
Building Quality into Learning Management Systems -
an Architecture-Centric Approach

Paris Avgeriou1, Simos Retalis2 and Manolis Skordalakis1

1 National Technical University of Athens, Department of Electrical and Computer Engi-
neering, Software Engineering Laboratory, Zografou, Athens, 15780, GREECE

E-mail: {pavger, skordala}@softlab.ntua.gr,
2 Department of Computer Science, University of Cyprus, 75 Kallipoleos St., P.O. Box,

20537, CY-1678 Nicosia, CYPRUS, E-mail: retal@softlab.ntua.gr

Abstract. The design and development of contemporary Learning Management
Systems (LMS), is largely focused on satisfying functional requirements, rather
than quality requirements, thus resulting in inefficient systems of poor software
and business quality. In order to remedy this problem there is a research trend
into specifying and evaluating software architectures for LMS, since quality at-
tributes in a system depend profoundly on its architecture. This paper presents a
case study of appraising the software architecture of a Learning Management
through experience-based assessment and the use of an architectural prototype.
The framework of the evaluation conducted, concerns run-time, development
and business qualities. The paper concludes with the lessons learned from the
evaluation, emphasizing on the compromise between them.

Keywords: Software architecture, architectural evaluation, quality attributes, quality
requirements, nonfunctional requirements, Learning Management System, Unified
Modeling Language, Unified Process.

1 Introduction

Governments, authorities and organizations comprehend the potential of the Internet
to transform the educational experience and envisage a knowledge-based future where
acquiring and acting on knowledge is the primary operation of all life-long learners.
In order to realize this vision, the use of Learning Management Systems is being
exponentially augmented and broadened to cover all fields of the new economy de-
mands. LMS are software systems that synthesize the functionality of computer-
mediated communications software (e-mail, bulletin boards, newsgroups etc.) and on-
line methods of delivering courseware (e.g. the WWW) [1].

LMS that are in use today are either commercial products (e.g. WebCT, Black-
board, Intralearn), or customized software systems that serve the instructional pur-
poses of particular organizations. The design and development of LMS though, is
largely focused on satisfying certain functional requirements, such as the creation and
distribution of on-line learning material, the communication and collaboration be-
tween the various actors and so on. On the contrary, the quality requirements of LMS
are usually overlooked and underestimated. This is due to the fact that even though

quality is always of prime interest to the software vendors, they usually give priority
to functionality because it is more tangible and a better argument for marketing pur-
poses. In other words, LMS vendors are competing in a race of implementing as much
functionality as possible. This is rather obvious in LMS comparative evaluations,
where only functionality is evaluated, and quality requirements are completely ig-
nored [2]. This naturally results in inefficient systems of poor software and business
quality. Problems that typically occur in these cases are: bad performance which is
usually frustrating for the users; poor usability, that adds a cognitive overload to the
user; increased cost for purchasing and maintaining the systems; poor customizability
and modifiability; limited portability and reusability of learning resources and com-
ponents; restricted interoperability between LMS.

The question that arises is how can these deficiencies be remedied, i.e. how can the
quality attributes be incorporated into the LMS being engineered? Quality attributes
in a software system depend profoundly on its architecture and are an immediate out-
come of it [3, 4, 5, 6]. Therefore the support for qualities such as performance, secu-
rity, availability, and usability should be designed into the architecture of the system
[5, 6, 7]. These principles have only recently been widely accepted and adopted and
have lead to a research trend into defining software architectures that support quality
attributes in the field of LMS [8, 9, 10].

Similarly, the key idea behind our endeavor is to design for quality. In specific, this
paper presents a case study of applying an evaluation framework to the software ar-
chitecture of a Learning Management System so that quality can be built inherently
into the system. The latter is achieved by appraising the quality of the architecture, in
each development iteration, and using the feedback to re-design the architecture in or-
der to enhance the quality of the system. For that purpose, certain criteria, as well as
heuristics derived from experience, are adopted for assessing the quality attributes of
the system under development and indicating, “where the system is at”, in terms of
quality. A most significant assistant in this evaluation is an architectural prototype of
a Learning Management System that has been engineered to implement the architec-
turally important design decisions. The conclusions inferred from the evaluation proc-
ess, concern an estimation of each criterion, complemented with appropriate justifica-
tion. Furthermore, the evaluation interestingly reveals the compromise between the
quality requirements, as they are very tightly inter-connected and are either in conflict
or in accordance with each other.

The structure of the paper is as follows: Section 2 very briefly demonstrates the
proposed architecture and the architectural prototype. Section 3 introduces an evalua-
tion framework with certain methods and quality attributes and moves on to present
the results of the quality evaluation. Finally Section 4 contains conclusions, as well as
future plans.

2 A Learning Management System Architecture

The proposed architecture is a result of a prototype architecting process that is char-
acterized of five key aspects: it is founded on the higher-level architecture of IEEE
LTSC Learning Technology Systems Architecture [8]; it uses a prototype architecture

of a Web-based Instructional System [11] to build a complete business model and re-
fine and constrain the requirements for the Learning Management System; it adopts
and customizes a big part of the well-established, software engineering process, the
Rational Unified Process (RUP) [7, 12]; it uses the widely-adopted Unified Modeling
Language [13, 14] to describe the architecture; and it is fundamentally and inherently
component-based. The latter is justified by the fact that great emphasis has been put,
not only in providing a pure component-based process, that generates solely compo-
nents and connectors, but also in identifying the appropriate binding technologies for
implementing and integrating the various components. Further study of the archi-
tecting process can be found at [15].

2.1 The Architectural Description

The first and most sizeable part of the architectural description is the views of the 5
models dictated by the RUP. Due to lack of space, it is not practical to illustrate even
a small representative sample of the numerous diagrams produced in the 5 models. A
rather extensive description of the architectural description can be found at [16]. In-
stead we will only provide the first-level decomposition of the system, by specifying
the coarse-grained discrete subsystems in the design model. The decomposition is
combined with the enforcement of the “Layered Systems” architecture pattern [17, 18,
19], which helps organize the subsystems hierarchically into layers, in the sense that
subsystems in one layer can only reference subsystems on the same level or below.
The RUP utilizes the aforementioned architectural pattern by defining four layers in
order to organize the subsystems in the design model.

The proposed layered architecture is depicted in Figure 1, which, besides identify-
ing all first-level subsystems and organizing them into layers, also defines dependen-
cies between them, which are realized through well-specified interfaces. The plethora
of dependencies between the different sub-systems is indicative of the complexity of
LMS. The architectural description continues to decompose each one of these subsys-
tems into smaller subsystem until it reaches the ‘tree leaves’, i.e. individual classes.
Of course, in every subsystem identified, we also design its required and provided in-
terfaces, as well as interaction diagrams that depict the run-time behavior of that sub-
system.

Additional issues of the architecture description, such as the legacy systems, the
commercial software, the architectural patterns to be used etc. are also quite important
for the evaluation to follow and are outlined as following. In the proposed architecture
there are a few legacy systems, such as some communication components and some
courseware delivery components, but fortunately they were all written in the Java
programming language, and thus were relatively easy to integrate into the new sys-
tem. As far as the commercial systems, we have adopted several of them such as the
mySQL RDBMS [http://www.mysql.com] and the Resin Web Server and Servlets
engine [http://www.caucho.com] etc. The architectural patterns that have been used,
as seen in the catalogues composed in [17, 18, 19] include: the layered style as afore-
mentioned; the Client-Server style has been used extensively, especially in the com-
munication management components; the Model-View-Controller style in the GUI
design, which is inherent in all Java Swing UI components; the blackboard style in

the mechanisms that access the database in various ways; the Virtual Machine and the
object-oriented style which are both a result of the implementation in Java; the event
systems style for the notification of GUI components about the change of state of per-
sistent objects.

Users
Management

Study Toolkit

School
Adminis tration

Courseware
Authoring

System
Administration Course

management

Searching

Assessment HelpDesk

Courseware
Delivery

Business Object
Management

File
Management

Metadata
Management

Content
Packaging

Communication
Management

Java Virtual
Machine

Java APIs

Web Delivery

TCP/ IP

Raw Data
Management

RDBMS

DataStore
access API

DBClient

FTP

SMTP/IMAP
HTTP

Application-specific

Middleware

Application-general

System software

Fig. 1. The layered, component-based architecture of a Learning Management System

2.2 The Architectural Prototype

An architecture is a visual, holistic view of the system, but it is only an abstraction. In
order to evaluate the architecture in terms of the quality attributes it promotes, we
must build a significant part of it. Therefore, the software architecture must be ac-
companied with an architectural prototype that implements the most important de-
sign decisions sufficiently to validate them - that is to test and measure them [3, 6,
12]. The architectural prototype is the most important artifact associated with the ar-
chitecture itself, which illustrates the architectural decisions and help us evolve and
stabilize the architecture.

Therefore, in order to assess and validate the proposed architecture, a prototype
was engineered, named “Athena” that implements the main architectural elements.
Our choice between Java and Microsoft platforms was the former because it is an
open technology, rather than proprietary, and based on a Virtual Machine, thus pro-

moting portability. The specific technologies used are applets, servlets, Java Beans,
Enterprise Java Beans, Java Server Pages, as well as the JFC/Swing, RMI, JDBC, 2D
Graphics, JMF and JAF Java APIs. The eXtensible Markup Language (XML) was
used as the default language for the representation of data that were not stored in the
database. About 75% of the total number of components have been implemented or
acquired and put into operation, even though some of them do not offer the complete
functionality prescribed in the system design.

Finally there was an attempt on adopting international standards within the various
components in order to promote interoperability of LMS. For that purpose we have
developed the metadata management component conforming to the IEEE LTSC
Learning Object Metadata working standard [20] and the assessment component in
order to adopt the IMS Question and Testing Interoperability Standard [21].

3 Evaluating the Architecture for Quality

3.1 Theoretical Underpinnings

Software Architectures cannot be classified as either inherently good or bad; instead
they are either more or less appropriate to achieve some declared objectives. There-
fore architectures can be evaluated according to specific criteria and are designed to
fulfill certain quality attributes [3, 6, 19]. It is noted that no quality can be maximized
in a system without sacrificing some other quality or qualities, instead there is always
a trade-off while choosing on supporting the different quality attributes [3, 6, 19].
The question is how to evaluate the quality attributes of architectures since they are
not tangible products but abstract designs that came from the minds of architects. One
solution would be to measure the qualities after the system is built but there is an ob-
vious disadvantage in that: it usually takes such an amount of resources to re-engineer
the system in order to better support certain qualities, that it is unrealistic to perform
[3]. Therefore, since it is too expensive to fix up a system when it is completed, we
need to find a way to evaluate the qualities of the system before it is constructed.

The answer to this problem is the assessment techniques that have been especially
created for the purpose of evaluating the quality attributes of architectures before they
are implemented into real systems. Therefore these techniques do not estimate the
qualities of the actual system, but rather measure the potential of the architecture to
fulfill the required quality attributes. For that purpose, in [19] they propose the
method of architecture reviews, as well as the Software Architecture Analysis Method
(SAAM), which is better demonstrated in [22]. In [23] the Architectural Tradeoff
Analysis Method (ATAM) studies the tradeoff between the different quality require-
ments in architectural evaluation. In [6] the authors perform a thorough and compara-
tive presentation of architecture evaluation through the SAAM, ATAM and ARID
methods. In [3], the author identifies the following methods for assessment of soft-
ware architectures with respect to quality attributes:
� Scenario-based evaluation – to evaluate a specific quality attribute, a set of sce-

narios is created that captures the meaning of that particular attribute.

� Simulation – where the main parts of the application are developed, while the rest
are only simulated, providing an overall executable system. Therefore the system
under evaluation is an implementation of the complete software system at a high
level of abstraction.

� Another approach, similar to the simulation method is to use an architectural pro-
totype, where only parts of the application are implemented and executed. The
simulation and the architectural prototype methods are best for evaluating opera-
tional quality attributes, that is qualities that can be measured at the system’s run
time.

� Mathematical modeling – where special-use mathematical models are devised
and formalized in order to evaluate quality attributes, especially the ones that con-
cern the operation of the system.

� Experience-based assessment - which is rather an intuitive approach based on
former experiences of the architects and reasonable argumentation. Even though
this is not a formal technique, it is very often used, since the experience of the ar-
chitects, especially in a certain domain, is priceless, particularly when it is sup-
ported by the appropriate line of reasoning.
Regarding the quality attributes themselves, there is also a plethora of qualities

proposed by various researchers as well as international standards [24, 25]. Fortu-
nately, these sets of qualities that have been proposed, revolve around the same con-
cepts, even when they are named differently. Probably the most comprehensive cata-
logue of qualities is given in [19], where four different categories of these qualities
are identified:
1 System quality attributes discernable at runtime:
a. performance – the responsiveness of the system, the time required to respond to

stimuli (events) or the number of events processed in some interval of time. This
quality depends highly on the communication and interaction, taking place be-
tween components.

b. security – the system’s ability to resist unauthorized attempts at usage and denial
of service while still providing its services to legitimate users. It can be strength-
ened by incorporating specialized components into the system such as authenti-
cation servers.

c. availability – the proportion of time the system is up and running. It is measured
by the length of time between failures as well as by how quickly the system is
able to resume operation in the event of failure. It can be enhanced by duplicat-
ing critical components and connectors that take over when the primary ones fail,
and by closely monitoring the system to detect failure. It also depends on the
separation of concerns between the components, as well as their modifiability. A
closely related quality is reliability, the ability of the system to keep operating
over time.

d. usability – this quality is comprised of other partial qualities: how quick and easy
is it for a user to learn to use the system’s interface (learnability)? Does the sys-
tem respond with appropriate speed to a user’s request (efficiency)? Can the user
remember how to do system operations between uses of the system (memorabil-
ity)? Does the system anticipate and prevent common user errors (error avoid-
ance)? Does the system help the user recover from errors (error handling)?
Does the system make the user’s job easy (satisfaction)? Since usability is con-

cerned with human-computer interaction (HCI) issues, the flow of information to
the user through the various components is of great significance to this quality
attribute. Also the modifiability quality generally assists in achieving usability.
Finally efficiency is directly linked to the system’s performance.

2 System quality attributes not discernable at runtime (development qualities):
a. modifiability – the ability to make changes quickly and cost-effectively. It is also

widely known as maintainability. It relies heavily on locality of change, which
in turn depends on the encapsulation of functionality and the coupling between
components through dependencies.

b. portability – the ability to run under different computing environments. It de-
pends on the existence of a layer that is interposed between the application and
the environment.

c. integrability – the ability to make the separately developed components of the
system work correctly together. It is governed by specification of the compo-
nents interfaces and their interactions, as well as the separation of concerns be-
tween them. A special case of integrability is interoperability: the ability of a
system to work with another system.

d. reusability – the ability to reuse the system’s structure or some of its components
again in future applications. It is related to how coupled each component is with
the rest; the loosely-coupled components are more reusable. Also the modifiabil-
ity of the system entails reusability.

e. testability – the ease with which software can be made to demonstrate its faults
through (typically execution-based) testing. It is determined by the level of archi-
tectural documentation, the separation of concerns and information hiding.

3 Business qualities:
a. time to market - It is reduced when pre-built components such as Commercial

Off The Shelf (COTS) products are purchased or reused from existing develop-
ment projects. Of course the issue of inserting pre-built components is a matter
of integrability.

b. cost. It can be reduced by reusing pre-existing assets such as components.
c. projected lifetime of the system - This quality attribute can be supported if the

system scores well on the modifiability and portability attributes. If the system is
modifiable and portable it has an extended lifetime but there is also an increase
in the time-to-market quality.

d. targeted market - This is also a quality that depends on other quality attributes,
such as portability, usability, performance and of course the functional require-
ments that are out of the scope of this paper.

3.2 Evaluation of Quality Attributes

The evaluation framework that we shall use to assess the architecture is based on the
methods and attributes described in the previous subsection. More specifically the
methods used are the 3rd and the 5th, i.e. the evaluation results of the architectural pro-
totype, as well as architectural experience combined with the appropriate line of rea-
soning.

3.2.1 System Quality Attributes Discernable at Runtime
1. performance - This attribute is compromised by the use of the ‘layered systems’

architectural pattern, which, even though causes the system to be flexible and
modifiable, brings a lot of overhead due to inter-component communication. So
performance is naturally limited because of the layered nature of the system. The
use of Java has an effect on performance as well, since it is an interpreted lan-
guage. However, by putting a lot of functionality on the client, i.e. implementing a
thick client, the system ‘s performance is greatly enhanced since there is limited
client-server communication overhead. In addition, Java performs comparatively
better than other similar technologies, like for instance, CGI scripts, where every
operation leads to at least an HTTP request. Java applets perform much better since
the performance bottlenecks are limited to downloading the bundled classes. So
this attribute could be evaluated as fair enough.

2. security - the sole precaution taken in order to improve security of the system, is
choosing communications ports to be non-standard HTTP ports, and place the sys-
tem behind a firewall so as to block unauthorized requests. On the other hand there
is no provision in the architecture about denial of service or IP source address
spoofing attacks. Therefore the system is rather vulnerable to attacks.

3. availability – according to the implementation model of the architecture, there are
7 different server components (application server, WWW server and servlets en-
gine, FTP server, E-mail server, RDBMS, Chat server, Whiteboard server) and
they are all independent of each other. Therefore the failure of one server compo-
nent does not affect the others. Good practice would also be to disperse the server
components in different workstations, so that the crashing of one workstation will
not affect the others and further improve availability, though that would cause ex-
tra communication overhead. However there are no redundant components fore-
seen in the architecture to take over when the primary ones fail, or an error report-
ing mechanism. In conclusion the system has a mediocre availability.

4. usability – This quality attribute is probably the most difficult to assess in terms of
the system’s architecture, because it concerns the user interface and is mostly sub-
jectively appraised. In general we could claim that the flow of information to the
user is straightforward, correct and complete. Efficiency is not rated highly due to
the corresponding performance insufficiency. More evaluation results in this qual-
ity should be made available when the prototype is tested within its context of use,
i.e. with students participating in Open and Distance Learning courses.

3.2.2 System Quality Attributes not Discernable at Runtime
1. modifiability – Modifiability is met by the proposed architecture since the compo-

nent-based nature of the system causes it to be inherently modular, making de-
pendencies explicit and helping to reduce and control these dependencies [4]. This
means that a component can be changed to improve or adapt its functionality if
necessary, or it could even be replaced by another new and better component with-
out affecting the overall system. In other words, since the component interfaces are
clearly defined, components can be treated as black boxes and a change in a com-
ponent will not propagate changes to the other components it interacts with. That is
after all what locality of change is all about. Even if changes need to occur to a so-
ciety of components instead of a single one, this society can still be isolated so that

changes to it are made transparently to the rest of the system. Another argument for
the good modifiability of the LMS architecture is that the architectural design and
the implementation of the system are both performed in object-oriented languages,
so if changes occur in either the design or the code it is trivial to transfer them to
the other. Furthermore, except from the component nature of the architecture, the
layered structuring also leads to separation of concerns and therefore to locality of
change. To sum up, the architecture scores pretty high in this quality.

2. portability – The architectural prototype is to some extent portable since both the
client-side and the server-side code are written in Java, which is an interpreted plat-
form-independent language. In other words the Java Virtual Machine plays the role
of a portability layer between the Learning Management System and the environ-
ment. Of course, in reality, Java does not run on all platforms and therefore 100%
portability can’t be achieved. In addition, a lot of the GUI is also written in stan-
dard HTML, which is apparently platform-independent. As far as the third-party
components, such as the MySQL RDBMS or the Resin Web Server and servlets
engine, they have also been chosen to be portable or available in multiple plat-
forms. Therefore the architecture can be claimed to be acceptably portable.

3. integrability – This is also a quality that is satisfied because of the component-
based nature of the system, the explicit definition of components and connectors,
the predefined protocols of component interaction and the clearly defined inter-
faces of the different components. In cases where the interfaces of the components
under integration are incompatible and cannot be changed for various reasons, e.g.
they are COTS products, methods such as gap analysis [26] have been used to lev-
erage the incompatibility. The layered structure of the system also assists in parti-
tioning the functionality into separate components and thus promoting integrabil-
ity. Finally, since the legacy systems were all written in Java, they did not have to
be re-written or wrapped inside Java wrappers, but it did take some adaptation to
make them interoperable with the new components.

4. reusability – According to the same arguments as in the modifiability and inte-
grability quality, the components developed within the proposed architecture, hav-
ing clearly defined functionality and interfaces, and thus being loosely-coupled,
can be reused in different applications, may they be other LMS or not. This was an
anticipated result, since reusability and modifiability tend to support each other and
the system was evaluated as highly modifiable.

5. interoperability - This quality attribute is satisfied by the fact that, not only internal
component interfaces are identified, i.e. interfaces that allow the system’s compo-
nents to interoperate, but also external ones. For example the Metadata Manage-
ment System has an external interface, defined as a Java API, that can be used to
import or export sets of metadata that conform to an international standard, in our
case IEEE LTSC Learning Object Metadata [20].

6. testability – The proposed architecture promotes testability in a considerable de-
gree for the following reasons: the design is made using object-oriented UML con-
structs that have a one-to-one mapping to the code, making the architectural docu-
mentation clearly articulated and illustrating the exact system built; therefore the
testers can understand exactly where the error is caused and why. Furthermore, the
concepts of information hiding and separation of concern that have been achieved
in the component design, lead to tracing of faults to unique components. Again,

sources of errors are easy to distinguish inside a society of interoperating compo-
nents. On the other hand, the kinds of errors that have to do with the overall system
operation, such as system-wide failures, deadlocks in process synchronization etc.
cannot be tested explicitly with the proposed architecture, but rather implicitly by
creating test cases from the corresponding use cases. These are, of course, huge
classes of errors, but unfortunately don’t depend on software architecture.

3.2.3 Business Qualities
1. time to market. Instead of developing all the components from scratch, some of

them were located as COTS products, as seen in the architectural prototype de-
scription, and that has affected in a great reduction in time to market. Of course the
time of integrating COTS in the system is still not minimal, since it takes time to
search for them and customize the rest of the system so that they can be properly
integrated. Fortunately they were relatively easy to integrate, thanks to the compo-
nent, layered nature and pre-defined interfaces, as explained above.

2. cost. The use of COTS has also reduced the cost of the system under development.
It is noted though that for the sake of our architectural prototype, the COTS were
not purchased, since their license allows their use for non-commercial or instruc-
tional purposes. If they were indeed bought, then there would probably be a con-
siderably added cost. It is speculated though that still the cost of COTS is less than
the cost of developing them from scratch.

3. projected lifetime of the system. Since the system was evaluated to be quite modi-
fiable, it will manage change easily and thus extend its lifetime. Additionally the
portability of the system allows for it to claim a bigger share in the market and es-
tablish itself in many platforms, thus having better possibilities to last longer.

4. targeted market. Since the system was evaluated highly in the quality attribute of
portability, and fairly enough in usability and performance, it is estimated that the
system has increased potential for a good market share.

4 Conclusions and Future Work

There is little doubt anymore that a well-specified architecture is able to build quality
inherently into a system [4, 6, 7, 12]. Software architecture allows for the evaluation
of the system before it is built, thus saving a lot of resources that would have other-
wise been unnecessarily spent. It assists the architect into making the right design de-
cisions to correct the development process and finally to achieve the target qualities.

The general conclusion derived from the evaluation presented in this paper, is that
the proposed architecture scores pretty high as far as the development qualities are
concerned, but it fails to adequately meet most of the run-time qualities. The business
qualities are somewhere in the middle: the architecture achieves an acceptable score
in the business section. This result makes sense from an architectural point of view,
since the development qualities are often in direct conflict with the run-time qualities
while, on the other hand, development qualities usually promote business qualities.
The controversy between the development and the run-time qualities are further
documented in these remarks:

1. The layered nature of the system supports modifiability and integrability but has a
considerable cost on performance since there is a lot of communication overhead
between independent components.

2. The use of the Java programming language has a negative effect on performance
since it is an interpreted language. On the other hand being an interpreted language
and relying on a virtual machine, Java is platform-independent, thus allowing port-
ability to an extent. Moreover, Java allows for a direct mapping, from the object-
oriented architectural design into the implementation language, thus leading to in-
creased modifiability of the system.
Conversely, the mutual support between the development and the business quali-

ties is illustrated in the following observations:
1. The use of COTS and other third-party components is feasible due to the high inte-

grability and modifiability of the system. This in turn promotes the business quali-
ties, such as reduced time to market as well as reduced cost.

2. The system’s modifiability guarantees the effective management of change, there-
fore it promotes an increased lifetime. Portability also promotes the system’s life-
time as well as its targeted market.
It is rather evident that the various qualities of the system are quite mingled and in-

ter-dependent and might support or diminish one another. It is the job of the architect
to try and maximize the more desirable ones, and at the same time, minimize the con-
sequent effect for the less desirable qualities. This is quite a challenging problem with
many daunting tradeoff issues, but it could be performed more easily and systemati-
cally with the adoption and use of a formal evaluation method that provides more
hard data and quantifiable results.

Another conclusion is that the evaluation method based on the architectural proto-
type is best for evaluating quality attributes discernable at runtime. On the other hand
experience-based assessment, fits better with development qualities such as modifi-
ability, portability etc.

The work presented in this paper is part of research conducted on the software en-
gineering of a Learning Management System, with emphasis on software architecture.
Future work in this area initially includes the adoption of a custom, formal evaluation
method to assess the quality attributes and produce more accurate, solid results as
well as tradeoff analysis. Furthermore, the feedback from the evaluation presented in
this paper is being used to re-engineer the system in order to improve some of the
low-score quality attributes. It is of paramount importance to inspect the methods, as
well as the effort required to re-engineer the system under development. Finally the
adoption and use of architectural patterns [17] will also be investigated with respect to
the effect such patterns have on the quality attributes.

References

1. Oleg, S., Liber, B.: A framework of pedagogical evaluation of Virtual Learning Environ-
ments. Available online at [http://www.jtap.ac.uk/reports/htm/jtap-041.html], (1999).

2. Avgeriou, P., Papasalouros A. and Retalis, S.: Web-based learning Environments: issues,
trends, challenges. Proceedings of the 1st IOSTE symposium in Southern Europe, Science
and Technology Education, Paralimni, Cyprus, (2001).

3. Bosch, J.: Design and Use of Software Architectures. Addison-Wesley, (2000).
4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-

Wesley, (1999).
5. Eriksson, H. and Penker, M.: Business Modeling with UML - Business Patterns at work.

John Wiley & Sons, (2000).
6. Clements, P., Kazman, R., Clein, M.: Evaluating Software Architecture. Addison-Wesley,

(2002).
7. Jacobson, I., Booch, G. and Rumbaugh, J.: The Unified Software Development Process. Ad-

dison-Wesley, (1999).
8. IEEE Learning Technology Standards Committee: Draft Standard for Learning Technology

Systems Architecture (LTSA). Draft 9, (2001).
9. Thorne, S., Shubert, C., Merriman, J.: OKI architecture overview. OKI project document,

(2002).
10. Cisco Systems: Blueprint for Enterprise E-learning. white paper, (2002),
11. Retalis S. and Avgeriou P.: Modeling Web-based Instructional Systems. Journal of Infor-

mation Technology Education, Volume 1, No. 1, pp. 25-41, (2002).
12. Kruchten, P.: The Rational Unified Process, An introduction. Addison-Wesley, (1999).
13. Booch, G., Rumbaugh, J., and Jacobson, I.: The UML User Guide. Addison-Wesley, (1999)
14. Rumbaugh, J., Jacobson, I. and Booch, G.: The UML Reference Manual. Addison-Wesley,

(1996).
15. Avgeriou, P., Retalis, S., Papasalouros, A., Skordalakis, M.: Developing an architecture for

the Software Subsystem of a Learning Technology System – an Engineering approach. Pro-
ceedings of International Conference of Advanced Learning Technologies, Madison, Wis-
consin, IEEE Computer Society Press, (2001), pp. 17-20.

16. Avgeriou, P., Retalis, S., Skordalakis, M.: A Software Architecture for a Learning Man-
agement System. Post-proceedings of the 8th Panhellenic Conference in Informatics, to be
published in the Lecture Notes in Computer Science series, Springer-Verlag, (2002).

17. Buschmann, F., Meunier, R., Rohnert, H., Sommertland, P. and Stal, M.: Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons, (1996).

18. Shaw, M. and Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, (1996).

19. Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice. Addison-Wesley,
(1998).

20. IEEE Learning Technology Standardization Committee (LTSC): Draft Standard for Learn-
ing Object Metadata, P1484.12/D6.1. http://ltsc.ieee.org, (2001).

21. IMS Global Learning Consortium: IMS Question & Test Interoperability Specification-
Best Practice and Implementation Guide, version 1.2.1. http://www.imsproject.org/, (2001)

22. Kazman, R., Abowd, G., Bass, L,; & Clements, P.: Scenario-Based Analysis of Software
Architecture. IEEE Software 13, 6, (1996), pp. 47-55.

23. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation.
TECHNICAL REPORT CMU/SEI-2000-TR-004 ESC-TR-2000-004, (2000).

24. IEEE: Recommended Practice for Software Requirements Specifications, IEEE Std. 830-
1993. (1993)

25. ISO/IEC 9126: Information technology-Software product evaluation-Quality characteristics
and the guidelines for their use. (1993).

26. Cheesman, J. and Daniels, J.: UML Components: A Simple Process for Specifying Compo-
nent-Based Software. Addison-Wesley, (2000).

Acknowledgement. The work described in this paper was performed as part of the MENU pro-
ject (Model for a European Networked University), which is partly funded under contract
NO001ELEARN011of the European Community.

