bib file, 158
nonexistent

document class, 137
environment, 137
file, 141
package, 137

\nonf renchspacing, 171
nonmath symbol, 38-39
nonprinting character, 144
\nonumber, 48, 188
\nopagebreak, 96, 214

optional argument of, 167
space around, 169

\nopagenumbers (7&X command), 232
\normalbottom (w command), 232
\normalf ont , 226
\normalmarginpar, 201
\normalsize, 115, 226
\not, 42

in i f then package expression, 196
notation, 53

versus concepts, 31
note environment, 83
note field (in bib file), 163
note, marginal, 59-60, 200-201
\notin (f), 43
notitlepage document-class option, 177
\nu (v), 41
number

alphabetic, 195
arabic, 195
assigning key to, 67
formula, 88

printed at left, 177
suppressing in eqnarray, 48

illegal parameter, 141
missing, 142
page, see page
roman, 195
wrong, 146

number field (in bib file), 163

INDEX 259

number-range dash, 14, 170
numbered displayed formula, 39
numbering, 97-99, 194-195

commands, \ the. . . , 98
page, 98
sectional units, 176
style, 98
with \include, 74
within sectional unit, 57

\numberline, 176
\nuarrow (\), 43

0 (letter oh), 12
\o (a), 39
\o (0) , 39
object, floating, 58
object, picture, 120, 221-223
octal character code, 116
\oddsidemargin, 181, 182
\odot (a), 42
\OE (a), 39
\oe (ce), 39
\oint ($), 44
\oldstyle (w command), 233
\Omega (R), 41
\omega (w), 41
omicron (o) , 41
\ominus (a), 42
omitted argument, error caused by, 141
one (I), 12
one-column format, 181
one-sided printing, marginal notes in, 59
onecolumn document-class option, 177
\onecolumn, 88, 181
oneside document-class option, 177
only in preamble error, 136
\onlynotes, 84
\onlyslides, 83
open bibliography format, 71, 177
openany document-class option, 80, 177
openbib document-class option, 71, 177
\opening, 85
openright document-class option, 80,

177
\oplus ($), 42
option

clash error, 138

document-class, 176
document-style (B w 2.09), 228
unknown, 140

optional argument, 20, 166
C or I in, 25
default, 166
defining a command with, 192
defining an environment with, 193
of array environment, 46
of \item, 25
of \marginpar, 59
of sectioning command, 174
of \twocolumn too tall, 146
square bracket mistaken for, 142
square brackets enclosing, 20, 33, 166

optional arguments, command with two,
166

optional bibliography field, 160
\or, 196
organization field (in b ib file), 163
origin, 118
\oslash (0), 42
\otimes (Q), 42
outerpar mode, not in, 138
output

line, space at beginning or end of, 102
printing, 6, 208
routine, Plain '&$, 232
to terminal, 76-77, 212-213

<output> printed on terminal, 135
\output routine, 232
outputting error, 135
oval, 124-125, 223

too small, 146
\oval, 124-125, 223
oval-part argument, 124
\overbrace, 49
overfull \hbox

marked with draft option, 93
message, 30, 93, 147

overfull \vbox message, 147
overlay environment, 82
\overline, 49, 190
overlining, 49, 190
overprinting

of equation number, 188
of marginal notes, 201

260 INDEX

overriding item position in tabular
environment, 63

P
float specifier, 197
in array or tabular argument, 205

\P (Y), 39, 173
p a r g missing error, 138
package, 2, 20, 178-179

creating your own, 91
loaded twice, 138
nonexistent, 137

page
blank, 97

made by \cleardoublepage, 215
with t i t l epage environment, 180

body, 89, 179
height of, 100, 214

break, see break, page
color of, 132
first, right head for, 180
float, 199

made by \clearpage, 97
foot, 89, 179
head, 89, 179

in twoside option, 90
set by sectioning command, 90, 174

input file, 13
last, output by \stop, 136
left-hand, 179, 196
number, 98

alphabetic, 180
arabic, 89, 180
cross-reference to, 68
in warning message, 135
indexing different styles, 154
printed on terminal, 135
roman, 89, 180
style of, 180

one-column, 181
positioning relative to, 111
range, in index, 152
right-hand, 179, 196

starting on, 97
space at top or bottom, 102
squeezing extra text on, 96, 214
starting a new, 215

style, 89-90, 179-182
default, 89, 179

title, see title
too many \index or \glossary

commands on, 143
too many \marginpar commands on,

139
two-column, 20, 88, 180
width of text on, 100

page counter, 97, 98
current value of, 196
set by \pagenunbering, 180

\pagebody (m command), 232
\pagebreak, 96, 214

in two-column format, 97
optional argument of, 167
space around, 169

\pagecolor, 132, 225
scope of, 168

\pagecontent s (w command), 232
\pageheight, 182
\pageinsert (lj$ command), 232
\pageno (w command), 232
\pagenunbering, 89, 180

scope of, 168
\pageref, 68, 209

" used with, 68
undefined, 146
used with \isodd, 196
wrong number printed by, 146

pages field (in b ib file), 163
pages, how lj$ makes, 135
\pagestyle, 89, 179

after \chapter, 89
scope of, 89

\pagewidth, 182
paper size, 177
\par, 171
paragraph, 13, 171

bad end of, 142
beginning of, 183
displayed, 183-187
end of, 13, 166, 171
in picture, 104
in table item, 104
indentation, 171

anomalous, 183

removing with \noindent, 183
width of, 99, 172

mode, 36
\\ in, 96
box made in, 103
box typeset in, 104
center environment in, 111
figure or table body processed in, 58
marginal note processed in, 59

new, 33
unit, 94

paragraph counter, 97
\paragraph, 21, 174
paragraph-making environment, 105,

183-187
paragraphs

\\ between, 139
space between, 100, 172

\pa ra l l e l (ll), 43
parameter

length, 100
number error, 141
of command, 54, 192
of environment, 56, 193
style, 166

parbox, 104-106, 218
\caption in, 199
f igure or t ab l e environment in, 138
in array or tabular column, 205
in tabbing environment, 203
list-making environment in, 105, 218
marginal note typeset in, 200
paragraph-making environment in,

105
\parindent set to zero in, 172
positioning with \raisebox, 105
tabbing environment in, 105
tabular environment in, 218

\parbox, 104, 218
versus minipage environment, 105

parenthesis, 22, 15
\parindent, 99, 100, 172

equals zero in parbox, 105
in l ist environment, 114

\parsep, 113, 185
\parskip, 100, 172

in l e t t e r document class, 100

in l i s t environment, 114, 185
pa r t counter, 97
part of input, processing, 31, 73-74
\part , 21, 22, 174
\ p a r t i a l (a), 43
\partopsep, 113, 185

when added, 114
pasting, 58
pattern, repeated, 127-128
pc (pica), 215
period, 33

space after, 14-15
\perp (11, 43
phdthesis bibliography entry type, 162
\Phi (a), 41
\Phi (4) , 41
\Pi (IT), 41
\pi (n), 41
pica (pc), 215
pict2e package, 118, 179, 221-223
picture, 118-129

command, argument of, 119
declaration, 223
in float, 58
line thickness in, 118
magnifying, 118
mode, 120, 220-221
object, 120, 221-223
paragraph in, 104
reducing, 118

p ic ture environment, 118-129, 219-223
box made by, 103
example, 220
formatting formula with, 52
large, 143
making figures with, 58
reusing, 107
zero-width box in, 121

placement
of figures and tables, 59, 197
of marginal note, 59-60
of \protect , incorrect, 142
of tabular environment, 63

p l a in bibliography style, 70
p l a in page style, 89, 179
Plain w, 231-233
\plainoutput (w command), 232

262 INDEX

\pm (f), 42
\pmod, 44, 190
poetry, 25-26, 34, 184
point (unit of length), 93, 99, 215
point, reference, 103, 221
pool size, 144
\poptabs, 203

unmatched, 138
position, specifying by coordinate, 118
positioning

argument, 45-46, 104-105, 121, 124
of item label, 114
of parbox with \raisebox, 105
of text, 121, 217, 219
relative to a fixed point on page, 111
relative to a line of text, 110
text in picture, 121
vertical, see vertical

\pounds (E), 39, 173
\Pr (Pr), 44

subscript of, 190
preamble, 19, 34, 170

command definition in, 55
error in, 138
\hyphenation command in, 94
\makeindex in, 74
only in error, 136
visual design commands in, 88

\prec (+), 43
\preceq (<), 43
preloaded command, 91
preparing input file, 12
prepended file, 170
previewer, screen, 6
prime symbol, 18, 189
\prime (I) , 43
primitive list-making environment, 112
principle, 56
\printindex, 150, 211

ind file read by, 208
printing

a m file information, 208
counter values, 98
landscape, 177
Bw output, 6, 208
one-column, 181
one-sided, marginal notes in, 59

slides and notes separately, 83
two-column, 20, 180
two-sided, 19, 177

increasing page height in, 214
marginal notes in, 59

proceedings bibliography entry type,
162

\prod cn), 44
program, formatting a, 60
programming in B W , 195
pronunciation of I4W and W , 5
proposition, 56
\propto (oc), 43
\protect , 22, 33, 167

in @-expression, 205
in \caption argument, 58
in \index argument, 153
in \typeout argument, 212
incorrect placement of, 142
not before length command, 100, 168
not in \addtocounter or \setcounter

argument, 168
not used with \value, 194

protecting a fragile command, 22
\providecommand, 168, 192

error in, 141
\ps, 86
\Psi (q), 41
\ps i ($1941
p t (point), 99, 215
publisher field (in b ib file), 163
punctuation character, 12, 32

in key, 68, 69
punctuation dash, 14, 170
punctuation, space after, 14-15, 170, 171
\pushtabs, 203

unmatched, 138
\put, 120, 221

sequence replaced by \multiput, 127
space in argument, 129

\qbezier, 125-126, 221
space used by, 143

\qbeziermax, 126, 221
quarter oval, 124
question mark (?), see ?

INDEX

quotation environment, 24, 34, 184
as list, 112

quotation marks, 13-14! 33, 170
quotation, displayed, 23, 34
quote

double, 13, 170
left ('), 12, 13, 32, 33, 170
right ('), 12, 13, 15, 32, 33

in formula, 18
single, 13, 170

quote environment, 23-24, 34, 184
as list, 112

quotient symbol (I), 51
quoting character in index entry, 154

r (right)
oval-part argument, 124, 223
positioning argument, 45, 217, 221

in array or tabular argument, 205
of \makebox, 104, 121
of \shortstack, 124

ragged right, 111
\raggedbottom, 88

bad page break with, 96
\raggedlef t, 112

in p column, 205
\raggedright, 112

in p column, 205
\raisebox, 107, 219

positioning parbox with, 105
use of optional arguments, 109
use of \width, \height, \depth, and

\totalheight in, 219
raising text, 107
\rangle 0) , 4 7
\ r c e i l (I), 47
\Re (R), 43
reading auxiliary file, error when, 135,

228
reclaiming saved box's space, 127
rectangular blob of ink, 106
recursive definition, 54
red, 132, 225
redefining a command, 55, 168, 192

with \typein, 212
redefining an environment, 56, 192
reducing a picture, 118

\ref , 67, 209
" used with, 68
similar to \c i te , 71
undefined, 146
value, 209

in enumerate environment, 184
in l ist environment, 186
in theorem-like environment, 193,

194
set by \ref stepcounter, 195

wrong number printed by, 146
reference point, 103, 221

of picture object, 120
reference undefined warning, 146, 147
reference, circular, 243
\ref lectbox, 130, 224
reflection, 130
\ref stepcounter, 195

\ref value set by, 209
resets counter, 194

register, boolean, 196
Reid, Brian, 7
remark in citation, 210
\renewcommand, 55, 168, 192

error in, 141, 142
\renewenviroment, 56, 192

error in, 141
repeated logical structure, 53
repeated pattern in picture, 127-128
report document class, 19, 176

appendix in, 175
default page style, 89
thebibliography environment in, 209
t i t lepage option the default, 88

report . c l s file, 92
required bibliography field, 160
\resizebox, 129-130, 224
\resizebox*, 224
return key, 12
reusing a picture environment, 107
\reversemarginpar, 201
\rf loor (1), 47
rgb color model, 132, 225
\rhd (D), 42
\rho (p) , 41
right head for first page, 180
right margin, prevailing, 203

264 INDEX

\ r ight , 47, 190
right, flush, see flush right
right-hand page, 179

starting on, 97
\Rightarrow (+), 43
\rightarrow (+), 43
\rightharpoondown (-), 43
\rightharpoonup (-), 43
\ r ight le f tharpoons (+), 43
\rightmargin, 113, 185

in t r i v l i s t environment, 115
rigid length, 100
\mf amily, 37, 226
robust command, 22, 167
roman page numbers, 89, 180
roman type family, 37, 226

in math mode, 51, 191
in s l i d e s document class, 81

\Roman, 98, 195
\roman, 98, 195
Romanian, 94
root file, 72
root, square, 40, 189

space around, 51
\rotatebox, 130, 224
\rotatebox*, 224
rotation, 130
rounded corner, 124-125
rubber length, 100

in \hspace or \vspace, 102
in \ lengthtest expression, 196
infinitely stretchable, 102, 215

rule (mathematical), 56
rule box, 103, 106
\rule, 106, 219

horizontal line drawn with, 106
vertical line drawn with, 106

running head, see head
running ISQjX

on part of document, 31, 73-74
unattended, 30

s positioning argument, 217
\S (S) , 39, 173
Samarin, Alexander, 2
\samepage (ISQjX 2.09 command), 229
sample input, 2, 8

sample2e. t e x file, 3, 8, 19, 28, 93
sans serif type family, 37, 226

in math mode, 51, 191
save size, 144
\savebox, 107, 218, 223

in p ic ture environment, 120, 127
use of \width, \height, \depth, and

\ to ta lhe ight in, 219
saving a box, 107-108, 127, 218
saving typing, 54
\sbox, 108, 218
\scalebox, 129-130, 224
scaling, 129
school field (in b ib file), 163
scope of declaration, 27-28, 168

in argument of user-defined command
or environment, 55, 56, 192

in array envirbnment, 45
in tabbing environment, 61, 203
nested too deeply, 144
within command argument, 193

screen output, see terminal
screen previewer, 6
script letter, 42
script math style, 52, 191
scriptscript math style, 52, 191
\ s c r ip t sc r ip t s ty l e , 52, 191
\ scr ip ts ize , 115, 226
\ s c r ip t s ty l e , 52, 191
scroll, the, 135
\scshape, 37, 226
\searrow (\), 43
\sec (sec), 44
secnumdepth counter, 174, 176
sect ion counter, 97
section numbering, 176
section structure, 21
\section, 21, 174
sectional unit, 21

cross-reference to, 67
in different document classes, 21, 22
level number of, 176
numbering of, 174
numbering within, 57

sectioning command, 21-22, 174-176
\\ in, 169
*-form of, 174

argument too long, 143
blank line not allowed in, 171
examples, 174
fragile command in, 135
in front and back matter of a book, 80
\label in argument, 209
moving argument of, 168
optional argument of, 174
page heading set by, 90, 174
table of contents entry, 22, 174, 209

"see" index entry, 152
\see, 153
sending a document, 77
sentence, 13
ser ies field (in bib file), 163
series of type, see type
\setboolean, 196
\setcounter, 98, 194

error in, 138, 144
\protect not used in argument of, 168
scope of, 98, 168

\setlength, 101, 216
\setminus (\), 42
\set tabs ('I)& command), 232
\settime, 83
setting tab stops, 61
\settodepth, 101, 216
\settoheight, 101, 216
\settowidth, 101, 216
\sevenbf (w command), 233
\seveni (w command), 233
\sevensy (w command), 233
\sf family, 37, 226
shape of type, 36
\sharp (to, 43
\shortstack, 123-124, 222

\\ in argument, 169
showidx package, 75, 179
\Sigma (C), 41
\sigma (a), 41
sign, minus, .14
\signature, 84
\ s i m (N) , 43
\simeq (E), 43
simulating typed text, 63-64
\sin (sin), 44
single quote, 12, 13, 170

single-column format, 181
\ s i n . (sinh), 44
size

buffer, 143
hash, 143
main memory, 143
of paper, 177
of type, see type
pool, 144
save, 144

skinny, making things, 129
skip ('I$$ term), 100
slanted line, minimum size of, 123
slanted type shape, 37, 226
slash through symbol, 42
s l ide environment, 81
slides, 8&84, 228
s l ides document class, 8G84, 176
SLIT)$, 228
slope of line in picture, 122
\sloppy, 94, 214

causes underfull \hbox message, 147
sloppypar environment, 94, 214

causes underfull \hbox message, 147
\slshape, 37, 226
small caps type shape, 37, 226
\small, 115, 226
small2e. tex file, 2
\smallskip, 216
\smallskipamount, 216
\smile (-), 43
source list, 69, 70, 209
source, bibliographic, 69
source2e. tex file, 91
space, 216-217

above displayed formula, 107, 188, 189
after punctuation, 14-15, 170, 171
after tabbing command, d l
around + and -, 48
around \hspace command, 101
around integral sign, 51
around square root, 51
at beginning or end of output line, 102
at top or bottom of page, 102
avoiding unwanted, 98, 109
below displayed formula, 107, 189
between paragraphs, 100, 172

266 INDEX

character, 13
at end of line, 19
ignored in math mode, 36
in command definition, 54
in formula, 18
in LR mode, 36
in \put argument, 129
in \typeout or \typein argument,

212
multiple, 13, 154
not allowed after \verb command,

64
not allowed in \endCverbatim), 64

ending command name with, 16
ending line without adding, 33
horizontal, see horizontal space
ignored after command name, 16
in array, 45
in formula, 50-51
intercolumn, see intercolumn space
interrow, see interrow space
interword, see interword space
medium, 51, 191
negative thin, 51, 191
thick, 51, 191
thin, 14, 33, 51, 170, 191
vertical, see vertical space

\space, 212
space-filling dots, 102
space-filling horizontal line, 102
spacing, 101-103

command, 170
double, 172

bpadesu i t (a), 43
special character, 12, 32, 171

in \index argument, 75, 153
in verbatim environment, 64
used incorrectly, 31

special font, 116
special symbol, 38-39, 226
\sqcap (n), 42
\sqcup (u), 42
\ sqr t (r), 40, 51, 189
\sqsubset (c), 43
\sqsubseteq (C), 43
\sqsupset (I), 43
\sqsupseteq (7), 43

square bracket, 12
enclosing optional argument, 20, 33,

166
mistaken for optional argument, 142

square root, 40, 189
space around, 51

\ss (%), 39
stack, 123-124
stacking symbols, 50
\s tackrel , 50, 191

making symbol with, 42
\star (*), 42
\stepcounter, 195

resets counter, 194
\stop, 30

last page produced by, 136
stopping I 4 w , 30, 136
storage bin, 107, 127
\ s t re tch , 215
stretchable length, see rubber length
structure

logical, 6, 88
of document, 170
section, 21
theorem-like, 56-57

strut, 106
example of use, 110
in array and tabular environments,

169
stupidity, in Unix, 32
s t y (package) file, 91, 166

O regarded as letter in, 91
missing, 137

style
bibliography, 70-71
customizing, 91-93
math, see math
numbering, 98
page, see page
parameter, 166
type, see type

subentry, index, 75
\subitem, 75, 211
subparagraph counter, 97
\subparagraph, 21, 174
subpicture, 128

INDEX 267

subscript, 18, 33, 40, 189
double, error, 140
math style for, 52, 191
of log4ke function, 190
size of type in, 52, 116

subsection counter, 97
\subsection, 21, 174
\subset (c), 43
\subseteq (C), 43
substituted type style, 37
subsubentry, index, 75
\subsubitem, 75, 21 1
subsubsection counter, 97
\subsubsection, 21, 174
\succ (>-), 43
\succeq (k), 43
\slim (El, 44
sundial, 94
\sup (sup), 44

subscript of, 190
superscript, 18, 33, 40, 189

double, error, 140
math style for, 52, 191
size of type in, 52, 116

support, acknowledgment of, 181
\suppressfloats, 199

optional argument of, 167
\supset (>), 43
\supseteq (>), 43
\surd (d), 43
\swarrow (J) , 43
symbol

bar over, 49
bold, 51
footnote, 195

too many, 137
making with array environment, 42
making with \ s t a c k e l , 42
math, 4145
non-English, 38-39

in bib file, 158
nonmath, 38-39
not in typewriter style, 38
not provided by HT)j?C, 116
slash through, 42
special, 38-39, 226
stacking, 50

variable-sized, 42, 52
\symbol, 116, 226

t (top)
float specifier, 197
oval-part argument, 124, 223
positioning argument, 46, 105, 121,

218, 222
\t (" accent), 38
tab overflow error, 139
tab stop, 61, 201

too many, 139
undefined, 140

tab, alignment, error, 141
\tabalign (m command), 232
tabbing command

Plain w, 232
space after, 61

tabbing environment, 60-62, 201-203
\\ in, 169
as displayed paragraph, 183
example, 202
in minipage environment, 106, 218
in parbox, 105
large, 143
redefinition of commands in, 203
scope of declaration in, 61
used instead of verbatim, 64
versus tabular, 60

\tabbingsep, 203
\tabcolsep, 207
table, 58-59, 197-200

centering, 112
in two-column format, 197
item, paragraph in, 104
made with tabular environment, 58
of contents, 66-67, 175-176

adding an entry, 175
adding commands to, 67, 176
depth, 176
entry made by sectioning

command, 22, 174
error in, 135
example, 174
generated from toc file, 209

placement of, see float
too tall, 145

268 INDEX

t a b l e counter, 97
t ab l e environment, 58-59, 197

in parbox, 138
misplaced, 138
parbox made by, 104
space around, 169
too many, 139

tab le* environment, 197
\tableof contents, 66, 175-176

error when ~rocessing, 143
toc file read by, 209

tables, list of, 67, 175-176
\ tabs (T)$ command), 232
\tabsdone (T)i$ command), 232
\ tabset (m command), 232
tabular environment, 62-63, 204-207

\\ in, 169
box made by, 103
error in, 137, 138, 141, 145
example, 204
extra space around, 205
footnoting item of, 105
illegal character in argument, 137
in parbox, 218
interrow space in, 169
large, 143
making tables with, 58
strut in, 169
versus array, 46, 60
versus tabbing, 60

tabular* environment, 204-207
\ tan (tan), 44
\tanh (tanh), 44
\ tau (T) , 41
techreport bibliography entry type, 162
ten-point type, 19, 115
\ t en i (w command), 233
term, invisible, 48
terminal, 28

defining command from, 76
input, 76-77, 212-213
message, spaces in, 212
output, 76-77, 212-213

written on log file, 208
printing command on, 212

m, 5, 231-233
distinguished from B W , 5

error message, 140-145
error versus I 9 W error, 29
logo, 5, 15, 33, 171
pronunciation of, 5
warning message, 147

\TeX, 15, 33, 171
text

editor, 12, 32
emphasized, 16, 171
file, 12, 144
invisible, 82, 97
math style, 52, 187
positioning of, 107, 121
typed, simulating, 63-64

text-generating command, 15
\ textbf , 37, 226
\ textcolor , 131, 225

used for invisible text in slide, 82
\ textf loatsep, 200
\ tex t f rac t ion , 200
\ textheight , 100, 182
\ t e x t i t , 37, 226
\textmd, 37, 226
\textnormal, 226
\textrm, 37, 226
\ textsc, 37, 226
\ t ex t s f , 37, 226
\ t ex t s l , 37, 226
\ tex ts ty le , 52, 191

used with \s tackrel , 50
\ t e x t t t , 37, 226
\textup, 37, 226
\textwidth, 100, 171, 182
\thanks, 181

moving argument of, 168
\ the. . . numbering commands, 98, 195
thebibliography environment, 71-72,

209
as list, 112
missing argument in, 138

theindex environment, 75-76, 211
\item in, 75

theorem, 56
named, 57

t heorem-like environment, 56-57,
193-194

as displayed paragraph, 183

INDEX 269

as list, 112
counter for, 97, 193
cross-reference to, 68

theorem-like structure, 56-57
\t hepage redefined by \pagenumber ing ,

180
\Theta (@), 41
\ theta (O) , 41
thick space, 51, 191
\thicklines, 119, 223
thickness, see width
thin space, 14, 33, 51, 170, 191
thin, making things, 129
\thinlines, 118, 223
\thispagestyle, 89-90, 179

scope of, 168
tick marks, 184
tilde (-), 12, 17, 32
\ t i lde ('math accent), 50
time, printing on notes, 83
\times (x), 42
\tiny, 115, 226
title, 20-21

acknowledgment of support in, 181
author's address in, 181
date in, 20
example, 183
in bib file, 158
page, 20-21, 88, 90, 177, 181-183

t i t l e field (in bib file), 163
\ t i t l e , 20, 34, 181

\\ in, 169
not given error, 138

t i t lepage document-class option, 88,
90, 177

t i t lepage environment, 90, 183
making blank page with, 180

toc (table of contents) file, 66, 67, 175,
209

editing, 67
error in, 135

tocdepth counter, 176
\today, 15, 33, 171

in title page, 90
redefining in letters, 86

\top (T), 43
\topfraction, 199

\topins (T)$ command), 232
\topinsert (w command), 232
\topmargin, 182
topnumber counter, 199
\topsep, 113, 185

in f leqn option, 188, 189
\topskip, 181
\totalheight, 219
totalnumber counter, 200
Trahison des Images, La, 131
transformation, geometric, 129
\ tr iangle (A), 43
\ t r iangle lef t (a), 42
\ tr iangleright (D), 42
t r i v l i s t environment, 112, 115, 186
Truman, Harry, 24
\ttfamily, 37, 226
12pt document-class option, 19
twelve-point type, 19, 115
two-column format, 20, 88, 180

\cleardoublepage in, 97
\clearpage in, 97
figures and tables in, 197
marginal notes in, 59
\newpage in, 97
\pagebreak in, 97

two-sided printing, 19, 177
increasing page height in, 214
marginal notes in, 59
page heading in, 89

twocolumn document-class option, 20,
177

marginal notes in, 59
\twocolumn, 88, 180

optional argument of, 167
optional argument too tall, 146

twoside document-class option, 19, 177
default in book class, 80
evens page bottoms, 88
marginal notes in, 59
page heading in, 90

type
bibliography entry, 156, 160-162
eleven-point, 19, 115
family, 36

roman, 37, 51, 191, 226
sans serif, 37, 51, 191, 226

270 INDEX

typewriter, 37, 51, 191, 226
font, see font
series, 36

boldface, 37, 51, 191, 226
medium, 37, 226

shape, 36
italic, 37, 51, 191, 226
slanted, 37, 226
small caps, 37, 226
upright, 37, 226

size, 226
changing, 115-1 16
default, 115
in footnote, 116
of sub- and superscripts, 52, 116

style, 36-37, 225-226
calligraphic, 51, 191
in math mode, 51-52, 191
substituted, 37
unavailable, 37, 116

ten-point, 19, 115
twelve-point, 19, 115

type field (in b ib file), 164
typed text, simulating, 63-64
\typein, 76, 212

moving argument of, 77, 168
of \includeonly, 74

\typeout, 76, 212
moving argument of, 77, 168

typesetter, 6
typewriter type family, 37, 226

in math mode, 51, 191
no accents or symbols in, 38

typewriter, simulating, 63-64
typing, saving, 54
typographic

design, 91
designer, 5
error, 91

\u (' accent), 38
unary + and -, 48
unavailable type style, 37, 116
unbalanced braces, error caused by, 136
\unboldmath, 191
undefined

citation, 145, 147

color, 140
color model, 140
control sequence error, 144
environment error, 137
\pageref, 146
\ re f , 146
reference, 146, 147
tab position, 140

\underbrace, 49
underfull \hbox message, 95, 147

caused by \\ and \newline, 213
caused by \linebreak, 147, 213
caused by \sloppy, 147, 214
caused by sloppypar, 147

underfull \vbox message, 147
caused by \pagebreak, 214

\underline, 49, 190
underlining, 49, 190
unit

length, 118
of length, 215
of measure, illegal, 141
paragraph, 94
sectional, see sectional unit

\unitlength, 118, 219
for subpictures, 129

Unix, e-mail in, 32
Unix, stupidity in, 32
unknown graphics extension, 140
unknown option, 140
\unlhd (I]), 42
unmatched

$ (dollar sign), 141
3, 141
\begin, 136
brace, 31
\end, 136
math mode delimiter, 141
\poptabs, 138
\pushtabs, 138

unpublished bibliography entry type,
162

\unrhd (p), 42
unsrt bibliography style, 70
\Uparrow (h), 43, 47
\uparrow (T), 43,47
\Updownarrow ($), 43, 47

INDEX 271

\updownarrow (I), 43, 47
\uplus (H), 42
uppercase letter, 12
upright type shape, 37, 226
\upshape, 37, 226
\Upsilon (T), 41
\upsilon (v), 41
use doesn't match definition error, 145
\usebox, 107, 218
\usecounter, 114, 186
\usepackage, 20, 34, 170, 178-179

misplaced, 136
missing, 144
option obtained from \documentclass

command, 178
redundant, 138

user-defined command or environment,
scope in argument of, 55, 56, 192

\v (' accent), 38
value of counter, 194
\value, 194

in if then package expression, 195
van Leunen, Mary-Claire, 8
\varepsilon (E) , 41
variable-sized math symbol, 42, 52
variant Greek letters, 41
\varphi (cp), 41
\varpi (a), 41
\varrho (Q), 41
\varsigma (c) , 41
\vartheta (6), 41
\vbox, overfull, 147
\vbox, underfull, 147, 214
\vdash (k), 43
\vdots (), 41, 189
\vec ('math accent), 50
\vector, 123, 222

error in, 136
\vee (V), 42
\verb, 64, 187

in argument of a command, 140
text ended by end of line, 140

\verb*, 64, 187
verbatim environment, 63-64, 186
verbatim* environment, 64, 186

verse environment, 25-26, 34, 184
\\ in, 169
as list, 112

version, of 2, 228-229
\Vert ((I), 43, 47
\vert (I), 47
vertical

alignment, 46, 60-63, 201-207
ellipsis, 40, 189
line

drawn with \rule, 106
in tabular environment, 62

mode, 36
positioning

of array environment, 46
of array item, 46
of text, 107, 121, 219

space, 102
above displayed formula, 188, 189,

218
adding, 106, 216
at top or bottom of page, 102
below displayed formula, 183, 189
in math formula, 106

\ v f i l l , 102
\vf ootnote (w command), 232
visual design, 7, 88

of marginal notes, 60
visual formatting, 64

for slides, 81
of formula, 49, 52
with boxes, 108-111

visual property, 37
\vline, 206
volume field (in bib file), 164
\vspace, 102, 216

in figure, 58
removing space with, 184
rubber length in, 102
space around, 169
using strut instead, 106

\vspace*, 102, 216

warning message, 30
m, 145-147
w, 147

\vedge (A), 42

272

\whiledo, 197
white, 132, 225
wide math accent, 49
\widehat Cmath accent), 49, 190
\widetilde Crnath accent), 49, 190
width

box with specified, 104
of a box, 103
of line, 91, 171

for \fbox and \f ramebox, 219
in array or tabular environment,

207
in picture, 118, 223

of paragraph indentation, 99
of text on page, 100, 171

\width, 219
Wiles, Andrew, 57
window, 28
word, 13

index, 150
\wp (6311 43
\ w r (I) , 42
writing, 8
wrong number printed by \ci te,

\pageref, and \ref, 146
WYSIWYG, 7

year field (in bib file), 164
yellow, 132, 225

zero (O), 12
zero length, 99
zero-length arrow, 123
zero-width box, 121
\zeta (0, 41

Line Breaking Length Figures and 'Jhblea

\linebreak force a line break

\\ Clenl start new line and leave len vertical space

\- permit hyphenation

\beginCsloppypar) . . . \endCsloppypar)
allow loose lines in paragraphs

\sloppy allow loose lines

Page Breaking

\pagebreak force a page break

\enlargethispage*Iht) squeezes extra ht of
text on current page.

\newpage start a new page

\clearpage print all figures and tables and start
a new page

Boxes

\mboxC. . .I
\makebox Cwdl Cposl C. . .I

make box of width wd; pos puts text at
left (l), right (r), or center (default)

\f boxCtext)
\f ramebox Cwdl Cposl Ctext)

same as \mbox or \makebox but draws frame
around box

\nevsaveboxCcmd~ defines crnd to be a bin for
saving boxes

\sboxCcmd)Ctext)
\saveboxCcmd) Cwdl Cposl Cteb)

same as \mbox or \makebox but saves box in
bin crnd

\useboxCcmd) print box saved in bin crnd

\beginCminipage) [posl Cwd) . . . \end<. . .I
make parbox of width wd, aligned by pos a t
top (t), bottom (b), or center (default) line

\parbox [pas] {wd)C. . .) same as minipage for
small text, no displayed environments

Space

\hspaceClen> make len horizontal space; *-form
works even at beginning of line

\hf ill make infinitely stretchable horizontal
space

\vspaceClen3 leave len vertical space; *-form
wr>rb- PVPI I :1i t w w i n n i n w nf n-rrn

u n i t s c m em ex in pc pt mm

\newlengthCcmd3 define crnd to be a length

\setlengthIcmdlIlenl set length crnd to len

\addtolengthCcmd)Clen3 add len to length crnd

Pic t urea

\beginCpicture>(x. y) (XI, Y') . . . \end{. . .I
x x y picture [lower-left corner at (XI, Y')]

\put (x, y) C. . .I put object at point (2, y)

\multiput (x, y) (Ax,Ay)Cn)C.. .I
make n copies of object with first a t (x, y) and
others offset by (Ax, Ay)

\makebox(x, y) Cposl I . . .I make x x y box; pos
puts object a t top (t), bottom (b), left
(l), right (r), and/or centered (default);
\f ramebox and \savebox have analogs

\dashboxCd) (x. y) Cposl C. . .I like \makebox but
puts dashed lines of length d around box

\line(h,v)Cl) line of slope v/h and horizontal
extent 1 (length 1 if h = O), 0 < h, v < 6

\vector(h,v)Cl) same a s \ l ine but draws ar-
rowhead; 0 < h, v < 4

\shortstack Cposl C. . .I
like \beginCtabular) [pos] . . .

\circleCd) draw circle of diameter d; *-form
draws solid disk

\oval (x , y) Cpartl draw x x y [partial] oval

\f rameC.. .I draw frame around object

line thickness \ th inl ines or \ thicklines

graphics a n d color Packages

\scaleboxCfac)C.. .I scale by factor of fac

\resizeboxCwd)Cht3C.. .I scale to wd x ht

\rotateboxCang)C.. .I rotate by ang degrees

\includegraphicsCfi2e) insert graphics from file

\def inecolorCclr3CmdI)Cval~ define color clr
using color model mdl

\colorCclrl set current color to clr

\textcolorCclr)C.. .) typeset in color clr

\colorboxCclr~C. . .I typeset on colored box

\pagecolorCclr) set background color of page

\beginIf igure) . . . \endCf igure)
make floating figure

\beginCtable) . . . \end(table)
make floating table

\caption{. . .I make figure or table caption

tabbing Environment

Rows separated by \\ ; columns determined by:

\= set tab stop

\> go to next tab stop

\ k i l l throw away line

array and tabular Environments

\beginCarray) [posl Ccolsl . . . \end(array)
\beginCtabular) Cposl Ccols) . . . \endCtabular)

use array for formulas, tabular for text; items
separated by & and rows by \\; pos aligns with
top (t), bottom (b), or center (default); cok
entries format columns:

1 left-justified column
r right-justified column

c centered column
I vertical rule
QC.. .) text or space between columns

*In)€. . .I equivalent to n copies of . . .
\multicolumnCn)~col)C.. .) span next n col-

umns with col format

\h+e draw horizontal line between rows

\c l inet i - j l horizontal line across columns i-j

Definitions

\newcommand~cmd) Cn1 Copt] C. . .) define com-
mand crnd [with n arguments] [first optional]

\nevenvironmentCnaml Cnl CbegICend)
define environment nam [with n arguments]

\newtheoremCnam)Ccap) define a theorem-like
environment nam captioned by cap

Numbering 6

\setcounterCctr)Cn) set counter ctr to n

\addtocounterCctr)Cnl add n to counter ctr

q u o t e ~ s i n g l e ' . , . ~ double "..."
dmhea intrkword - number range: --

punctuation: ---
spacing small \, inter-word \, unbreak-

able ' sentence-ending period \O .
special characters 8 \$ & \& % \%

\x \r 1 \I - \-
emphasis \emphC. . .I
unbreakable t e x t \mboxC. . .I
footnotes \f ootnoteC. . .I
date \today

T y p e Style

\ t e x t d . . .I Rom \textsc(. . .I CAPS
\textit{. . .) Ital \texttt{. . .) Type
\textbf (. . .) Bold \textsf C.. .) SSrf
\textslC.. .I SJan

\boldmath use bold math symbols

i n m a t h m o d e
\math{ . . .) Rom \mathtt{.. .) Type
\mathit{. . .I Ital \mathsf {. . .) SSrf
\mathbf (. . .I Bold \mathcalC . . . I C&

T y p e Size

\ t iny \small \ large \huge
\scr ipts ize \normalsize \Large \Huge
\f ootnotesize \LARGE

Accents a n d Symbols

Sectioning a n d Table of Contents

\appendix start appendix

\tableof contents make table of contents

8 . . .$ or \(. . .\) in-text formula

\ C. . .\I displayed formula

\begin{equation> . . . \end(equation)
numbered equation

\beginCeqnarray) . . . \endCeqnarray)
numbered equations, like 3-column array en-
vironment; \nonumber omits one equation
number, eqnarray* omits all

-C. . .I subscript

-C. . .I superscript

prime (')

\f racCn1CdI print fraction

\sqr t Cnl Carg) print !/7Gjj

ellipsis \ ldots . . . \cdots . - . \vdots :

symbols see Tables 3.4-3.8 (pp. 4244)

Greek le t ters (2 \alpha . . . R \Omega

delimiters \ l e f t or \ r ight followed by delim-
iter from Table 3.10 (p. 47)

\overline{exp) print Effi

space thin \ , medium \ : thick \ ; neg-
ative thin \ !

Displayed Paragraphs

\beginCquote) . . . \endCquote}
short displayed quotation

\begidquotat ion) . . . \end{quotat ion)
long displayed quotation

\begidcenter) . . . \end{center)
centered lines, separated by \\

\beginCverse) . . . \endCverse)
\\ between lines, blank line between stanzas

\beginCverbatiml ... \end(verbatim)
in typewriter font exactly as formatted

Lists

Begin each item with \item or \item [label]

\begin{itemize) ... \end{itemize)
"ticked" items

\begidenumerate) . . . \end{enumerate)
numbered items

\beginCdescription) ... \endCdescriptionl
labeled items

Document Clam, Packages, Styles

\document c lass t options] i class)

style a r t i c l e report book
s l ides l e t t e r (for letters)

options l l p t t i t lepage tvoside legno
12pt twocolumn a4paper f leqn

\usepackage Coptzonsl Cpkg)

pkg amstex color latexsym

i babel graphics makeidx

\pagestyleCstyleI style of head and foot:
plain empty headings myheadings

\pagenumberingCstyleI style of page numbers:
arabic roman alph Roman Alph

Title Page and Abstract

\maketitle make title with information declared
by \ t i t l e , \author, and [optional] \date

\beginCtitlepage) ... \endCtitlepage)
do-it-yourself title page

\beginiabstract) ... \end{abatract)
make abstract

Cross-Reference

\labelCkey) assign current counter value to key

\ref {key) print value assigned to key

Bibliography a n d Citation

\bibliography{. . .) make bibliography and tell
BIBTEX names of bib files

\beginCthebibliography)(lbl) . . . \end{. . .)
make bibliography; lbl is widest entry label

\bibitem Elbll {key) begin bibliography entry for
citation key [with lbl as label]

\ c i t e [note] {keys) cite reference(s) keys [with
added note]

Splitting t h e Inpu t

\inputifile) read specified file

\include{file) read specified file unless excluded
by \includeonly

\includeonlyCfiles) exclude any file not in files

\beginCf i1econtents)Cfile) contents \end& . .)
..,..;+n cnm+,7m+.. n.. "-",.:GnA Cl"

~ i s a s o f t w r u e ~ m f b r
documents and k avdaMe fm
the scientific worki. Rssesrchem, ed
industry, use WI@ to
use W1E;x input to cxmmunicate i

and the l.ehmm?
release. The bodr
cmxmmmb snd

. An added appendix describes what
Other additions to the seeoad edition include:

0 Descriptions of new txmmands for,inserting pictixa
and for producing c o l d output;

0 New sections on how to make books and slides.,

0 Instructions for miking an index with the MaL:eIRdes pro%rsaa, and WB

guide to prepring a bibliography with the BIB=

0 A section on how to send your documents

~lthough meet sthndb~d uw input fib will
fmtures, a few UY 2E amventions rn& timt
to IQjX 2E and to more than 150 padrse&e that
features, a uaeful companion to this book is The
samrvin (also puMished by Addison-Wesley).

- ----
LesHe Lamport is a computer sclenti& well known for

