

 148 Int. J. Web Engineering and Technology, Vol. 1, No. 2, 2004

 Copyright © 2004 Inderscience Enterprises Ltd.

An approach for managing the evolution of
web-based educational applications

Yannis Psaromiligkos*
Technological Education Institute of Piraeus,
General Department of Mathematics, Computer Science Laboratory,
250 Thivon & P. Ralli, 122 44 Athens, Greece
Fax. ++30 210 5381351 E-mail: jpsa@teipir.gr
*Corresponding author

Symeon Retalis
University of Piraeus, Department of Technology Education and
Digital Systems, 80 Karaoli & Dimitriou, 185 34 Piraeus, Greece
E-mail: retal@unipi.gr

Abstract: The management of the infrastructure and content of the World
Wide Web is a growing problem for the development of web-based educational
applications (WbEA) and is hidden beneath the tremendous benefits of the web.
Moreover, such systems undergo more frequent and quite extensive changes in
their development and operational period because the client’s perception (either
the learner, the teacher or institutional organisation) of the complete end
product is a ‘moving target’. So, there is a need for a disciplined approach to
managing the evolution of web-based educational applications. Such a
disciplined approach as applied throughout the software engineering process is
called software configuration management (SCM). This paper begins a
discussion of how the development of web-based educational applications
could benefit from SCM techniques and tools and proposes a model for the
management of the evolution of such systems. The model couples the
development and evolution process of WbEA configurations into one
framework, which seems promising for the implementation of a configuration
management process. Also, the model focuses on the development of the
web-based educational content, defining the configurations of the items
involved in the underlying process. Finally, an example is given to demonstrate
the benefits of the use of this approach.

Keywords: web-based educational applications; software configuration
management; version control; learning technology systems; e-learning; learning
resources; learning management systems; instructional design; evaluation.

Reference to this paper should be made as follows: Psaromiligkos, Y. and
Retalis, S (2004) ‘An approach for managing the evolution of web-based
educational applications’, Int. J. Web Engineering and Technology, Vol. 1,
No. 2, pp.148–167.

Biographical notes: Dr. Yannis Psaromiligkos is an Associate Professor at the
General Department of Mathematics, Technological Education Institute of
Piraeus, Greece. He holds a BSc in mathematics, and an MSc in computer
science and operation research from the University of Athens and a PhD in
computer science from the Department of Electrical and Computer

 An approach for managing the evolution of web-based 149

Engineering, National Technical University of Athens, Greece. His research
interests are in web engineering and software configuration management,
web-based learning environments, evaluation methodologies for web-based
systems, object-oriented programming and modelling. He is the author of
several papers and serves on the editorial board of international journals.

Dr. Symeon Retalis is an Associate Professor at the Department of Technology
Education & Digital Systems, University of Piraeus. He holds a diploma in
electrical and computer engineering from the Department of Electrical and
Computer Engineering Studies, National Technical University of Athens,
Greece, an MSc in information technology-knowledge based systems from the
Department of Artificial Intelligence, University of Edinburgh, Scotland, and a
PhD from the Department of Electrical and Computer Engineering, National
Technical University of Athens, Greece. His research interests lie in the
development of web-based learning systems, the design of adaptive hypermedia
systems, web engineering and human computer interaction. He is the author of
several papers, serves in the editorial board of international journals and
participates to special interest groups on web engineering.

1 Introduction

The vision of a knowledge-based future where acquiring and acting on information and
knowledge is the primary operation of all learners is close to coming true [1]. In order to
facilitate the realisation of this vision, learning technology systems are being extensively
employed. Learning technology systems (LTS) are learning and training systems that are
supported by information technology [2]. Examples of such systems are computer-based
training systems, intelligent tutoring systems and web-based educational systems. Special
kinds of LTSs are the web-based educational applications (WbEA) which are based on
the state-of-the-art internet and WWW technologies in order to provide education and
training following the open and distance learning paradigm. WbEAs aim to support and
partially automate the instructional process on a subject field, which might concern, for
example, a course, a seminar or even a series of lectures [3]. From a different perspective,
these systems intend to satisfy certain instructional needs for a subject domain, which
have surfaced mainly because of the advances in research and technology, the emergence
of the information society and the globalisation of markets.

It is not odd, that WbEAs, which make extensive use of new technologies, have been
called upon to solve the vast demand for life-long learning, caused by the advances in
technology itself. In particular, the advantages gained from employing web-based
educational applications are derived from their potential to: promote advanced
interactivity between learners and tutors; offer flexibility concerning the way, time and
place of learning; grant multiple media delivery methods through hypermedia; allow
several synchronous and asynchronous communication facilities; and provide easy,
one-stop maintenance and reusability of resources [4,5]. The design and implementation
of such systems though is not an easy task, since they are complex systems that
incorporate a variety of organisational, administrative, instructional and technological
components [6,7]. A WbEA should be seen as a system comprising three interrelated
subsystems:

 150 Y. Psaromiligkos and S. Retalis

• The human subsystem, which describes the roles, in as much detail as possible, for
each kind of human agent (teacher, learner, tutor, network administrator) involved in
the instructional process [8].

• The web-based learning resources subsystem, which is perceived as a mosaic of
online learning resources. Such learning resources can be course notes, slideware,
study guides, self-assessment questionnaires, communication archives, learning
material used for communication purposes, etc.

• The technical infrastructure subsystem, which is divided into common and special.
An instructional system basically makes use of services from common
infrastructures, which is a set of learning places, that support student learning in
general (e.g. laboratories, networking facilities, etc.). However, in order to best
support the instructional process, special infrastructures should be created (e.g.
multimedia conferencing systems, state-of-the-art hardware components, a specific
learning management system, etc.), which will provide services unique to a particular
instructional problem [9,10].

Systematic, disciplined development approaches must be devised in order to leverage the
complexity and assortment of WbEAs and achieve overall quality within specific time
and fund limits. Additionally, the size and complexity of modern WbEAs bring about
great intricacy in their crafting as they evolve, as there is not enough knowledge or
experience in this field. This also imposes the use of new disciplined approaches to
managing their evolution. Such a disciplined approach can be adopted/adapted from the
software engineering field.

Software configuration management (SCM) is the discipline of managing the
evolution of software systems both during the initial stages of development and during all
stages of maintenance. SCM constitutes a key element of the software engineering
process and includes many activities that must be carried out consistently. Moreover, it
involves many different individuals, such as customers, managers and software engineers
as well as many different products such as management plans, specifications
(requirements, design, test), code (source and executable), user’s manuals, etc. SCM has
four coordinating functions [11–13]:

• configuration identification: the definition of the software life cycle products that
will be under control, their baselines and how they will change

• configuration control: the technical and administrative procedures in order to control
the changes to products

• configuration audit: the function that makes the current status of any software
product visible to management

• configuration status accounting: the function that provides the development history
of any software product, recording the activities of the previous SCM functions.

In large-scale software systems the management of these activities is an extremely
difficult job, but essential for effective and reliable evolution of such software. Computer
assistance for the representation and evolution of the history of software system
development is of great importance. It can avoid the confusion caused by interaction
among the different individuals, improving productivity.

 An approach for managing the evolution of web-based 151

In this paper we try to illustrate the need to incorporate (via adaptation) SCM
techniques into the development process of a WbEA.

The structure of the paper is as follows: Section 2 presents the SCM process that is
being applied in general, (i.e. non-educational) software systems. We should note that as
far as we know, this is the first time that ideas on how to apply SCM functions to WbEA
development are being recorded. While Section 3 describes the overall development
process of a WbEA, Section 4 will analyse the way that SCM can be incorporated into
the WbEA development process. Finally, concluding remarks and future plans will be
mentioned in Section 5.

2 The software configuration management

When a large number of people work on a software project, some of the problems that
can arise are as follows:

• simultaneous update: when two or more programmers work separately on the same
program, incompatibility of the changes they make can be disastrous

• shared or common code: when a change is made to a module shared by several
subsystems, all the programmers involved in the development of these subsystems
must be informed of the potential effects this change can have on their work

• versions: changes must be applied in a controlled manner if regression is to be
avoided; moreover, they result in a large number of versions even of a single
component and therefore the structure of the system becomes extremely complex.

All the items that are produced as part of the software engineering process are
collectively called a software configuration. SCM is the process of identifying,
organising and controlling changes to software configurations made in all stages of a
software project’s life cycle. Its purpose is to maximise the productivity of the
development team members by controlling their interaction and minimising mistakes.

Because change can occur at any time, SCM is an ‘umbrella’ activity that is applied
throughout the software engineering process. SCM activities provide means for:

• identifying configurations and changes

• controlling the application of changes

• ensuring the proper implementation of changes

• reporting changes to all the interested team members.

Artefacts that can be divided into several classes are the output of the software
engineering process. Moreover, we can view and manage these artefacts as composite or
atomic entities. The term configuration item (CI) is used to denote such a controllable
(under configuration management control) artefact or a part of it. If we view an item as a
collection of other items, then it is called composite or otherwise atomic. The CIs may
form hierarchies according to the relation ‘is composed of’ between composite and their
parts (atomic or composite). A CI can be any of the parts of a whole system as long as it
is treated and managed as a single unit. Of course, management is simpler if the item
belongs to the lower levels of the system’s hierarchy.

 152 Y. Psaromiligkos and S. Retalis

Because changes are inevitable, CIs may have many versions. The versions of atomic
CIs imply the versions of composite CIs and so on. Because of versions the structure of a
software system becomes extremely complex. There are two kinds of versions: revisions
and variations. Variations represent independent lines of development and each one
consists of a sequence of revisions. Variations coexist in time while revisions replace
each other because their purpose is primarily to fix bugs. When a CI version is distributed
outside, the development organisation is called release. Version control of CIs is one of
the fundamental tasks of every software configuration management tool and up till now it
has constituted the basis of many research efforts [14–19].

Changes also need a key mechanism to bring them under control because they can
rapidly lead to chaos. The key mechanism for managing changes is the baseline. A
baseline is a milestone in the software engineering process that marks the completion of a
phase accompanied by the delivery of a number of approved (validated) CIs. A baseline
is the foundation of configuration management as it provides the official standard, on
which subsequent work is based and, therefore, it should be established at an early
development point. All the SCM processes revolve around the baselines. Once an initial
product level has stabilised, a first baseline is established. Every successive set of
validated enhancements establishes a new baseline that provides the cornerstone for
further development.

Once a CI becomes a baseline, it is placed in a project database (also called a project
library or software repository). The baselines must be protected against unauthorised
change while at the same time enabling the programmers to modify and test their code.
This flexibility is accomplished by providing the programmers with private working
copies of any part of a baseline. Thus they can try out any changes without interfering
with the work of anyone else. When their work is ready to be incorporated into a new
baseline, change management ensures that each change introduced is compatible with
every other change and also maintains system integrity.

3 The development process of a WbEA

Nowadays, educational applications make extensive use of networked technologies. A
consequence of this trend is that developers build complex educational systems that
incorporate a variety of organisational, administrative, instructional and technological
components [7]. The need for a systematic and disciplined way to develop such systems
is obvious. In this section we briefly describe the CADMOS methodology (web-based
courseware development methodology for open-learning systems), which is a
development methodology for WbEAs [20].

CADMOS supports the evolutionary model for the development of a WbEA [21].
This is because the evolutionary model is iterative and is characterised in a manner that
enables developers to construct increasingly more complete versions of the end product.
Thus, according to CADMOS, a WbEA should be developed as a series of fully
functional builds (working versions of the instructional system). A build satisfies the
current set of the requirements of the product under development. The underlying essence
of the evolutionary development is that the client’s perception (either learner, teacher or
institutional organisation) of the complete end product is a ‘moving target’. While the
builds are tested and summatively evaluated, the user’s opinion regarding the

 An approach for managing the evolution of web-based 153

characteristics of the system might change, resulting in changing the requirements and
consequently the design and development of the future builds.

The instructional development should contain three main processes, each one
subdivided into sub-processes as illustrated in Figure 1:

• the problem solving process

• the system construction process

• the system utilisation process.

Figure 1 Development stages of a WbEA according to CADMOS methodology

Educational Needs

Problem
Solving Process

Educational Problem Solution

System
Construction Process

Educational Application

Utilization
Process

Product

Process Educational Needs

Problem
Solving Process

Educational Problem Solution

System
Construction Process

Educational Application

Utilization
Process

Product

Process

The aim of the problem solution finding sub-process is to construct a desired solution to a
given instructional problem already defined by the situational evaluation sub-process.
The solution to the instructional problem emerges from blending five interrelated sets of
learning elements: the learning objectives, the didactic events, the syllabus, the
assessment procedure and other issues like prerequisites, fees, technical constraints and
so forth. This solution is the main product of this process. It must be a well written,
highly detailed document following specific guidelines on how to formulate the learning
objectives, the syllabus, the didactic events, etc. (for an overview, see [3,22,23]). Thus,
such a ‘non-technical’ solution, that is the instructional problem abstract solution, plays
the role of requirements specification for the WbEA under construction.

The construction process is the actual implementation of an instructional problem
solution for a specific learning environment. The construction phase receives as input the
solution from the problem finding process. This solution is then divided into three parts:

• human part

• webware part

• specific infrastructure part.

 154 Y. Psaromiligkos and S. Retalis

This division is done within the system’s engineering sub-process. Each part of the
solution specifies how the solution will be realised and supported into a real learning
environment. Having specified the solution parts, each one of them is developed
according to related methodologies, (i.e. cognitive engineering for training the human
actors to play their roles, courseware engineering for developing the web-based learning
resources and software engineering for building the specific software infrastructure)
finally resulting in three subsystems that are all integrated into one ‘whole’.

The last stage of the process is concerned with the utilisation of the system. It is
within this process that the developed system will be summatively evaluated and
reviewed. The utilisation process consists of:

• the instructional process when the instructional system developed is being used,
tested and validated in a real learning environment

• the summative evaluation of the instructional problem solution sub-process which
provides feedback from both learners and teachers

• the customisation and distillation of the outputs of the instructional process, which
can be used for the evolution of the instructional system.

4 Modelling the development and evolution of WbEA configurations

As mentioned in Section 3, there are a number of interrelated subsystems (life cycles)
involved in the development of a WbEA and so the configuration of the system becomes
extremely complex. A configuration management model should represent the
development and evolution of WbEA configurations so that the various life cycles
expressing the organisations’ specific needs could be supported while at the same time it
should ensure and maintain the consistency of the underlying configurations. In this
section we try to define such a model for the representation of the WbEA configurations
and their evolution.

At first, we consider a macro and a micro view of the WbEA development process in
order to implement configuration management (see Figure 2). The macro view involves
the top-level processes (phases) of the WbEA development process, that is, ‘problem
solving’, ‘system construction’ and ‘system utilisation’ processes as well as the
underlying output products. For the ‘system utilisation’ process there are only
intermediate products that might be used as input to other processes during evolution
with the necessary adaptation (e.g. student assignments, students’ frequently asked
questions, etc.). At the micro view analysis is the ‘system construction’ process because it
involves three interrelated subsystems (life cycles) that produce the underlying
complexity.

 An approach for managing the evolution of web-based 155

Figure 2 Development and evolution of a WbEA

System Construction
Life Cycle -1

Instructional
needs_V1

Problem
Solving

Problem
Solution_V1 System

Construction
System
Utilisation Instructional

System_V1

Problem
Solving

Problem
Solution_V2

System
Construction

System
Utilisation

Instructional
System_V2

System
Construction

System
Utilisation

Instructional
System_V3

System Construction

Life Cycle -2
System Construction

Life Cycle -3

Macro-View

Micro-View

Cognitive Engineering
Life Cycle Webware Engineering

Life Cycle

Infrastructure
Engineering
Life Cycle

Micro-View

Life cycle - 1

Life cycle - 2

Life cycle - 3

Process

Product

Legend

Decomposition

By looking through the above subsystems we can notice the following: the specific
infrastructure subsystem that will provide services unique to the particular instructional
problem is a software engineering task. So, the development organisation could follow

 156 Y. Psaromiligkos and S. Retalis

current software configuration management techniques and tools for the development and
evolution of such a system. As it concerns the human subsystem it is a task of the
cognitive engineering field. However, when a configuration management process is
introduced into the life cycle of a WbEA, new roles and competencies will be generated
that need to be identified and clearly specified:

“Competency refers to a state of being well qualified to perform an activity,
task or job function. When a person is competent to do something, he or she
has achieved a state of competency that is recognisable and verifiable to a
particular community of practitioners.” [24]

Typically, a competency is divided into specific indicators describing the requisite
knowledge, skills, attitudes and context of performance [25–27].

The webware subsystem deals with the content of a WbEA, which inevitably
generates the most interest and it needs further analysis (see next section). Of course, a
configuration management model should take into account the interrelations of all the
subsystems in order to control the evolution of the WbEA.

We model the WbEA configurations as a three-dimensional space, as shown in
Figure 3. The first dimension represents the configuration development, the second
dimension represents the configuration evolution and the third dimension represents the
decomposition of a configuration.

Figure 3 A model for WbEA configurations

Development

Decomposition

Evolution

The dimension of development represents the way each configuration is developed. At
the macro view each configuration involves the top-level phases of the WbEA
development process as shown in Figure 1. Such a configuration defines a concrete
version of the WbEA. The configurations of the micro view represent how the top-level
phases of the WbEA system development process are implemented.

The underlying micro views are subject of the decomposition process. During this
process we analyse how each composite configuration management entity is constructed.
If such an entity is composed of other composites we continue until we define all the
elementary (atomic) items. In fact, the definition of atomic items depends on the
granularity level of the underlying development model. We recall that one of the most
important configuration management processes is the identification of the entities that
will be under control, i.e. the identification of configuration management items.

 An approach for managing the evolution of web-based 157

The dimension of evolution represents how each configuration evolves over time. We
must note that each configuration, once it is created and placed under configuration
control (baseline), becomes immutable; i.e we must create a new version of it each time
we have to change it. We consider the evolution process as actually being selective
iterations of the development process. Such iterations at the macro view generate the
versions of the WbEA system; while at the micro view they generate the versions of the
various products (configuration management items) comprising the WbEA. Each
evolution cycle normally begins after the system utilisation process when the WbEA
system is summatively evaluated. However, a formative evaluation process may initiate
intermediate evolution cycles, (i.e. evolution cycles at the micro view) before the start-up
of the utilisation process.

4.1 Defining configurations of the webware subsystem

The development process of the webware subsystem according to CADMOS follows the
principles of the object oriented hypermedia design method (OOHDM) [28,29], which
has provided systematic ways to design generic hypermedia applications and not
especially educational ones. In this section we deal with the definition of the entities that
will be under control, i.e. the identification of configuration management items as well as
the management of their changes.

In order to achieve a fine-grained granularity level we propose a model that captures
all the entities involved in the underlying process. This model follows the UML notation
and utilises its extension mechanisms [30] suitable for a WbEA.

We view each WbEA as a (composite) configuration management item that is
composed of learning resources, as shown in Figure 4. Learning resources are
organisational units of learning content, each with specified learning objectives. Each
learning resource is also a composite item and contains either a number of web assets or
other learning resources, hence organising the WbEA in a hierarchical structure (see
Figure 5). This structure conforms to learning content packaging standards like [31,32],
so it is possible to automate the process of mapping the model artefacts to one of the
existing learning technology standards. While learning resources are conceptual elements
that allow the structure of the WbEA, they can have visual presentations by means of
access assets (see below) that contain links to actual content (content assets).

Figure 4 Web-based learning resources

 158 Y. Psaromiligkos and S. Retalis

Figure 5 Learning resources detailed model

ContentAsset AccessAsset

Metadata

StaticLinking DynamicLinking

Link
bidirectional : Boolean

LearningResource
Objectives

AtomicElement

Relationship

WebAsset

anchor

from
to

realises

StaticAsset On_the_FlyAsset

0..*

1..*

1..* 1..*

Furthermore, each web asset is a composite item that includes atomic elements, which are
multimedia elements (audio, video, image or simple text), active elements (applets,
ActiveX controls, Flash objects), client scripting code and form elements, as illustrated in
Figure 6. It can also contain navigational (structural) links (e.g. forward, backward, back
to the contents, etc.). It should be mentioned that the navigational links implement
structural relationships between the assets of the assets of the courseware and are subject
matter independent. For each link, its name and the linked web asset should be noted.

The web assets of the learning resources are divided into the following types, as
presented in Figure 5: access assets, whose learning content is minimal, used for
navigational purposes since they provide access to web assets with learning material.
From one access asset the user can also navigate to another access asset (as often happens
with the contents of the hypermedia book). As mentioned above, access assets are usually
visual instances of learning resources containing links to the learning resources and other
assets contained in the corresponding learning resource.

Content assets include informative or learning material. These assets are either ‘hard
coded’ (e.g. HTML files) or created ‘on-the-fly’, as in the case of .asp pages. So a
specification at a lower level must be made.

A web asset contains anchors, which are realisations of relationships among the web
assets of learning resources. Anchors can be either static navigations links or dynamic
links that activate a process that creates on-the-fly web assets, as is the case of submitting
queries to a database, which is followed by the dynamic publishing of the results. Both
anchors and relationships are items too.

Finally, a web asset includes atomic elements, namely multimedia elements, active
elements, links and code in a mark-up language (e.g. HTML). Moreover, each one of

 An approach for managing the evolution of web-based 159

these elements contains embedded links which are subject specific and do not depend on
the general web-based courseware navigational schema. For some kinds of multimedia
elements, the designer must specify the software system (player) that will handle its
presentation, such as RealAudio or RealVideo, or a special plug-in which must be
defined as items, too. In Figure 6, the abstract structure of atomic elements, where media
elements is illustrated using a class diagram.

Figure 6 Atomic elements detailed model

Video Audio Image Text Applet ActiveX Flash

Player MediaElement plays ActiveElement is played by

FormElement

Link AtomicElement
embededLink

TextArea RadioButton ComboBox

0..*

4.2 Applying configurations to the webware subsystem development process

4.2.1 The conceptual level

At this level, the description of the WbEA is transformed into a ‘conceptual schema’
following the underlying object-oriented conceptual model. We represent the ‘conceptual
schema’ (the deliverable of this process) as a composite item containing designs
illustrating the webware as a mosaic of learning resources as well as web assets. For
example, an electronic book is a learning resource comprising of hierarchically arranged
sets of web assets, on-the-fly assets, etc. Apart from the learning resources and the web
assets the items involved at the conceptual level also include relationships and the
anchors that realise these relationships.

4.2.2 The navigational level

At this level the ‘navigational schema’ of the WbEA is constructed as an official
deliverable. This should be considered as a composite item that complements the
‘conceptual schema’ giving more details about how web assets are interconnected with
hyperlinks. It contains state transition diagrams where the states are the web assets

 160 Y. Psaromiligkos and S. Retalis

identified at the conceptual level and transitions, which are the anchors that realise the
relationships between the web assets. A series of such diagrams comprise the
navigational schema, according to the navigational contexts that can be created according
to the various realisations of the relationships among the web assets and the learning
resources. So, the classes of items involved at this level are not new. In case new items
are needed for the better presentation of the navigational structures (e.g. new access
assets, new anchors and relationships) revisions to the conceptual schema must be made
for adding these new items.

4.2.3 The abstract interface level

At this level, the graphical user interface (GUI) deliverable of the hypermedia application
is constructed, that is the structure of the content, layout and ‘look and feel’ of the web
assets. This composite item complements the previous schemata with the necessary
atomic elements of each web asset. So, the items defined in this level are all the atomic
elements defined by the model described in Section 4.1, e.g. form elements, media
elements and active elements.

The interface design is ruled by the principles of the page metaphor, a practice taken
from multimedia engineering where it has been extensively adopted and used. Page
metaphor is used to specify the page components with graphic symbols and to deploy
them on the screen showing their layout. Therefore, with the use of graphical semantics,
the design depicts the page form just as it will be implemented. The designs made are
actually reusable page templates. For instance, if we design the page template of one
paragraph of an online book in a hypermedia application, then all the other paragraphs of
the book might have the same look, using the same components with the same layout,
having the same frames etc.

4.2.4 The implementation level

At this level the actual implementation of the previous designs will take place. All the
information needed is already defined and constructed in such a way as to be independent
of the implementation environment. However, at this level the particular runtime and
development environment must be taken into account. So, the items appearing at this
level are runtime specific and they depend on the data model of the language that will be
used as well as on how they will be stored. Such items may be stored in various files such
as html, asp, jsp, gifs, etc.

During implementation we define certain metadata on them according to the
principles of learning objects standardisation bodies like IMS, IEEE LOM, SCORM, etc.
All atomic elements must have metadata that describe various aspects of them, like
author details, type or format, size, etc. The definition of metadata during the
implementation phase is of paramount importance as it facilitates the management of the
web asset resources and their accessibility and reusability.

4.3 An example

In this section we describe some parts of a WbEA that have been developed and evolved
for the course ‘An introduction to compilers’ offered by the software engineering
laboratory of the National Technical University of Athens. At the macro view, the first

 An approach for managing the evolution of web-based 161

version of the application can be represented by the development process labelled as
«Life cycle-1» in Figure 2. The cornerstone of the special technological infrastructure
was the WebCT course management system [33]. This system hosted the web-based
learning resources, the details about students and instructors (personal data and records)
and the data used for administration (course management).

A simplified view of the webware subsystem development process is shown in
Figure 7. In each top-level step a number of configuration items are produced. These
items define a schema, which becomes a baseline in order to proceed to the next step.
Each successive schema complements its precedent schema with new configuration
items. When the process terminates, a new version of the webware subsystem is created.
However, the underlying process is iterative (each step is validated according to
guidelines for formative evaluation of the instructional design, checking structural,
navigational, aesthetics, usability and functional issues) and may contain many iterations
before an actual version of the webware subsystem is constructed. So, there may be many
versions of the above baselines before the system proceeds to the utilisation process.

Figure 7 The webware subsystem development process

Conceptual
Design

Conceptual
Schema_V1

Navigational
Design

Navigational
Schema_V1

Interface
Design

Interface
Schema_V1

Imple-
mentation

Implementation
Schema_V1

Conceptual
Schema’s Items

Micro-View

Macro-View

process

product

decomposition

Navigational
Schema’s Items

Abstract Interface
Design Schema’s Items

Implementation
Schema’s Items

Legend

The webware part of the WbEA includes a variety of learning resources such as: a
hypermedia didactic book, two case studies, self-assessment web-based questionnaires, a
collection of past exam papers, a course description and a study guide. Because of space
limitations, at the micro view we will concentrate on one of the case studies. This case
study contains learning material for giving the students a complete example on how to
create a compiler for an educational language called ‘Russel’. This case study has the
structure of a hypermedia didactic book. It also contains active elements that are being
used by learners to test the validity of already prepared examples as well as their own
intermediate products during the development process of a compiler (e.g. lexical
analysis). The resources have been developed using HTML and CGI scripts and have

 162 Y. Psaromiligkos and S. Retalis

been stored on a web server that hosts the WebCT learning management system [33]. The
language of the learning material in the current implementation is Greek and so we avoid
showing the real interfaces (it will look Greek to the reader).

Figure 8 shows the items comprising the first version of the ‘conceptual schema’.
Four learning resources, each one containing a set of web assets, both access and content
assets have been developed. For presentation purposes we show only the relationship
‘SemAnalysisRel’ and the anchor (SemAnalysis) that realises it. The underlying
relationship relates the web asset ‘SemanticAnalysis’ of the case study with the
corresponding section of the didactic book.

Figure 8 The first version of the ‘conceptual schema’

Figure 9 shows the items comprising the first version of the deliverable of the
navigational phase. We show only the resource Case Study and for reasons of simplicity,
only four of the actual 27 content assets contained into the current learning resource are
shown. An access asset named Table Of Contents is shown containing links to the content
assets of the current learning resource. As Figure 9 shows, the Table Of Contents contains
anchors that realise both static and dynamic linking.

 An approach for managing the evolution of web-based 163

Figure 9 The first version of the ‘navigational schema’

Lexical_Analysis
bidirectional = True

<<Anchor>>

Lectical_Analysis
bidirectional = True

<<Anchor>>

Syntactic_Analysis
bidirectional = True

<<Anchor>>

Semantic_Analysis
bidirectional = True

<<Anchor>>

Code_Compilation
bidirectional = True

<<Anchor>>

SearchExamples
bidirectional = False

<<Anchor>>

Introduction <<StaticLinking>> <<realises>>

LectAnalysis <<StaticLinking>> <<realises>>

SemAnalysis <<StaticLinking>> <<realises>>

SyntAnalysis <<StaticLinking>> <<realises>>

CodeCompile <<StaticLinking>> <<realises>>

TableOfContents <<AccessAsset>>

Intro <<ContentAsset>>

LecticalAnalysis <<ContentAsset>>

SemanticAnalysis <<ContentAsset>>

SyntacticAnalysis <<ContentAsset>>

CodeCompilation <<ContentAsset>>
<<link>>

Search_Examples
search(metadata : Metadata)

<<DynamicLinking>> <<realises>>

CaseStudy <<LearningResource>>

Example <<OnTheFlyAsset>>

Figure 10 shows the items (atomic elements) comprising a particular asset of the resource
Case Study of the abstract interface design phase. This asset has text and a form element
and it is used for validating the intermediate products during the development process of
the ‘Russel’ compiler.

Figure 10 The abstract interface design phase of a web asset version

CompileResult
<<OnTheFlyAsset>>

Compilation
<<DynamicLinking>>

Description
<<Text>>

CodeW riteArea
<<TextArea>>

Reset
<<Anchor>>

Submit
<<Anchor>>

<<realises>>

CodeCompilation
<<ContentAsset>>

ClearTextArea
<<StaticLinking>>

<<realises>>

 164 Y. Psaromiligkos and S. Retalis

Though it is not obvious from the simple previous example, there may exist nesting
structures of learning resources of an arbitrary depth. We propose a recursive process of
identifying the learning resources of a particular WbEA until the definition of the web
assets and their contained atomic elements, which are the finer granularity elements in
this model.

After the utilisation process, the WbEA is summatively evaluated leading to new
evolution cycles in order to implement the necessary changes as suggested by the results
from quantitative and qualitative analysis of students’ feedback. Finally, the distillation
and customisation process of the outputs of the instructional process can also be used for
the evolution of the WbEA. However, all these evolution cycles are normally captured by
our model in such a way that it is easy for the designer to find out all the consequences of
a given change. A similar approach from the configuration management domain is called
change-based versioning [17].

5 Related work

Although there is still no consensus on a general life cycle model of a web application,
one can identify a set of typical activities involved in the development of a web
application by analysing the life cycle models of traditional information systems and the
proposals for structured hypermedia design [28,34–36]. Presently, it seems that no
specific tool or class of tools is fully addressing the whole life cycle of web applications,
which require the same communication paradigm and interface quality [37].
Implementation oriented approaches like WebML [38] seem the most adequate choice,
although development and maintenance with their supporting tools still require a
substantial effort.

Moreover, the activities of the configuration management phase are usually
neglected. Software configuration management techniques have been around for many
years and excellent tools have been around. The WWW needs these benefits as well,
especially as the industry matures and continues on its exponential growth path. Applying
software configuration management concepts, principles and approaches to web
development has been identified as an open research topic for the configuration
management area and web engineering [39,40] as well as the e-learning technology
field [41]. Our approach addresses this gap and combines ideas stemming from
the software engineering (evolutionary development), the hypermedia modelling (the
object-oriented paradigm) and the learning technology fields.

6 Concluding remarks and feature plans

There is a need for a disciplined approach to managing the evolution of WbEA because
they are complex systems, have a long lifetime and their representation and evolution
history is very complex. This is a problem analogous to the software engineering
community for software systems and configuration management has the potential to
provide a solution in this area.

In this paper we described a model for the development and evolution of WbEA
configurations. Our model couples the development and evolution process into one
framework, which seems promising for the implementation of a configuration

 An approach for managing the evolution of web-based 165

management process. This approach has not been a formal method as yet. It needs to
mature in order to have computerised support.

So, among our future plans are the following:

• the refinement of the model at the micro view in order to formalise the configuration
management process

• the definition of a version model for the WbEA that will support both revisions and
variations.

In this work we mainly focused on the revision aspect of WbEA. However, we could
have variations of the WbEA in order to support multilinguality and adaptability. We
have already developed the first version of an adaptive WbEA and its underline
architectural model [42] and we will now work on applying the proposed model for the
evolution of the system’s configurations.

Finally, we are in the process of designing a configuration management tool for
having a computer assistant in this process. We do not try from scratch but we try to
make additions to existing tools that are being used in software configuration
management. We also tend to persuade ourselves that both course management tools (like
WebCT, Blackboard, etc.) and the learning objects management tools (which follow the
LTSC LOM or IMS or EML standard) should have features that support versions of the
specific infrastructure, the learning material and the WbEA in general.

References
1 Sun Microsystems (1999) ‘Understanding distance learning architectures’, A White Paper.
2 IEEE Learning Technology Standards Committee (LTSC) (2001) Draft Standard for Learning

Technology – Public and Private Information (PAPI) for Learners (PAPI Learner) – Core
Features, Draft 8, November, Available from: http://ltsc.ieee.org.

3 Gagné, R., Briggs, L. and Wager, L. (1994) Principles of Instructional Design, Fort Worth,
TX: HBJ College Publishers.

4 McCormack, C. and Jones, J.D. (1997) Building a Web-based Education System, Wiley
Computer Publishing.

5 Lowe, D. and Hall, W. (1999) Hypermedia and the Web: An Engineering Approach, John
Wiley Ltd.

6 Moore, M.G. and Kearsley, G. (1996) Distance Education: A Systems View, Wadsworth
Publishing Company.

7 Carlson, P.A. (1998) ‘Advanced educational technologies – promise and puzzlement’, Journal
of Universal Computer Science, Vol. 4, No. 3.

8 Lindner, R. (2001) Expertise and Role Identification for Learning Environments (ERILE)
Proposed Standard Draft for German DIN NI-36, Available from: http://www.igd.fhg.de/
~lindner/PROMETEUS/SIG-DESIGN_Meeting-Point.html

9 Ford, P., Goodyear, P., Heseltine, R., Lewis, R., Darby, J., Graves, J., Sartorius, P.,
Harwood, D. and King. T. (1996) Managing Change in Higher Education: A Learning
Environment Architecture, Open University Press, London.

10 Halaris, J., Geropoulos, S. and Pintelas, P. (2002) ‘E-Learning using multimedia tele-teaching
labs’, Themes in Education, Vol. 3, No. 2, pp.141–164.

11 IEEE/ANSI (1987) IEEE Guide to Software Configuration Management, ANSI/IEEE Std
1042–1987, IEEE Press, New York, NY, USA.

 166 Y. Psaromiligkos and S. Retalis

12 IEEE/ANSI (1990) IEEE Standard for Software Configuration Management Plans, IEEE Std
828-1990, IEEE Press, New York, NY, USA.

13 IEEE/ANSI (1990) IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990, IEEE Press, New York, NY, USA.

14 Estublier J. (1988) ‘Configuration management: the notion and the tools’, Proceedings
International WorkShop on Software Version and Configuration Control, Stuttgart, FRG.

15 Estublier J. (1995) ‘Software configuration management’, selected papers from International
WorkShops on Software Configuration Management, SCM-4 and SCM-5, Vol. 1005 of
Lecture Notes in Computer Science, Springer-Verlang, Seattle Washington.

16 Estublier J. (1999) ‘System configuration management’, Proceedings of the 9th International
Symposium on Software Configuration Management, SCM-9, Toulouse, France, Vol. 1675 of
Lecture Notes in Computer Science, Springer-Verlang.

17 Conradi, R. (1997) ‘Software configuration management’, Proceedings of the 7th
International Workshop on Software Configuration Management, ICSE’97, Vol. 1235 of
Lecture Notes in Computer Science, Boston, MA, USA, 1997, Springer-Verlang.

18 Magnusson, B. (1998) ‘System configuration management’, ECOOP’98 SCM-8 Symposium,
Vol. 1439 of Lecture Notes in Computer Science, Brussels, Belgium, Springer-Verlang.

19 Van Der Hoek, A. (2001) ‘Software configuration management: new practices, new
challenges and new boundaries, Proceedings of the 10th International workshop on Software
Configuration Management, 23rd ICSE, Toronto, Canada.

20 Retalis, S. (1998) ‘CADMOS: an instructional systems development methodology with
emphasis on the construction of web-based learning resources’, PhD thesis, National
Technical University of Athens (in Greek).

21 Schash, S.R. (1990) ‘Chapter 3: software life cycle models’, Software Engineering,
Homewood, IL, Aksen Associates, pp.20–40.

22 Rowntree, D. (1994) Preparing Materials for Open, Distance and Flexible Learning – An
Action Guide for Teachers and Trainers, ISBN: 0749411597, Kogan Page, UK.

23 Tennyson, D. and Breuer, K. (1997) ‘Instructional theory: psychological perspectives’,
in Tennyson, R.D., Schott, F., Seel, N. and Dijkstra, S. (Eds.): Instructional Design:
International Perspectives, Vol. I: Theory and Research, Hillsdale, NJ, Lawrence Erlbaum
Associates, Publishers.

24 Spector, M.J. and De La Teja, I. (2001) ‘Competencies for online teaching’, NY: ERIC
Clearinghouse on Information and Technology, EDO-IT-2001-09, December, Available from:
http://www.ericit.org/digests/EDO-IR-2001-09.shtml.

25 International Board of Standards for Training (2002) Performance and Instruction (IBSTPI)
Available from: http://www.ibstpi.org/

26 Richey, R.C., Fields, D.C., Foxon, M., Roberts, R.C., Spannaus, T. and Spector, J.M. (2001)
Instructional Design Competencies: The Standards, 3rd ed., Syracuse, NY, ERIC
Clearinghouse on Information and Technology.

27 Goodyear, P., Salmon, G., Spector, M., Steeples, C. and Tickner, S. (2001) ‘Competencies for
online teaching’, Educational Technology Research and Development, Vol. 49, No. 1,
pp.65–72.

28 Scwhabe, D. and Rossi, G. (1995) ‘The object-oriented hypermedia design model OOHDM’,
Communications of the ACM, Vol. 38, No. 8, pp.45–46.

29 Scwhabe, D. and Rossi, G. (1998) ‘An object oriented approach to web-based application
design’, Theory and Practice of Object Systems, Wiley and Sons, New York, ISSN
1074–3224, Vol. 4, No. 4.

30 Booch, G., Rumbaugh, J. and Jacobson, I. (1999) The UML User Guide, Addison-Wesley.
31 Global Learning Consortium (2001) IMS Content Packaging, – Best Practice and

Implementation Guide, version 1.1.2 – Final Release, Available from:
http://www.imsproject.org/

 An approach for managing the evolution of web-based 167

32 Advanced Distributed Learning Initiative (2001) Sharable Content Object Reference Model,
Available from: http://www.adlnet.org/

33 WebCT (2001) Available from: http://www.webct.com/
34 Garzotto, F., Mainetti, L. and Paolini, P. (1995) ‘Hypermedia design, analysis and evaluation

issues’, ACM Communication, Vol. 38, No. 8, pp.74–86.
35 Isakowitz, T., Stohr, E.A. and Balasubramanian, P. (1995) ‘RMM: a methodology for

structured hypermedia design’, ACM Communication, Vol. 38, No. 8, pp.34–44.
36 Nanard, J. and Nanard, M. (1995) ‘Hypertext design environments and the hypertext design

process’, ACM Communication, Vol. 38, No. 8, pp.49–56.
37 Fraternali, P. (1999) ‘Tools and approaches for developing data-intensive web applications: a

survey’, ACM Computing Surveys, Vol. 31, No. 3, pp.227–263.
38 http://webml.org
39 Dart, S. (1999) ‘Content change management: problems for web systems’, in Estublier, J.

(Ed.): Proceedings of 9th International Symposium, SCM-9, Toulouse, France, Vol. 1675 of
Lecture Notes in Computer Science, Springer-Verlang, pp.1–16.

40 Murugesan, S., Deshpande, Y., Hansen, S. and Ginice, A. (2001) ‘Web engineering: a new
discipline for development of web-based systems’, in Murugesan, S. and Deshpande, Y.
(Eds.): Proceedings of the International Conference on WebEngineering 2000, Web
Engineering 2000, Vol. 2016 of Lecture Notes in Computer Science, Springer-Verlang,
pp.3–13.

41 IEEE Learning Technology Standards Committee, (LTSC) (2001) Draft Standard for
Learning Object Metadata (LOM) Draft 6.4, Available from: http://ltsc.ieee.org.

42 Papasalouros, A. and Retalis, S. (2002) ‘Ob-AHEM: a UML-enabled model for adaptive
educational hypermedia applications’, Interactive Educational Multimedia, Interactive
educational Multimedia, ISSN 1576-4990, special issue on the theme ‘adaptive educational
multimedia’, No. 4, April 2002.

	Untitled
	Untitled
	Untitled

