

Submission for the

Journal of Multimedia Tools and
Applications

CRITON: A Hypermedia Design Tool

Keywords: hypermedia design, web site design, CASE tool, design tool, navigation,
page metaphor.

Affiliation of authors

Paris Avgeriou Symeon Retalis
National Technical University of Athens
Department of Electrical and Computer

Engineering
Software Engineering Laboratory
15780 Zografou, Athens, Greece

Tel: ++301 7722487, Fax: ++301 7722519
Email: pavger@softlab.ntua.gr

University of Piraeus,
Department of Technology Education and

Digital Systems
80 Karaoli & Dimitriou

185 34 Piraeus
Tel: 0030 210 414 2765
Fax: 0030 210 414 2753
e-mail: retal@unipi.gr

CRITON: A Hypermedia Design Tool

Abstract
The WWW has turned into a development and run-time environment for large-scale and
complex applications. Such sophisticated applications are being deployed in increasing
numbers without having been developed according to appropriate methodologies, tools
and quality standards. The reason is not only that the hypermedia industry resists to
utilize formal methods, but also that these methods and corresponding tools are very few
and of dubious standards. The consequence is that the hypermedia applications being
developed are of poor functionality and lack qualities such as modifiability, usability
and maintainability. Especially the design phase is one of the phases that lack sufficient
support from methods and CASE tools. This paper presents CRITON, a cross platform
tool, built to support a hypermedia design method within an integrated environment.
CRITON manages all three aspects of hypermedia design: conceptual design,
navigational design and graphical user interface design, utilizing well-established
theories and practices from software as well as hypermedia engineering. It employs
these designs to generate a preliminary, exemplary form of the hypermedia application
for the purpose of assessing the designs before the implementation phase.

1 Introduction - Motivation
The ubiquity of the Internet and the World Wide Web in all the fields of the

new knowledge-based economy is setting new demands and requirements for the
engineering of hypermedia applications. The evolution from hand-crafted personal web-
pages to the multi-billion market of complex e-learning, e-commerce and e-government
applications has happened too fast and is not to be taken lightly while developing such
applications. Regretfully, arbitrary, anarchic approaches and ad hoc methodologies that
were originally used for web site development, still dominate the current state of
application development in the Web environment. It is more than evident that web sites
cannot be designed and implemented like they used to be. Instead these trial-and-error
approaches, must relinquish to methodic and systematic engineering approaches for
hypermedia development [11, 12, 15]. Therefore the construction of high quality
hypermedia applications within specific time and fund limits inflicts the need for
development methodologies.

In accordance to the definition from software engineering practices, a
methodology for engineering hypermedia applications is a set of process models,
methods, tools, documentation aids and guidelines that help the developers in building
quality hypermedia applications, respecting the constraints imposed in time and
resources. Such a methodology, of course, is not a mere collection of elements but
advocates specific development philosophy and offer specific benefits, such as risk
mitigation, quality assurance, the ability to manage change etc. [13]. Of all the different
constituents of methodologies, this paper focuses on CASE (Computer Aided Software
Engineering) tools, which can significantly promote the efficiency of development work,
as they provide automated or semi-automated support for processes and methods [13].

In contrast to generic software engineering, where significant progress has been
made the past twenty years, there is still a great deal of work to be done on formalizing
process models, and defining methodologies or design methods for hypermedia

applications [11]. The same argument stands for the corresponding tools, as hypermedia
application processes lack CASE tools that could support the analysis, design or
evaluation phases [18, 21], and only provide low-level implementation tools, such as
web page and web site editors.

In this paper we do not intend to tackle the hypermedia development process as
a whole but rather to focus on the design phase by presenting a CASE tool, named
CRITON that supports a simple design method. Good design is crucial, as it can
provide a blueprint for the communication between all the stakeholders, i.e. the
development team, the clients, managers etc. Moreover, it can offer guidelines to the
implementers and accelerate the implementation process. It can also provide an
analytical guide for the maintenance of the hypermedia application, and is the best way
to ensure scalability of the application by providing a transferable abstraction of the
system. An efficient design tool is required in order for the design process to be
supported in a customized, uniform, integrated environment. The design method
supported by CRITON follows the object oriented hypermedia design principles and is a
stepwise method, where the interim products are the conceptual, navigational and
interface design. It is noted that even though hypermedia applications, include many
kinds of applications such as web sites, CD-ROMs and information kiosks, we basically
refer to the category of web sites in this paper.

The rest of the paper is structured as following: In section 2 the relevant
research work in the area of hypermedia design tools is given, including both research
approaches, as well as commercial products. In section 3, an overview of the three steps
of the design process are described, followed by an analysis of the CRITON CASE tool
in section 4. The tool is presented through a case study dealing with the design of web-
based courseware, a rather popular hypermedia application nowadays. In section 5 the
evaluation of the tool from its up to date use in hypermedia development projects is
presented and some thoughts about its future expansion are shared. Finally, section 6
contains some concluding remarks.

2 Related Work
CRITON is a hypermedia design tool that supports the whole of the design

process, incorporating conceptual, navigational and interface design. It adopts the data
models that this design method specifies and follows a step-by-step design process. It
provides an integrated environment with a uniform interface and embraces all three steps
of the design method in a whole. Relevant research and development work includes
three categories of tools: hypermedia CASE tools that support design methods or
methodologies; commercial web site development tools that offer design facilities; other
generic tools that can be used for designing hypermedia. This section presents these
three categories of tools and states the differences between them and the proposed
design tool.

2.1 Hypermedia CASE tools
At present there are few hypermedia design methods and methodologies that

have been originated in academic research centers and aim to provide a systematic
approach in hypermedia development. In some of these approaches, customized tools
have been especially constructed so as to provide a solid development framework and

ease the work of the development team. The most important of these approaches
OOHDM-Web, RMCase, and WebRatio are briefly described hereafter.

A successful and well-established method for hypermedia design is the Object-
Oriented Hypermedia Design Model (OOHDM) [17, 19, 20], which uses object-oriented
techniques to produce a hypermedia design model and leverages the engineering of
complex well-structured hypermedia applications. A tool that was built to support this
design model is OOHDM-Web [18, 21], which provides support for navigational design,
abstract interface design, as well as automatic generation of web pages. CRITON offers
roughly the same features with OOHDM-Web, though in CRITON the design takes
place visually through a graphical user interface, while OOHDM-Web uses text
configuration files and command-line ‘make’ programs. Also CRITON supports the
conceptual design phase, which is something that OOHDM-Web lacks.

A methodology that provides step-by-step hypermedia development is the
Relationship Management Methodology (RMM) [8, 9, 10]. RMM offers complete
representation of the semantic schema and the navigational schema, and follows the
traditional Entity-Relationship model to standardize the conceptual and navigational
design but gives limited support to the interface design. The Relationship Management
Methodology is aided by the RMCase [3], a graphical CASE tool that implements the
design steps of the methodology. In specific it supports two design steps: conceptual
design through Entity-Relationship design and ‘Slice’ design, which is the design of the
entity details and navigational design. Compared to CRITON, it can be claimed that
RMCASE provides a similar conceptual and navigational design, and they both offer a
preview of the hypermedia application for inspection and evaluation. On the other hand
CRITON offers a much more advanced data model, based on the Object-Oriented
paradigm, uses the well-established Unified Modeling Language [1, 16] and also
provides a complete interface design phase, which is absent in RMCase.

The Web Modeling Language (WebML, http://www.webml.org/) [2] is a
modeling language especially designed to support abstract modeling of web sites and
includes conceptual, navigational and interface design, as well as a type of user
modeling. The corresponding tool that supports WebML is called Webratio
[http://www.webratio.com/]. Webratio is also quite similar to CRITON, their differences
being that Webratio performs interface design through textual coding with XML, while
CRITON achieves this graphically.

2.2 Web site implementation tools
Concerning the web site implementation tools, most of them put main emphasis

on web site implementation and support design only in a minimal and simplified way,
e.g. by providing elementary navigational diagrams. Having excluded the simple web
page editors that provides HTML coding, the rest of the web site implementation tools
can be classified into two categories [18]:

1. Web site editors, which except for supporting web page editing, also provide a
mechanism for the easy creation of a navigational design schema as well as for the
management of a set of pages like a file management system does. Examples of such
tools are Microsoft FrontPage [http://www.microsoft.com/], Macromedia DreamWeaver
[http://www.macromedia.com], NetObjects Fusion [www.netobjects.com] and
CyberStudio [http://www.golive.com]. Most of these tools also provide a more
structured development by defining a common look in the form of templates. In these

tools though there is a complete absence of a conceptual design phase, as well as
abstract interface design, since the focus is on the implementation.

2. Web Site Building Environments, which create hypertext documents at run-time
by instantiating templates. Examples of such tools are Vignette Story Server
[www.vignette.com], and Allaire Cold Fusion [www.allaire.com]. These tools are also
effective in automatic generation of web sites, using various template mechanisms but
are completely deficient in providing higher-level design mechanisms.

In conclusion, web-site implementation tools are very useful, if the development team
has already made the conceptual, navigational and abstract interface blueprint of the
hypermedia application, as the whole design phase is very poorly supported by them, if
supported at all.

2.3 Generic tools that support hypermedia design.
This category is comprised of tools like modeling tools that serve general-

purpose software development but can be customized for use in hypermedia design as
well. For example, the Unified Modeling Language, which is becoming a de facto
standard for modeling languages in the software industry is supported by a number of
tools, and can effectively be used for designing hypermedia application at an abstract
level. Examples of such tools are both commercial tools such as TogetherSoft Control
Center http://www.togethersoft.com/products/controlcenter/index.jsp, and open source
tools such as ArgoUML [http://argouml.tigris.org/].

 A tool that goes one step further from the above is Rational Rose
[www.rational.com/rose], a visual modeling tool for software development that supports
the UML, and can be extended to perform other activities such as business modeling,
data modeling and web modeling [14]. This tool incorporates the Web Modeler, which
is a set of functions, templates and pre-defined UML concepts that help a development
team to model a web application. Conceptual design can be performed quite effectively,
as well as navigational design with the constructs available by the Web modeler, while
interface design is not supported. It is obvious that such tools can aid in hypermedia
design but only partially, since they fall short compared to specialized hypermedia
design tools like CRITON that offer more specialized design features like abstract
interface design or preview generation.

3 Theoretical Underpinnings - A Method for
Designing Hypermedia

CRITON advocates an object-oriented design method specifically created for
the needs of hypermedia design. It proposes a stepwise design process, as shown in
Figure 1: Conceptual Design, Navigational Design and Interface Design. The
intermediate products of each step are validated according to guidelines for hypermedia
design (checking structural, navigational, aesthetics and functional issues). The whole
design process is considered to be iterative, where in each iteration loop the designs are
evaluated and the feedback from the evaluation is used for their improvement, until they
reach the desirable level. The evaluation is based on the tool’s ability to generate the
preview of the hypermedia application, which is a semi-functional prototype of the
application under development.

In order to explicate the design steps we present some examples of an exemplar
hypermedia courseware application that us comprised of an electronic book and other
resources.

Navigational Schema

Hypermedia
Application description

Navigational Design

OO Conceptual model

Design step
Product Conceptual design

Templates and
pages GUI

Interface Design

Process

Evaluation, qualitative
review and revisions

Design

Hypermedia
Design

Figure 1 – The three design steps

1. Conceptual Design – In this step, the description of the hypermedia application is
transformed into a conceptual design following an object-oriented data model and a
conceptual design framework. According to this framework, a hypermedia application is
a mosaic of resources such as hierarchically arranged sets of pages, dynamic pages
created on-the-fly, site maps, search engines, communication tools etc. For each type of
webpage, the designer must specify the elements that comprise it, such as media
elements, active behavior, etc. To serve the needs of the object-oriented data model, the
design method has adopted the Unified Modeling Language
[http://www.rational.com/uml], a graphical modeling language widely adopted by the
software industry and strongly supported by the Object Management Group
[http://www.omg.org]. In particular, conceptual design adopts use case diagrams and
class diagrams from the UML repository. Use case diagrams depict the ways that the
hypermedia application is used by external actors, or in other words use cases specify
the system requirements. Class diagrams contain object-oriented constructs such as
classes, interfaces, packages (grouping mechanisms), and various relationships between
them and aim at specifying in detail the hypermedia application structure at an abstract
level. Figure 2 depicts a class diagram using the UML notation that shows some classes
of specific pages of contents and how they all inherit from the class “CONTENT
PAGE” of the stereotype “WEB PAGE”.

Figure 2 – Class Diagram of the courseware content pages

3. Navigational Design – In this step the navigational schema of the hypermedia
application is analytically designed, so that it is clearly specified how web pages are
inter-connected with hyperlinks. The data model of the navigational design contains
web pages, single and bi-directional hyperlinks. The navigational design provides a
way of checking the implementation of all the hyperlinks in the final product. More
importantly it facilitates the maintenance of the web site, especially when web pages
are added or deleted and hyperlinks to and from them have to be updated. In this
way, the well-known problem of ‘dangling’ links can be avoided. The navigational
structures proposed for this kind of design, are well accepted by many hypermedia
design approaches, such as HDM [5,6], RMM [8, 9, 10] and OOHDM [17, 19, 20].
More specifically they are: a) indices that provide direct access to every indexed
node, b) guided tours which are linear paths across a number of nodes and c)
indexed guided tours which combine the two previous structures. The navigation
through the paragraphs of a chapter of an on-line book is shown in Figure 3 using
indices, a guided tour and an indexed guided tour.

 (a) (b) (c)

Figure 3- Navigation through the paragraphs of chapter 1 with
a) indices, b) a guided tour, c) an indexed guided tour

3. Interface Design – In this step, the Graphical User Interface (GUI) of the hypermedia
application is designed, that is the content, layout and ‘look and feel’ of the web pages.
Hypermedia application interface design is ruled by the principles of the page metaphor,
a practice taken from multimedia engineering where it has been extensively adopted and
used. Page metaphor is used to specify the page components with graphic symbols and
deploy them on the screen showing their layout. Therefore, with the use of graphical
semantics, the design depicts the page form just as it will be implemented. The data
model for the interface design contains six kinds of page components: plain text,

multimedia elements, active elements, hyperlinks, frames and forms. The designs made
are actually re-usable page templates. For instance, if we design the page template of
one paragraph of an on-line book in a hypermedia application, then all the other
paragraphs of the book might have the same look, using the same components with the
same layout, have the same frames etc. A page template of a paragraph of the electronic
book in our example is shown in Figure 4. During the interface design, except for
designing page components and their layout, we define certain metadata on them. All
page components can have metadata that describe various aspects of them, like author
details, type or format etc. The definition of metadata during the design phase is of
paramount importance as it facilitates the management of the page resources and their
accessibility and reusability.

Figure 4 - Page template for the paragraph 3.3 of the on-line instructional book

4 The CRITON CASE tool
CRITON has been implemented in Java and can be considered as a 100% pure

Java application, and thus fully cross-platform. In order for the design steps to take place
concurrently and in parallel, the tool adopts the model of Multiple Document Interface.
This model is instantiated by having multiple internal windows, each of which
represents a different design process. CRITON’s technical infrastructure comprises
many of the latest Java APIs, like Swing, 2D Graphics, and the JPEG encoder/decoder.

CRITON generally follows a design philosophy which is often met in relevant
environments with standard GUI components like menus, menu bars, project trees,
design toolbars, and design frames bearing design windows, as seen in Figure 5. Except
for the standard ‘File’ and ‘Edit’ menus, there is also a ‘Look & Feel’ menu where the
user can alter the general appearance of the application by selecting one of the options
that Java provides. The ‘Build’ menu refers to the tool’s ability to generate a preview of
the hypermedia application.

The project tree is a tree structure that represents the hypermedia application
design. The nodes of the first level represent the three design steps, whereas the nodes of
the following levels represent the products of each step. In particular the second level
nodes are the different designs of each step and all other nodes have a special meaning
according to which of the three designs they belong to. For instance the children of a
node that represents a navigational design are its web pages. Finally there are certain
operations that can be performed on each node, e.g. it is possible to export the designs
represented by the second level nodes into the JPEG graphical format.

The design toolbars contain all the elements used for the implementation of
each design. There are three different toolbars corresponding to each design category
and they are activated according to which design is currently being edited. The elements
in each toolbar belong to the respective data model; e.g. the conceptual design toolbar
contains the UML graphical symbols. The design process takes place with the designer
selecting an element from the toolbar, placing it onto the design windows and then
specifying some of its characteristics, such as name, documentation or other
specification data. All the elements specified in the designs can of course be dragged
and dropped, deleted, cut, copied, pasted, renamed and have certain specifications
viewed and edited. These specifications depend on the semantics of each element, in
accordance to its data model.

The design tool instantiates the three design steps by having three design
processes with three different data models and three different toolbars. All the designs
produced during the design steps described earlier can be extracted into the JPEG
graphical format. This means that the project deliverables and reports can be easily
enriched with the designs in whatever format they are made (Word or PDF documents,
HTML files etc.).

Figure 5 – The initial window of CRITON

1. Conceptual Design (or architectural design) – it takes place with the use of UML
and the object-oriented design framework. The toolbar of the conceptual design involves
the following elements:

class, package, interface, actor, use case, note, association, dependency, link to note,
aggregation, generalization, uni-directional association and refinement/realization. The
first six elements are object-oriented entities, that have specific semantics as defined by
UML and the rest are relationships between them. The specification of these elements,
according to their semantics, may include name, stereotype, documentation, attributes,
operations, cardinalities, and roles. Figure 6 depicts the specification of a class that
represents a web page containing “Frequently Asked Questions” about a course.
CRITON provides strict type validation concerning the relationships that are allowed
between elements according to the specification of UML [16]. For example a designer
cannot relate a class and a package with an aggregation relationship, as the modeling
language forbids it.

Design
toolbars

Project
tree

Menus

Menu bar

Design
Windows

Figure 6 - Specification of the FAQ web page

During this design process, the designer attempts to describe the hypermedia
application in a conceptual level and make an abstract but complete representation of it.
The designer needs to follow the object-oriented design framework and analyze the
hypermedia application into components, and the components into web pages. All these
web pages must be instantiated in the next design phase, the navigational design, and
must be connected with hyperlinks.

2. Navigational Design – it uses the aforementioned navigational structures, i.e. indices,
guided tours and indexed guided tours to describe the way, web pages are connected
with hyperlinks. The toolbar of the navigational design involves the following elements:

web pages, single hyperlinks and bi-directional hyperlinks. Bi-directional hyperlinks
between two pages are equivalent to two single ones of opposite direction between those
pages. The specifications of the web pages include name, URL, documentation and page
template, as illustrated in Figure 7. The page name needs to be unique in each design so
that no two different pages have the same name in the web site, even though the same
page may appear in several designs. This means that two page objects that have the same
name actually refer to the same page. The URL is the Internet address of the page and
can be either a complete URL or a relative address, for example regarding the starting
point of the site. Finally the page template defines the name of a GUI template that this
page is related to. This is important in order for the page to have its interface designed
according to that template. For example all the pages that are paragraphs of the on-line
book will be related to the “book paragraph” template. The designer can either specify a
new page template or select one from a scroll-down list. The page template field in the
page specification is necessary for the next design step, so every page must be related to
a template. In the interface design, initially each template is designed and after that the
design continues for every page that refers to that template. In the project tree, under
each navigational design, we can see all the web pages of that design as leaves. These
leaves can be used to create the designs for the corresponding web pages. The design

process follows a top-down tree-like flow: first the designer makes the navigational
design for the starting node (probably the home page of the web site) and then
recursively the designs for all the pages that the starting node is connected to.

Figure 7 – Specification for a web page representing a paragraph of the on-line
book

3. Interface Design – After the navigation of the whole hypermedia structure has been
specified, the development team needs to design the generic interface of the page
templates, as well as the specific interfaces of the pages themselves. The interface
design in general takes place with the use of the page metaphor. The toolbar of the
interface design involves the following elements:

plain text, multimedia elements, active elements, hyperlinks, frames and forms. All these
elements can also be considered as part of the UML semantics. In particular these
elements are defined as UML class stereotypes according to the UML extension
mechanism, i.e. they are classes with some extra semantics. The specification of these
elements includes name, documentation and various metadata. The metadata are
different for each modeling element and can suggestively be format, author, size, file
name, run time environment etc. Embedding the metadata into the designs is a very
useful feature, as it allows fast and easy access and modification and a single place of
storage for the metadata. Figure 8 depicts the specification of metadata for an active
object. The interface design commences from the design of the page templates, as these
have been specified during the navigational design and carries on with the interface
design of all the pages. When a page’s template is specified in the navigational design, a
new blank interface design for the template is automatically created and inserted in the
project tree. Also another blank interface design is created for the page itself and
inserted in the project tree as a child of the former. If the template already exists then
only the second design is generated. When a template design has finished, then all of its
children can import that design and start customizing it.

Figure 8 – Specifying metadata for an active object

The generation of the hypermedia application preview. The three design
steps of the design method that CRITON supports, generate three different products: the
conceptual design, the navigational schema and the interface design. Based on these
products alone, the development team can proceed with the implementation of the
hypermedia application. In order to close the gap between the design phase and the
implementation phase, CRITON generates the preview of the hypermedia application,
which is a set of first-cut web pages inter-connected with hyperlinks. In detail the tool
creates a web page for every page designed during the navigational design and connects
it with hyperlinks to the appropriate pages. The contents of such a page is the name
given by the designer, which is also the page’s title, the hyperlinks to other pages and a
JPEG image, which corresponds to the interface design of this particular page. For
instance the preview of paragraph 3.3 of the on-line book is shown in Figure 9. The
preview conceptualizes an initial form of the hypermedia structure and interface of the
hypermedia application, which is very close to the final implementation and many useful
conclusions can be derived from it and fed into the design process. When the evaluation
of the preview concludes that the hypermedia application satisfies the goals specified
during the analysis phase of the engineering methodology, the implementation may
begin. All that is left to be done for the implementation is to build the single components
of the page and insert them exactly as they have been specified.

Figure 9 – HTML page created by the production of the preview for the paragraph
3.3 of the on-line instructional book

5 Evaluation
CRITON has been used in small-scale web-based hypermedia development

projects during the Fall Semester of 1999, 2000 and 2001 for the needs of the
undergraduate course “Software Engineering” and the postgraduate course “Web
Engineering” at the National Technical University of Athens. The students that took part
in the hypermedia application development had a solid computer science background
and some of them had already been involved in hypermedia development projects in the
past. After they had completed their course projects the development teams filled in an
evaluation questionnaire, which was intended as a source of qualitative feedback. The
questions asked in the questionnaire regarded the tool’s usability, efficiency, adequate
documentation material and level of support to the design method and its three steps.
The students were also asked whether the tool’s capability of exporting the designs in
the JPEG format and generating the hypermedia application preview were helpful in the
design process. Finally the students were invited to propose enhancements to the tool’s
features and capabilities.

The evaluation of the tool under this test bed has given some encouraging
results and some valuable remarks for the future evolution of the tool. The development
teams have noted that it is quite important to use a uniform environment that embraces
the whole of the design process, which they need to follow. The data models chosen
were also appraised positively: most of the students were already familiar with UML as
it has become part of several courses and the navigational and user interface data models

were considered straightforward. Also the platform independence has enabled the tool to
run in different hardware and operating systems, thus alleviating the limitations of
hardware or software dependant applications. Moreover there were some positive
comments about the tool’s ability to extract all designs in the JPEG format and therefore
making it easy to embed designs in web pages or other document formats as project
deliverables. The trade-off, for platform independence is reduced run-time execution, for
example when the JPEG encoding is taking place. That can be diminished by compiling
the code in a specific platform, although this would contradict our cross-platform
philosophy.

Although in this first version of CRITON we attempted to cover as much of the
hypermedia application design process as possible, there are a few additions and
improvements that can be made. The next versions will provide enhancements in matters
like the design of active elements (CGI Scripts, Javascripts, Java applets) with UML
activity diagrams, the full automation of report-generation, and the optimization of the
interface data model. There will also be an enhancement to the hypermedia application
preview, so that the implementation can actually take place by editing the automatically
generated web pages of the preview. Finally, the tool will be supported by on-line help
and the metadata of the interface elements will be improved so that they comply with
well-accepted or official standards. These standards can either be general such as the
Dublin Core MetaData Element Set [4] or specific such as the MPEG-7 for multimedia,
or the IEEE LTSC Learning Object Metadata [7], for e-learning applications. The design
tool CRITON will continue to evolve in order to improve the engineering approach in
designing hypermedia applications.

6 Concluding Remarks
The software industry and research institutions are spending a lot of resources

in research and development, in order to create hypermedia applications of high quality.
However in most cases the development teams use an ad-hoc approach, which does not
guarantee end-quality. The development of hypermedia applications is crucial, as all of
these efforts must be based on sound methodologies, which will guarantee that the final
product meets certain quality criteria. Since the risk of failure must be minimized at all
circumstances, the use of methodologies is not only useful but also rather imperative.
Moreover, tools that support methodologies can be extremely important because they
ease and speed up the development process, and assure the correct use of it.

The CASE tool CRITON has been constructed to support a specific three-step
design method for hypermedia applications. It combines three design steps in an
integrated environment and it relates these steps making the hypermedia application
design, a consecutive and iterative process. For the conceptual design, it uses a
standardized object-oriented modeling language, the UML, whereas for the navigational
design it uses a widely adopted data model. The interface design is based on the page
metaphor, which is also acknowledged between the hypermedia developers and
introduces the specification of metadata during the design. Finally the hypermedia
application preview is a function that allows the development team to examine a
depiction of the final product and receive valuable feedback from it.

References

1. G. Booch, J. Rumbaugh, and I. Jacobson, The UML User Guide, Addison-Wesley,

1999.

2. S. Ceri. P. Fraternali, A. Bongio, “Web Modelling Language: a modelling language

for designing Web sites”, proceedings of WWW9 Conference, Amsterdam, May

2000.

3. A. Diaz, T. Isakowitz, V. Maiorana and G. Gilabert, “RMC: A Tool to Design

WWW Applications”, The World Wide Web Journal, Issue One, Dec. 1995.

4. The Dublin Core, “Dublin Core Metadata Element Set Reference Description, v

1.1”, The Dublin Core 1999 (http://purl.org/dc)

5. F. Garzotto, D. Schwabe, P. Paolini, “HDM- A Model Based Approach to

Hypermedia Application Design”, ACM Transactions on Information Systems, Vol.

11, #1, Jan. 1993, pp. 1-26.

6. F. Garzotto, L. Mainetti, P. Paolini, “Navigation in Hypermedia Applications:

Modeling and Semantics”, Journal of Organizational Computing and Electronic

Commerce. 6, 3 (1996), 211-238.T.

7. IEEE Learning Technology Standards Committee, “Draft Standard for Learning

Object Metadata”, [http://ltsc.ieee.org/doc/wg12/].

8. T. Isakowitz; E. Stohr; P. Balasubramaniam, "RMM, A methodology for structured

hypermedia design", Communications of the ACM, August 1995, pp 34-48

9. T. Isakowitz, A. Kamis and M. Koufaris, “Extending the capabilities of RMM:

Russian Dolls and Hypertext”, Proceedings of HICSS-30, 1997

10. T. Isakowitz, A. Kamis, M. Koufaris, “The Extended RMM Methodology for Web

Publishing”, Working Paper IS-98-18, Center for Research on Information Systems,

1998.

11. D. Lowe, W. Hall, Hypermedia & the Web, an Engineering Approach, John Wiley

& Sons: 1999.

12. Murugesan, S. (1999), "Editorial", ACM SIGWEB Newsletter, Vol. 3 (3), October

1999.

13. Roger S. Pressman, Software Engineering: A Practitioner ‘s Approach, McGraw

Hill, Fifth Edition, 2000.

14. Terry Quatrani, Visual Modeling with Rational Rose and UML, Addison-Wesley

1998.

15. S. Retalis, Y. Psaromiligkos, P. Avgeriou (2000). “Web Engineering: New

Discipline, New Educational Challenges”, Information Services & Use, ISSN 0167-

5265, Vol 20, Num 2,3 pp. 95-108, IOS Press, 2000.

16. J. Rumbaugh, I. Jacobson and G. Booch, The UML Reference Manual, Addison-

Wesley, 1999.

17. D. Scwhabe & G. Rossi, “The Object-Oriented Hypermedia Design Model

(OOHDM)”, Communications of the ACM, Vol. 35, no. 8, August 1995.

18. D. Schwabe & R. de Almeida Pontes, “OOHDM-WEB: Rapid Prototyping of

Hypermedia Applications in the WWW”, Tech. Report MCC 08/98, Dept. of

Informatics, PUC-Rio, 1998.

19. D. Schwabe and G. Rossi, "An Object Oriented Approach to Web-Based

Application Design", Theory and Practice of Object Systems 4(4), 1998. Wiley and

Sons, New York, ISSN 1074-3224)

20. D. Schwabe and G. Rossi, "Developing Hypermedia Applications using OOHDM",

Workshop on Hypermedia Development Processes, Methods and Models,

Hypertext'98, Pittsburgh, USA

21. D. Schwabe, R.A. Pontes and I. Moura, "OOHDM-Web: An Environment for

Implementation of Hypermedia Applications in the WWW", SigWEB Newsletter,

Vol. 8, #2, June de 1999

REPLIES TO REVIEWER COMMENTS
(reviewer comments are in italics, while replies are in normal fonts)

Reviewer #1: This is a nice paper about a nice system. However it is not quite ready
for academic journal publication.

The tool presented in the paper is presented as a courseware design tool. Really, it is
a hypermedia plus Web site design, organization, and management tool. As such, it is
an interesting and useful tool. But it seems the *only* thing that differentiates this so-
called courseware tool from a generic hypermedia tool is that Learning Object
Metadata (or other education-specific metadata such as SCORM) can be associated
with pages. If this *is* the only feature that makes the tool a *courseware* tool, then
the paper should explain what this metadata looks like, how learning metadata is
supposed to be usable in a broad context, and most importantly, how the designer
using CRITON actually specifies and associates metadata with the objects of interest
in the tool. If the support of learning metadata is not the only feature that makes
CRITON a courseware (as opposed to hypermedia) tool, then explain how CRITON is
in fact a courseware tool. How does it support the instructional design principals and
pedagogical theories of CADMOS? The tool *could be* presented as a
hypermedia/Web site (not necessarily courseware) design tool. In fact, in the
conclusion the paper says: "The CASE tool CRITON has been constructed to support
a specific design method and *can* be used for Web-based courseware design (my
emphasis). In either case, and especially if it is presented as a hypermedia/Web site
tool, the paper requires more information about how CRITON differs from other tools
like FrontPage, WebSphere Designer, etc. From the paper it appears that one
differentiation is that CRITON integrates 3 design phases into a single
environment/tool. This should be emphasized IF it is indeed the differentiator from
other tools.

We have completely agreed with the suggestion to present CRITON as a hypermedia
design tool, following the above comments. The tool has been mostly tested and used
for courseware design though and therefore we left the examples concerning
hypermedia courseware design, justified by the fact that courseware is a popular
hypermedia application. Emphasis has been put on presenting the relevant research
work in hypermedia design tools, web site development tools and modelling tools, in
Section 2. The differences between CRITON and the rest of the tools presented as
relevant work have been stated.

Other than these issues, some specifics:

1. The paper is not very well written at the sentence level. It needs substantial editing
from the perspective of English word usage and sentence structure.

The paper has been re-edited in an attempt to satisfy the above comments.

2. P. 2, in the list of 4 uses of WWW in education, the 2nd item, using the WWW for
dissemination of educational material, this item should NOT include "educational
software". Plus I don't know what "teaching media-based model" means. This hold
read something like: "information dissemination model (the WWW is used by course

instructors for the dissemination of course-relevant materials to students, e.g., course
descriptions, online readings, etc.)

Since the nature of the paper has changed from courseware to hypermedia design, the
mentioned paragraph was no longer considered valid and has been extracted.

Reviewer #2: Generally the idea of a web based courseware design tool is relevant to
MTAP. However this paper deals with this issue only superficially. e.g. in the
conclusions the author(s) state that the interface metaphor used is the "page
metaphor". For example you could also have discussed the metaphors
at the beginning, as a foundation for further investigation.

In order to provide the background of hypermedia design, we explain the theoretical
underpinnings of the tool in Section 3, so that the background of the tool is elaborated
before the tool is presented. In that section, the three design steps are explained
together with their practices, models etc. such as the “page metaphor”.

I would have liked to see a better focus of this paper. Either focus on
software architecture of your tool and explain why you used this 3 layers or focus
more on the differences to tools on the market or research prototypes. With the
current version of the paper I cant really see the "contribution" so well. It seems to be
"just another tool". Maybe there is room for improvement for more revisions of this
paper.

We have decided to follow the second suggestion and focus on the differences of the
proposed tool to tools on the market or research prototypes In Section 2 the entirety of
the relevant tools to CRITON are presented and the differences between them are
explained. Also, in Section 5 the contribution of the paper is clarified through its
evaluation.

Reviewer #4: Please make clearer what you have incorporated in the system that is
specific to courseware. Your system seems to be a generic tool for designing a
collaborative hypermedia product but not necessarily an educational one.

We have indeed decided to present the tool as a generic tool for designing hypermedia
products rather than courseware, since it seems more suitable.

You say that no one else has a comparable design tool. I recall the OSCAR project of
DELTA in the early 90s that built a more courseware specific and elaborate tool than
you have described and yet you don't cite some of that work, such as by Rada et al.
You do note a number of other relevant more recent courseware authoring projects
but don't make clear enough for me the relationship of your work to theirs. Do you
incorporate specific pedagogic styles? Do you have a taxonomy of units of learning
material? How do you support quizzes? And so on?

As aforementioned, the presentation of the tool has been changed and the paper
focuses on hypermedia design. Therefore the tool from the OSCAR project could not

qualify as relevant work anymore. However the description of other relevant tools has
been enhanced and clarified, concerning the differences between them and the
proposed tool. Also the theoretical underpinnings are focused on hypermedia design
and are now more relevant to the (revised) scope of the tool.

 Formatted: Bullets and
Numbering

