
Interactive Educational Multimedia, number 4 (April 2002), pp. 76-88
http://www.ub.es/multimedia/iem

Ob-AHEM: A UML-enabled model for Adaptive
Educational Hypermedia Applications

Andreas Papasalouros

Department of Electrical and Computer Engineering
National Technical University of Athens - Greece

Symeon Retalis

Department of Computer Science

University of Cyprus - Cyprus

andpapas@softlab.ntua.gr

retal@ucy.ac.cy

Abstract

The work presented in this paper is comprised of a visual design model for adaptive hypermedia
educational systems that follows the principles of the object-oriented paradigm. The model is
primarily originated on the Adaptive Hypermedia Applications Model (AHAM), and extends it
by defining the presentation layer of a particular Hypermedia Application. The Unified
Modeling Language (UML) serves the purpose of notation syntax and semantics for this model.
The theoretical analysis of the model is accompanied by an case study application for the design
of an adaptive web-based testing system.

Keywords

Adaptive Hypermedia, Educational systems, visual design modeling.

1. Introduction

Adaptivity is of paramount importance for educational applications on the WWW, as they are
expected to be used by very different classes of users without any assistance by a real teacher.
Educational applications delivered over traditional hypermedia systems suffer from certain
problems that reduce the anticipated learning outcomes, such as:

o The ‘lost in hyperspace’ problem, where a user/learner looses his orientation while
navigating into a complex hypertext structure.

o The lack of a teacher/mentor who would guide the user/learner during the learning
process.

o The absence of concern about the individual characteristics of the users/learners, their
previous knowledge about the subject they are studying, their history in navigating into
the learning content, their learning style, their preferences, etc.

http://www.ub.es/multimedia/iem

Adaptive Educational Hypermedia Systems (AEH) systems aspire to address these
shortcomings and to provide individualized and personalized presentation of educational
hypermedia content, easing the user’s access to the content, facilitating the learning process and
matching their own personal learning style. AEH systems are originated from the intersection of
Adaptive Hypermedia Systems (AHS) and Educational Hypermedia Systems, a plethora of
which has been developed recently; each one having its own adoption approach and
implementation strategic [5]. As an attempt to capture the common elements, to provide a better
understanding of their various aspects and to facilitate the interchange of applications created in
the context of any of these systems, as well as any one that may be developed in the future,
there is a need for a design model. In addition, such a model will be the basis for the
development of a process for the development of adaptive educational hypermedia applications.
Experience from traditional software engineering has shown that the adoption such a process in
the quality of the product, namely adaptive educational hypermedia applications and the
efficient management of the resources, time and effort is beneficial. This paper introduces an
Object Oriented design model for AEH systems, which combines concepts from the Adaptive
Hypermedia Application Model (AHAM) [8] and the Object Oriented Design Method
(OOHDM) [12]. This design model adopts the Unified Modeling Language (UML) in order to
formalize the syntax and semantics of the architecture of Adaptive Hypermedia Educational
Applications.

UML is a visual modeling language, widely adopted in the software industry and pervasive in
all kinds of modeling for software-intensive systems. The UML provides a consistent, human-
readable way to specify a system’s architecture, to capture requirements, to communicate design
and implementation decisions between stakeholders in the software development industry. It
proposes nine types of diagrams, each one containing certain types of model elements
interconnected according to specific notation rules and semantics. It conforms to the object-
oriented paradigm and is inherently component-based, at the implementation level. It is the de
facto standard for visualizing, specifying, documenting and constructing the development
products of software-intensive systems.

As far as the two aforementioned design models, we have chosen to extend them, as they are
both offspring of the Dexter model. The latter is the first hypermedia design model ever and
commonly serves as a reference model for “modern” hypermedia systems. Moreover, AHAM is
an evolving design model specifically developed for AH systems [8] and OOHDM is a well
known and widely used design method which allows the formulation of complex designs with a
concise yet expressive notation thus simplifying the construction of AEH systems [12].

AHAM (like Dexter Model) deals with the storage layer, the presentation specifications and
anchoring, as they are defined in the Dexter Model. In order to address the adoption issues of an
AH system, AHAM alters the storage layer in the Dexter Model inserting into this layer three
additional models: The Domain Model, the User Model and the Teaching Model. In addition,
the model defines an Adaptive Engine that creates the user’s perspective of the system, based on
all the previous models.

OOHDM has also the design of a Conceptual Model that purports to capture precisely the
important classes of objects (i.e., kinds of information) in the problem domain. Furthermore, the
types of objects that the user will navigate (Navigational Classes) are defined as views over the
Conceptual classes, which already provide a great amount of flexibility in accommodating
variations.

The adoption of the principles of the object-oriented paradigm and the utilization of the UML
for creating high-level models of AEHs and adaptive hypermedia applications in general, have
certain benefits:

o The object-oriented paradigm has proven to be a successful software design and
programming framework. Through its basic principles of encapsulation, inheritance and
polymorphism, it provides a basis for well designed, easy to maintain, reusable software
modules and systems. In addition, a number of the state of the art design and
implementation environments (integrated development environments, application
frameworks, case tools) conform to the object-oriented paradigm.

o Certain approaches like OOHDM have shown how object orientation can successfully
address problems specific to hypermedia design. The use of object-oriented techniques
in designing AEH applications seems even more appropriate since AEH are more
sophisticated than conventional hypermedia applications. More specifically, an object-
oriented approach to user modeling in AEH can give formal descriptions of user
behavior, as regard to navigation and preferences, that can be reusable and able to be
further refined and adjusted to specific technical and pedagogical contexts.
Furthermore, object oriented design is best suited for systems undergoing complex state
transitions over time.

o The UML is a standard, widely-adopted, formally-defined language for modeling
software-intensive systems. Therefore, there exists strong motivation for using this
language in the specification of models of AH applications.

o Models created with the UML are easy to understand, maintain and extend. A number
of case tools are available facilitating the task of creation and maintenance of these
models. In addition, these case tools can ensure the consistency of a model. For
example, they can enforce an element in one model of an application to be properly
associated with a corresponding element in a different model of the same application,
according to specific semantics. Thus, adopting UML can benefit the design of AH
applications in creating consistent and formal models.

o The UML can provide a common means of communication between AEH systems. In
particular, through the OMG XMI standard, an XML-based standard for UML models
interchange, models of AH applications can be shared between different AH systems.

o The adoption of a specific development process, combined with an appropriate CASE
tool, can ease the development of AEH applications and result in high quality adaptive
applications that meet their requirements and goals in terms of cost and time efficiency,
pedagogical effectiveness, usability and technical competency. However such a process
or tool is out of the scope of our current research.

The structure of the paper is as follows:

The analysis of the proposed model is given first. This model takes into account the following
fundamentals of the AHAM: Domain Model, User Model, Teaching Model, Presentation
Specifications, Run-time and Anchoring. Then, we associate the three aforementioned models
of the AHAM to corresponding UML models. Each model contains a set of UML diagrams
containing elements that correspond to AHAM fundamental elements.

The Teaching Model of the AHAM contains rules that cannot easily be specified using a visual
notation like UML. For this purpose we propose the use of the Object Constraint Language
(OCL), a formal language for expressing constraints related to UML specified models.

We also consider the Presentation Specifications in our model as the output of the Adaptive
Engine, which is one of the innovative aspects of our model, which has not been addressed by
other researchers, as yet. For this purpose we adopt the object-oriented concept of Abstract Data
Views (ADV) [11], as used in the context of OOHDM. The modified ADVs not only provide
dynamic, user-specific views of the Domain Model, but also specify the run time behavior of
these views, corresponding directly to the run-time layer of the Dexter Model. The set of ADVs
and ADV charts constitutes a new model itself.

Finally, we demonstrate the way in which the previous set of models constitutes the different
views of an AEH application. The combination of these views defines a complete, consistent
and expressive specification of the application.

The presentation of the design model will be accompanied by appropriate examples taken from
a web-based testing system based on the IMS QTI standard (Instructional Management Systems
Question and Test Interoperability, [http://imsproject.org] that has been developed in the
Software Engineering laboratory of the NTUA.

2. Theoretical Underpinnings

2.1 Relation with other models
The proposed object-oriented model for the abstract representation of adaptive educational
hypermedia applications is named Ob-AHEM (Object-oriented Adaptive Hypermedia
Educational Model). Ob-AHEM is based on the Dexter Hypertext Reference Model, the
Adaptive Hypermedia Application Model and the ADV Charts. In fact it is an object-oriented
transformation of the AHAM with the introduction of the ADVCharts as a means of specifying
the Presentation Specifications and the Run-time layer.

The Dexter Model suggests that any hypermedia system can be divided into three layers: The
Storage Layer, that contains the actual data of a hypermedia application structured as nodes
interconnected by links. This layer captures the main focus of the Model and is described in
detail and formally specified. The Within-Component Layer, that represents the actual content
and its structure inside the nodes of a hypertext, where the actual information is contained in the
form of text, graphics, and multimedia. Due to its diversity in different existing hypermedia
systems this layer is not further elaborated in the Dexter Model. Finally the Runtime Layer, that
captures the dynamic aspects of hypermedia in the sense of instantiation of a component to the
user interface environment and tracking of the sequence of the components presented to the user
as the result of his/her navigation into the content (session management). Certain mechanisms
provide the interfaces between the aforementioned layers: Anchoring permits the mapping of
anchors, elements that belong to the within component layer, to components of the storage
layer, intervening between the two layers. Presentation Specifications handle the presentation
aspects of specific components in different contexts, acting as an intermediary between storage
and runtime layer.

As mentioned before, the AHAM is a Dexter-based model that suggests three (sub)models for
the definition of an Adaptive Hypermedia Application:

The Domain Model that provides a conceptual view of the AH application defining the concepts
and their relationships that form the hypermedia content as they are considered by the author.
The User Model that defines a user’s personal characteristics as well as his/her history of
interaction with the content that is conceptually described by the Domain Model. Thus, the User
Model is closely tight with the previous model.

The Teaching Model that contains rules that transform the previous two models into hypermedia
content presented to the user and control the evolution of the user model during the user’s
navigation into the hypermedia content.

All three models are located in the storage layer of the Dexter Model, as they ultimately deal
with the nodes and links of the application. Through the use of the concept of Abstract Data
Views we also consider the Presentation Specifications of the components defined in the
Domain Model. In particular, defining the Presentation Specifications of concepts and
relationships we achieve content and link adoption, respectively [4].

The Abstract Data View (ADV) Design Model is an object-oriented, based on state-chart
diagrams, model for the design of User Interfaces for hypermedia applications, as used in the
Object Oriented Hypermedia Design Method. The two fundamental elements in ADVs are the
Abstract Data Objects (ADOs) and the Abstract Data Views themselves. ADVs are objects, in
the sense that they have state, namely attributes that store specific values, and behavior, as they
expose a specific interface responding to external events. ADOs are considered to only have
state. Their dynamic behavior is controlled by one ore more ADVs that monitor the
corresponding ADO. Two types of diagrams constitute an ADV model: Configuration diagrams
and ADV Charts.

2.2 The UML as an extensible modeling language
The Ob-AHEM being an object-oriented model utilizes the UML, a standard visual modeling
language that conforms to the object-oriented paradigm. Despite its expressiveness, UML
cannot be successful in the definition of all types of models. In order for the UML to be
effective in the definition of the model elements, the description of the notation and the capture
of the semantics of models in fields different than typical software engineering, it provides
certain, built-in extension mechanisms [2],[10]. These are stereotypes, tagged values and
constraints. Stereotypes, the most important extension mechanism, are model elements that
extend and refine existing UML elements, thus extending the vocabulary of the language.
Stereotypes can be derived from existing model elements leading to more refined concepts.
Tagged values are pairs of name-value strings that provide additional information about an
element’s specification. Constraints alter the semantics of existing UML blocks providing
additional rules. Usually these rules are defined using the Object Constraint Language, a part of
the standard UML specification, for applying constraints in UML models.

3. The model

3.1 The components of the Ob-AHEM
An Ob-AHEM model of an Adaptive Hypermedia Educational Application consists of the
following components: Domain Model, User Model, Teaching Model, Presentation
Specifications, Anchors and Run-time Model. Each one of these is a logical group of model
elements and is represented as a package, the standard UML grouping mechanism, as shown in
Figure 1.

User ModelDomain Model

Presentation
Specifications

Teaching ModelRun-time Model

Anchors

Figure 1. The sub-models that constitute Ob-AHEM and their dependencies

In Figure 1 the dashed arrows denote a ‘depends on’ relationship in UML

In the following sub-sections we will describe the nature of each one of the previous models.

3.2 The Domain Model

The Domain model contains the actual nodes and links that compose the AH Application, both
described by the term concept component. The model contains atomic concept components, that
correspond to actual information fragments, composite concept components, that contain other
concept components, and concept relationship components that establish the associations
between concept components through the use of anchors and specifiers. Composite concept
components can be abstract, if they contain only other composites, or pages, if they contain only
atomic components. Each of the above concept components has a unique identifier and is
described by a set of attribute-value pairs. It is noted here that the Domain Model is not
explicitly a conceptual model or a lower-level navigation model. Its concepts and relationships
can be either abstract, forming thus a semantic network, or a network of concrete pages and
links. In both cases the adoption rules may be applied defining the adaptive hypermedia
application. All the components previously described are defined as stereotyped classes in our
model.

3.3 Anchors

As in the Dexter and AHAM models, a concept relationship contains one or more specifiers. A
specifier of a specific anchor actually defines the direction (FROM, TO, BIDIRECT, NONE) of
the anchor in the context of the specific relationship-link, as well as a presentation specification.
Anchors are contained in the Anchors package, while specifiers are considered to belong to the
Domain Model in the Ob-AHEM. Anchors and specifiers are described in Ob-AHEM as
stereotyped classes.

3.4 User Model
The User Model consists of two types of elements, represented as stereotyped classes: The User
Model Scheme and the User element. In the AHAM model only the User Model Instance
element, corresponding to our User Model Scheme element exists. As will be shown later, each
UserModelScheme element corresponds to a specific component of the Domain Model,
defining the navigational state (read, ready to read, etc) of the component, as well as the level of
acquired knowledge corresponding to the specific component from a conceptual point of view.

Thus, the set of UserModelSchemes constitutes the overlay model [4] of the user’s knowledge
about the studied subject, which is of temporal nature as it is rapidly changing as the user
navigates into the adaptive hypermedia. Further, elements of User type in our model are used to
represent the more stable, usually predefined, user knowledge profile, either concerning the
knowledge of the particular domain (novice, intermediate, expert, etc) or corresponding to the
user’s preferences or learning style. According to [4] this constitutes the Stereotype user model.
This is an extension to AHAM that our model suggests.

3.5 Teaching Model

The Teaching Model contains rules as Object Constraint Language [10] expressions applied to
the appropriate UML elements, mainly classes. Constraints are conditions that must hold for the
specific model they are applied. OCL is a formal language for applying constraints to UML
models. OCL is a language for the specification and not the implementation of particular
systems. The rules defined in our Teaching model are applied as two types of constraints:

o Invariants, that is conditions that must always be true in the context they are applied
(concept components, concept relationships).

o Postconditions, that are conditions that must be met after the execution of a method or
operation of a specific class.

The constraints are applied to specific model elements, defined by the keyword context, as will
be shown in the following example .

3.6 Presentation Specifications

In our model the presentation specifications are considered the output of the adaptive engine of
the hypermedia system. The Presentation Specifications sub-model contains a set of elements
that specify how a component of the Domain Model (including anchors) is projected to the user
interface as a result of the user’s navigation into the system. This specification is considered to
be abstract, in that it does not take into account the layout, the color, particular fonts or images
of a specified Domain Model component given that this visual presentation has no importance
as the result of the adaptation itself.

We use the notion of Abstract Data Views, in particular Active Data Objects [11] for
presentation specifications. Every component and anchor is associated to a particular ADO.
ADOs and ADVs can be nested. In addition, composite components in the data model can
contain other components, as well all types of components can contain anchors. This way a
hierarchy of nested ADOs must correspond to a hierarchy of aggregated components and
anchors. An ADO is an object that has state but not behavior. Its state is expressed by the values
of its attributes, which show whether the corresponding component of anchor is visible or not,
its color or visibility (as a result of navigation), whether its contents are sorted in a particular
order in an index of links, etc. As will be shown later, in Ob-AHEM ADOs and ADVs are
represented as stereotyped classes, each class having certain attributes. These attributes denote
the visual state of the corresponding model element as the result of adaption. This state is by not
means associated with the style, layout of navigation issues of the element, but defines the
visual aspects of the element (and the components that it models) as a result of the adaptivity of

the system. For example, an attribute “color” in an ADV associated with an anchored text does
not describe the color of the text defining its default style but its color defined by the Adaptive
Engine as a result of the user’s navigation (exactly as the change of the color of a visited link in
a document in the World Wide Web). An attribute “visible” is often used to denote whether a
particular component can be presented or not in the current state of the adaptive system.

3.7 Runtime Model

The runtime model describes the runtime behavior of the hypermedia application through a set
of ADVCharts. ADVCharts are statechart-like diagrams of interconnected ADVs. Each ADV
must correspond to an Abstract Data Object of the Presentation Specifications. The transitions
specified in the ADVCharts usually have as a result the application of a specific rule of the
Teaching model. The rule is applied and the presentation specification (ADO) of a component is
changed. It is important to point that the results of transitions at the runtime layer, as specified
by the runtime model, is simple navigation, that is the hiding of specific ADVs and the
appearance of one or more others. This kind of (simple) transition is explicitly separated in our
model from the results of navigation from the adaptive perspective. In the second type of
transitions (that usually happen simultaneously with the first) more elements of the model, as
well as rules, participate than just Abstract Data Views.

3.8 The model elements
Table 1 presents the elements of our model, their mapping into UML elements and the sub-
models where they are allocated. We have used the extension mechanisms of the UML, in
particular the stereotypes, in order to extend the standard UML elements so as to match our
model domain. The way these elements are associated according to the principles of the Ob-
AHEM is shown in Figure 2. We could easily consider it as a meta-model from which we could
derive instances, i.e. design models for each adaptive hypermedia educational system. The
following section describes such a case study.

Table 1. Model elements

Model element UML standard
element

Stereotype name Ob-AHEM
component

Component Abstract Class <<component>> Domain
Concept component Class <<concept>> Domain
Abstract composite
concept component

Abstract class <<concept-composite>> Domain

Page concept
component

Class <<page>> Domain

Atomic concept
component

Class <<concept-atomic>> Domain

Specifier Class <<specifier>> Domain
Concept relationship Class <<relationship>> Domain
Anchor Class <<anchor>> Anchor
User Model Scheme Class <<userModelScheme>> User
User Class <<user>> User
Abstract Data
Object

Class <<ADObject>> Presentation
Specifications

Abstract Data View Class <ADView>> Run-time

Page
(from Domain meta-model)

Concept-Atomic
(from Domain meta-model)

Concept-composite

(from Domain meta-model)

User
(from User meta-model)

Concept
(from Domain meta-model)

UserModelScheme
(from User meta-model)

0..n0..n

Anchor
(from Anchors meta-model)

Relationship
(from Domain meta-model)

ADView
(from Run-time meta-model)

Component

(from Domain meta-model)

0..n0..n

uid

Specifier
(from Domain meta-model)

0..n0..n

1..n1..n

ADObject
(from Presentation Specification meta-model)

1..n1..n

anchor

pres

pres

user

Association

Aggragation

Generalization

Class

Figure 2. The Ob-AHEM meta-model

4. A case study: An adaptive web-based testing system

We exemplify the Ob-AHEM by applying its concepts to an adaptive web-based testing system
that conforms to the IMS QTI standard for question and test interoperability
[http://www.imsproject.org]. The system enables either the editors to create/edit questions and
tests (multiple choice, fill-in the blanks, etc.) or the simple users to be assessed answering to a
series of questions of a test. The system supports adaptive exercise sequencing [6], customizing
the succession according to which the the questions are launched to the user. The answer to a
particular question (right or wrong) changes the sequence of the test questions according to
specific simple rules. The testing system was developed using the Java technology
[http://java.sun.com], as applets, and utilizes the extensible Markup Language
[http://www.w3c.org/xml] for data storage. An example of the graphic user interface for a
question is depicted in Figure 3.

Figure 3. An example of the user interface

In the example of Figure 3, a section of the test on the History of the World War II. contains
seven questions. For the three first: question1, question2 and question3 we have applied the
following simple rule: If a user answers correctly to the first question, the system skips
question2 and immediately presents question3, else it continues with question2. As shown in
Figure 3, the user can confirm his answer and then the button next is active, presenting a link to
the next question.

As shown in Figure 4, the design model of this part of the system is presented according the the
Ob-AHEM principles. In this figure, we show some conventions that hold in the naming of the
roles in the associations between the model elements.For example, when a concept component
(e.g. the page entitled “question1”) is associated with a UserModelScheme element, the role
name of the UserModelScheme is, by convention, “user”. An anchor is connected with its
containing component with an association role named uid, which is the component’s unique
identifier. The role names of the specifiers related to a specific relationship are ss1, ss2, etc. In
this example the presentation specifiers (ADO objects) are not shown in Figure 4.

We will show how the previous rule can be defined in the model with OCL expressions
(constraints) applied to the appropriate contexts. For the first constraint we have:

context question1::confirmed(): void
post: if self.answer=self.correct_answer then

self.user.answered=TRUE
 else self.user.answered=FALSE

This is a postcondition applied to the operation confirmed of the context component
“question1”. The operation named confirmed is the default operation that is called whenever the
user presses the Comfirm button while accessed is the default operation that is called whenever
a component is accesed during the user’s navigation. This kind of relationship between a
domain model component and its corresponding user interface element is typically defined with
a configuration diagram [11], as shown in Figure 5. It defines that if the user gives the right
answer, then the corresponding user model attribute answered is set to TRUE, else it is set to
FALSE.

spec2
<<specifier>>

direction = TO

next1
<<anchor>>

question1
<<page>>

type = MULTIPLE_CHOICE
question = 'World War II begun in 1945'
correct_answer = FALSE
answer

accessed()
confirmed()

question1UM
<<UserModelScheme>>

answered : Boolean

question2UM
<<UserModelScheme>>

answered : Boolean
ready-to-read : Boolean

question2
<<page>>

type = MULTIPLE_RESPONSE
question = 'Select the nations that took part in WWII'
correct_answer

WWIIQuestions
<<concept-composite>>

next3
<<anchor>>

question3UM
<<UserModelScheme>>

answered : Boolean
ready-to-read : Boolean

question3
<<page>>

type = SHORT_ANSWER
question = 'Write in two paragraphs...
correct_answer

uid

user

relation1
<<relationship>>

ss2

next2
<<anchor>>

spec1
<<specifier>>

direction = FROM

ss1

anchor

spec3
<<specifier>>

direction = FROM
spec4

<<specifier>>

direction = TO

relation2
<<relationship>>

ss1
ss2

ss3

Figure 4. The adaptive question system example

The second constraint is applied to the relationship named “relation1”. It connects three anchors
having as corresponding specifiers: the “ss1” with direction FROM, the “ss2” and the “ss3”
with direction TO. If question1 is correctly answered then question2’s presentation specification
attribute visible would set to SHOW and this question would be presented to the user. Else if the
answer to question1 is wrong for the specific user then the opposite would happen, that is the
question3 would be presented. This is defined with the following OCL expressions that are
applied to relation1 as invariant conditions:

context relation1 inv:
self.ss1.anchor.uid.user.answered=true implies
 (self.ss2.uid.pres.visible=SHOW and
 self.ss3.uid.pres.visible=HIDE)

context relation1 inv:
self.ss1.anchor.uid.user.answered=false implies

(self.ss2.uid.pres.visible=HIDE and
self.ss3.uid.pres.visible=SHOW)

Note that the keyword implies means that when the expression is evaluated then if the condition
left to the implies keyword is true then the condition to the right must also be true, in order for
the whole expression to be true. In all the previous OCL examples the keyword self represents
the UML classes that are the context in the specific OCL expression.

Figure 5. A configuration diagram

5. Conclusions and future work

In this paper we showed that the object-oriented paradigm and the UML can be used as the
primitive tools to formally model Adaptive Hypermedia Educational Systems. We have taken
AHAM, an existing model as a basis and mapped its primitive elements to graphic UML
elements. We have extended the aforementioned model taking into consideration the
presentation specifications of an adaptive hypermedia application using the notion of ADV
Charts and have shown an example of how the model can be applied to an existing adaptive
hypermedia application.

This model inherits many of the advantages of the object-oriented paradigm. It can be
extensible, especially in the user modeling aspect of adaptive hypermedia. It promotes
reusability of solutions in navigation, user modeling, definition and application of adaption rules
at an abstract and technologically independent level. These solutions can be easily understood
and communicated by means of an easy to comprehend and intuitive fashion that a graphical
notation provides, providing a collection of design patterns [7]. In addition, the rules definition

buttonClicked

Question1

Confirm Next

Exit Help

Question

Answer

ADV Question

confirmed

content: text

accessed

with OCL, which is a language formally specified in [10] will facilitate automatic generation of
(interchangeable) rules for systems that comply with the Ob-AHEM.
We are currently working on applying Ob-AHEM in order to introduce a new user model that is
based on the level of achievement of learning objectives in the cognitive domain [1], in a per-
concept basis with in an adaptive hypermedia educational system.

OB-AHEM is a high level model that can be used in order to produce more concrete models for
specific applications. We intend to develop a more concrete design model for various web-based
adaptive hypermedia applications, such as e-commerce. Finally, are in the progress of
developing a system for the design and the creation of Adaptive Educational Hypermedia
Applications with an Adaptive Engine based on the principles of the Ob-AHEM.

6. References

 [1] Bloom, B.S (Ed). Taxonomy of Educational Objectives, Book 1: Cognitive Domain.
New York: Longman, 1965.
[2] Grady Booch, James Rumbaugh, Ivar Jacobson. The Unified Modeling Language User
Guide, Addison Wesley, 1999.
[3] Paul De Bra, Geert-Jan Houben, and Hongjing Wu. AHAM: A Dexter-based Reference
Model for Adaptive Hypermedia. Proc. of ACM Hypertext '99, Darmstadt, Germany, 147-156,
February 1999
[4] Peter Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling and
User Adapted Interaction, Vol. 6, pp 87-129, 1996.
[5] Peter Brusilovsky. Adaptive educational systems on the world-wide-web: A review of
available technologies. Proc. of Workshop "WWW-Based Tutoring" at 4th International
Conference on Intelligent Tutoring Systems (ITS'98), San Antonio, TX, 1998.
[6] Stephan Fischer. Course and Exercise Sequencing Using Metadata in Adaptive
Hypermedia Learning Systems. ACM Journal of Educational Resources in Computing, Vol. 1,
No. 1, Spring 2001.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of reusable
object-oriented software. Addison Wesley 1994.
[8] F. Halasz and M. Schwartz. The Dexter Reference Model. Communications of the ACM,
Vol. 37, nr. 2, pp. 30-39, 1994.
[9] Maria Cristina Ferreira de Oliveira , Marcelo Augusto Santos Turine , Paulo Cesar
Masiero. A Statechart-Based Model for Hypermedia Applications, ACM Transactions on
Information Systems, Vol. 19, Issue 1 (January 2001).
[10] [OMG]. UML Version 1.4 Specification. Available at
http://www.omg.org/technology/documents/formal/uml.htm
[11] G. Rossi, D. Schwabe, C.J.P. Lucena and D.D. Cowan. An Object-Oriented Model for
Designing the Human-Computer Interface of Hypermedia Applications, Proceedings of the
International Workshop on Hypermedia Design (IWHD'95), Montpellier, 5, Springer Verlag,
1995.
[12] D. Schwabe, G. Rossi. The Object-Oriented Hypermedia Design Model.
Communications of the ACM, Vol. 38, nr 8, pp. 45-46, Aug. 1995.

http://www.omg.org/technology/documents/formal/uml.htm

