Improved Methods for Extracting
Frequent Itemsets from
Interim-Support Trees

Frans Coenen
Department of Computer Science, University of Liverpool
Chadwick Building, Peach Street, Liverpool L69 7ZF, UK
frans@csc.liv.ac.uk

Paul Leng
Department of Computer Science, University of Liverpool
Chadwick Building, Peach Street, Liverpool L69 7ZF, UK
phl@csc.liv.ac.uk

Aris Pagourtzis*
Department of Computer Science, National Technical University of Athens
15780 Zografou, Athens, Greece
pagour@cs.ntua.gr

Wojciech Rytterf
Institute of Informatics, Warsaw University, Poland and
Department of Computer Science, New Jersey Institute of Technology, US
rytterQoak.njit.edu

Dora Souliou*
Department of Computer Science, National Technical University of Athens
15780 Zografou, Athens, Greece
dsouliou@cslab.ece.ntua.gr

Abstract

Mining association rules in relational databases is a significant compu-
tational task with lots of applications. A fundamental ingredient of this
task is the discovery of sets of attributes (itemsets) whose frequency in
the data exceeds some threshold value. In previous work [9] we have
introduced an approach to this problem which begins by carrying out an
efficient partial computation of the necessary totals, storing these interim
results in a set-enumeration tree. This work demonstrated that making

* Aris Pagourtzis and Dora Souliou were partially supported for this research by “Pythago-
ras” grant of the Hellenic Ministry of Education, co-funded by the European Social Fund
(75%) and National Resources (25%) under Operational Programme “Education and Initial
Vocational Training” (EPEAEK II).

TWojciech Rytter was supported for this research by grants 4T11C04425 and CCR-
0313219.

use of this structure can significantly reduce the cost of determining the
frequent sets.

In this paper we describe two algorithms for completing the calcula-
tion of frequent sets using an interim-support tree. These algorithms are
improved versions of earlier algorithms described in the above mentioned
work and in a consequent paper [7]. The first of our new algorithms
(TTF) differs from its ancestor in that it uses a novel tree pruning tech-
nique, based on the notion of (fized-prefiz) potential inclusion, which is
specially designed for trees that are implemented using only two point-
ers per node. This allows to implement the interim-support tree in a
space efficient manner. The second algorithm (PTF) explores the idea of
storing the frequent itemsets in a second tree structure, called the total
support tree (T-tree); the improvement lies in the use of multiple point-
ers per node which provides rapid access to the nodes of the T-tree and
makes it possible to design a new, usually faster, method for updating
them.

Experimental comparison shows that these improvements result in
considerable speedup for both algorithms. Further comparison between
the two improved algorithms, shows that PTF is generally faster on in-
stances with a large number of frequent itemsets, while TTF is more
appropriate whenever this number is small; in addition, TTF behaves
quite well on instances in which the densities of the items of the database
have a high variance.

1 Introduction

An important data mining task initiated in [2] is the discovery of association
rules over huge listings of sales data, also known as basket data. This task
initially involves the extraction of frequent sets of items from a database of
transactions, i.e. from a collection of sets of such items. The number of times
that an itemset appears in transactions of the database is called its support. The
minimum support an itemset must have in order to be considered as frequent is
called the support threshold, a nonnegative integer denoted by ¢. The support
of an association rule A = B, where A and B are sets of items, is the
support of the set A U B. The confidence of rule A = B is equal to
support(A U B)/support(A) and represents the fraction of transactions that
contain B among transactions that contain A.

Association Rule Mining, in general, involves the extraction from a database
of all rules that reach some required thresholds of support and confidence.
The major part of this task is the discovery of the frequent itemsets; once
the support of all these sets has been counted, determining the confidence of
possible rules is trivial. Of course, there is no polynomial-time algorithm for
this problem since the number of possible itemsets is exponential in the number
of items. This problem has motivated a continuing search for effective heuristics
for finding frequent itemsets and their support.

The best-known algorithm, from which most others are derived, is Apriori
[4]. Apriori performs repeated passes of the database, successively counting the
support for single items, pairs, triples, etc.. At the end of each pass, itemsets
that fail to reach the support threshold are eliminated, and candidate itemsets

for the next pass are constructed as supersets of the remaining frequent sets.
As no frequent set can have an infrequent subset, this heuristic ensures that all
sets that may be frequent are considered. The algorithm terminates when no
further candidates can be constructed.

Apriori remains potentially very costly because of its multiple database
passes and, especially, the possible large number of candidates in some passes.
Attempts to reduce the scale of the problem include methods that begin by
partitioning [11] or sampling [12] the data, and those that attempt to identify
mazimal frequent sets [5] or closed frequent sets [13] from which all others can
be derived. A number of researchers have made use of set-enumeration tree
structures to organise candidates for more efficient counting. The FP-growth
algorithm of Han et al. [10] counts frequent sets using a structure, the FP-tree,
in which tree nodes represent individual items and branches represent itemsets.
FP-growth reduces the cost of support-counting because branches of the tree
that are subsets of more than one itemset need only be counted once. In
contemporaneous work, we have also employed set-enumeration tree structures
to exploit this property. Our approach begins by constructing a tree, the P-
tree, [9, 8], which contains an incomplete summation of the support of sets
found in the data. The P-tree, described in more detail below, shares the same
performance advantage of the FP-tree but is a more compact structure. Results
presented in [7] demonstrate that algorithms employing the P-tree can achieve
comparable or superior speed to FP-growth, with lower memory requirements.

Unlike the FP-tree, which was developed specifically to facilitate the FP-
growth algorithm, the P-tree is a generic structure which can be the basis of
many possible algorithms for completing the summation of frequent sets. In
this paper we describe and compare two algorithms for this purpose, namely:

1. The T-Tree-First (TTF) algorithm.
2. The P-Tree-First (PTF) algorithm.

Both algorithms make use of the incomplete summation contained in the P-tree
to construct a second set-enumeration tree, the T-tree, which finally contains
frequent itemsets together with their total support. The algorithms differ in
the way they compute the total support: algorithm 7T-Tree-First iterates over
the nodes of T-tree, and for each of them it traverses the P-tree; algorithm
P-Tree-First starts by traversing the P-tree and for each node that it visits, it
updates all relevant nodes at the current level of the T-tree.

TTF and PTF are improved versions of known algorithms, described in
[9] and [7] respectively. Here we will refer to them as TTF-old and PTF-old
respectively (note however that PTF-old was called Apriori-TFP in [7]).

The contribution of this work lies in the introduction of techniques that can
considerably accelerate the process of computing frequent itemsets. In partic-
ular, the main improvement in the first of our algorithms (TTF) is a novel tree
pruning technique, based on the notion of fized-prefix potential inclusion, which
is specially designed for trees that are implemented using only two pointers per
node. This allows to implement the interim-support tree in a space efficient

manner. The second algorithm (PTF) differs from its predecessor in that it
uses multiple pointers per node in the T-tree; this accelerates the access of the
nodes of the T-tree and makes it possible to find and update appropriate T-tree
nodes following a new, usually faster, strategy.

We perform experimental comparison of the two algorithms against their
predecessors and show that in most cases the speedup is considerable. We also
compare the two new algorithms to each other and discuss the merits of each.
Our results show that PTF is faster than TTF if there are a lot of frequent
itemsets in the database (small support threshold). On the other hand TTF
gains ground as the support threshold increases and behaves even better for
instances of variable item density which have been pre-sorted according to these
densities.

2 Notation and Preliminaries

A database D is represented by an m x n binary matrix. The columns of D
correspond to items (attributes), and the rows correspond to the transactions
(records). The columns are indexed by consecutive letters a, b, ... of the
alphabet. The set of columns (items) is denoted by C. An itemset I is a set of
items I C C. For an itemset I we define:

e E(I) (E-value of I) is the number of transactions that are exactly equal
to I. This value is also called ezact support of I.

e P(I) (P-value of I) is the number of transactions that have I as a prefix.
Also called interim support of 1.

o T(I) (T-value of I) is the number of transactions that contain I. Also
called total support or, simply, support of I.

In this paper we consider the problem of finding all itemsets I with T'(I) > ¢,
for a given database D and threshold ¢.

For an item = we define the density of x in D to be the fraction of trans-
actions of D that contain z, that is T'({z})/m. We also define the density of a
database D to be the average density of the items of D; note that the density
of D is equal to the fraction of the total number of items appearing in the
transactions of D over the size of D (= nm).

We will make use of the following order relations:

e Inclusion order: I C J, the usual set inclusion relation,

e Lexicographic order: I < J, I is lexicographically smaller or equal to J
if seen as strings,

e Prefix order: I T J, I is a prefix of J if seen as strings. Note that
ICJ& ICJ &I

We will also use the corresponding operators without equality: I C J, ICJ
and I<J.
Notice that for any itemset I:

T(1)=Y E(J)

ICJ

and therefore:

(= Y EWN+ > EWJN)=PO+ > EJ) (1)

ICJ & I<J ICJ & J<I ICJ & J<I

This property will play an important role in our algorithms.

3 The Interim-Support Tree

Both new algorithms TTF and PTF (as well as their predecessors TTF-old and
PTF-old) have a common first part which is a pre-processing of the database
that results in the storage of the whole information into a structure called
the P-tree or interim-support tree. The P-tree is a set-enumeration tree the
nodes of which are distinct itemsets of the database as well as some common
prefixes of these itemsets. For each node, the interim support (P-value) of the
corresponding itemset is also stored.

The notion of interim-support trees was introduced in [9], where details of
the construction of the P-tree were given, and more fully in [8]. The tree is
constructed in a single pass of D. As each transaction is examined, the tree is
traversed in a top-down (preorder) manner until either a node with identical
itemset is found or a new node is created to represent the new itemset at an
appropriate place in the tree. During this traversal, the support of all ancestors
(preceding subsets) of the itemset is incremented. When a new itemset is
inserted which shares a common prefix with an existing itemset, this prefix is
created, if not already present, as a parent node, and inherits the support of
its children.

The significance of the P-tree is that it performs a large part of the count-
ing of support totals very efficiently in a single database pass. The size of the
P-tree is linearly related to the original database, from which all relevant infor-
mation is preserved, and will be smaller in cases where the data includes many
duplicated itemsets. In results presented in [7], both the memory requirements
and construction time for the P-tree were less than for a corresponding FP-tree
[10].

For the sake of memory efficiency the P-tree is implemented using two
pointers per node: down and right. For a node v, its down pointer links v to
one of its children — the lexicographically smaller. This child’s right pointer
points to another child of v, and so on. For example, in the implementation of
a P-tree containing itemsets ‘a’, ‘ab’, ‘ac’, and ‘abc’ node ‘a’ points down to
‘ab’ which in turn points down to ‘abc’ and right to ‘ac’.

Note that, for simplicity, we often identify nodes of the P-tree with the
itemsets they contain. This should cause no confusion since itemsets in the
P-tree are unique.

4 The T-Tree-First (TTF) algorithm

TTF is an improved version of the algorithm in [9] (which we call TTF-old
here). In this section we give a detailed description of the new algorithm.

The algorithm first scans the database and creates the P-tree, as explained
in the previous section.

It then starts building the T-tree (recall that the T-tree will finally contain
all frequent itemsets together with their total supports). Each level of the
T-tree is implemented as a linear list, where itemsets appear in lexicographic
order; nodes of such a list neither point to nor are pointed from nodes that are
in the list of another level. In the beginning, the algorithm builds level 1 of
the T-tree, which contains all frequent singletons; to this end it counts their
support traversing the P-tree. It then builds the remaining T-tree level by level
using procedure Iteration(k).

The algorithm is presented below. A fundamental ingredient of TTF is
function CountSupport which is described separately.

Algorithm T-Tree-First (TTF)
Input: Database D, threshold t.
Output: The family F of frequent itemsets.

Build P-tree from database D;

(* Build the 1-st level of T-tree *)
fori=1tondo
if CountSupport(P-tree, {i}) >t then add {i} to Fi;

(* Build the remaining levels of T-tree *)
for k=2tondo

Iteration(k);

if 7. = 0 then exit

else F = FU Fy;
return F;

Some details of procedure Iteration(k) need to be clarified. Its goal is
to build Fg, that is, the k-th level of the T-tree. Itemsets in Fj; must have
all their (k — 1)-size subsets in Fi_1. Therefore, one can start from existing
itemsets in Fyx_1 and try to augment them with one more item in order to
create all potentially frequent itemsets. To avoid duplications the algorithm
may proceed by considering for each frequent itemset X1 in Fr_1 all Xg_1’s
supersets Xy = {x}UX}_; for items x that are greater than any item of X;_;.

Careful observation reveals that only if X, ; and the node following it,
denoted X;,_,, differ at the last item it makes sense to consider such supersets.

The candidate superset Xy is then the union of Xj;_; and X; ;. Then it
is checked whether all the (k — 2 many) remaining (k — 1)-subsets of X} are
frequent; this is carried out by a special function called ExistSubsets, which
we will not describe in detail here. If some of the examined subsets of X}, is
not present in Fy_1, X is not added to Fy.

Procedure Iteration(k) (* Building the k-th level of T-tree *)

for each itemset X;_1 € Fr—1 do
X;_1 = next(Xp_1);
while X, , # NULL do
if Xi_1 and Xj,_, differ only at the last item then
Xk = Xk_1 UX,Q,l;
if ExistSubsets(Xx, Fr—1) then
T(Xy) := CountSupport(P-tree, X;);
if T(Xy) > t then add X to Fy;
Xj—1 = next(Xj_1);
else exit while;

In order to complete the description of TTF it remains to describe its most
critical part, that is, function CountSupport, which counts the total support
of an itemset X in the P-tree in a recursive manner. An essential ingredient of
CountSupport is the notion of fixed-prefiz potential inclusion:

ot
Fixed-Prefix Potential Inclusion. ng xJ: 3, commonprefiz(J,J) =K &I C
!
J ’ pot pot
Examples: ‘bdf’ C > ‘abc’, ‘bdf’” £,y ‘abd’.

po
In words, I C xJ means that there is an itemset greater than J, sharing

with J a common prefix K, that contains 1.
pot
A second interesting inclusion relation can be defined in terms of C g

Potential Inclusion. ICJ ef ICJJ 1e 3J, JCJ &1 CJ.

Examples: ‘bdf’ Q ‘abde’, ‘bdf’ g ‘abdg’.

In words, I ng means that there is an extension of J that contains I.

The use of the above inclusion relations can significantly reduce the number
of moves needed to count the support of an itemset in trees with two pointers
per node. Suppose that we are looking for appearances (i.e. supersets) of an
itemset I in the P-tree and we are currently visiting a node that contains
itemset J:

e Nodes that are below the current node contain itemsets J’ which have J

as prefix. Therefore, if T ,@ J there is no point visiting the subtree rooted
at the current node.

e Nodes that are to the right of the current node (siblings) contain itemsets
that have par(J) (parent of J) as prefix — and so does J — and are

pot
greater than J. If I £ .5/ there is no point visiting the subtrees
rooted at these nodes.

These two tests result in much better tree pruning comparing to the one
applied by the TTF-old algorithm. As an example, suppose that we are trying
to find the support of itemset X=‘bd’ in a P-tree in which there is a node ‘ab’
with children ‘abde’ and ‘abefg’. Then, once the tree traversal reaches node
‘abde’ it adds its support to T'(X) and does not move to the right, that is, it
avoids visiting ‘abefg’. On the other hand, TTF-old [9] would also examine
‘abefg’ (and other siblings if such existed) because it only terminates its search
whenever it finds itemsets lexicographically equal or greater than X.

Function CountSupport(pnode, X): integer
(* Counts the total support of itemset X
in the subtree of P-tree rooted at pnode*)
T:=0;
if pnode # NULL then

J := pnode — itemset;

if ngJ then (* makes sense to search children *)
if X C J then T := T + P(J)
(* inclusion is a special case of potential inclusion *)
else T := T+ CountSupport(pnode — down, X);

pot
if X C o) J then (* makes sense to search right siblings *)
T := T+ CountSupport(pnode — right, X);

return T3

Finally, let us explain how to check potential inclusion and fixed prefix
potential inclusion. It can be shown that the following tests suffice. The proof
is omitted.

ot ot
° ng J: if X C J then ng J is true. Otherwise let be the lexico-
graphically smaller item of X that is not item of J (such x exists). If for

pot
all items j of J are lexicographically smaller than = then X C J is true
otherwise it is false.

pot pot
o X CgJ: assume KLCJ (otherwise the inclusion X C g J is obviously

false). Let x be the first item of X \ K and J be the first item of J \ K.

ot
If x > j the inclusion X pg i J holds otherwise it is false.

5 The P-Tree-First (PTF) Algorithm

PTF is an improved version of the algorithm Apriori-TFP [7] (which we call
PTF-old here). PTF also begins by constructing the P-tree exactly as TTF, but

then it follows an inverse approach in order to update the T-tree. In particular,
during the processing of level-k of the T-tree, each node of the P-tree is visited
once. Let I be the itemset of a visited node; the algorithm updates all nodes
of level-k that are subsets of I, except for those that are also subsets of par(I)
(parent of I) — the latter have already been updated while visiting par(I).

Following again the a-priori strategy [4], level-k itemsets of the T-tree are
constructed from the itemsets of level-(k — 1), by adding single items to each
of them. Then, the P-tree is traversed as described above in order to compute
support for all nodes of level-k. Nodes with support smaller than the threshold
are removed before the generation of level-(k + 1).

Algorithm P-Tree-First (PTF)
Input: Database D, threshold t.
Output: The family F of frequent itemsets.

Build P-tree from database D;

add 0 to Fo; (* create a dummy level with one empty itemset *)

(* Build level-k of the T-tree *)

for k=1tondo
Iteration(k);
if 7 = 0 then exit for
else F = FU Fy;

return F;

Our innovation here is the use of multiple pointers at each node of the T-tree
in contrast to PTF-old where two pointers per node are used. This provides
rapid access to the nodes of the T-tree which allows for a new strategy for
T-tree update. In particular, while building level k, once a node I of the P-
tree is visited, all its k-subsets (subsets of size k) are generated; once such a
k-subset is generated, it is sought in the T-tree and, if present, its support is
updated accordingly. Whenever such an itemset .JJ has a subset .JJ’ which is not
frequent (hence neither J can be frequent) the algorithm discovers this quite
early and the update process terminates. For example, if the algorithm visits
a node of the P-tree with itemset ‘acdfghk’ and the current level of the T-tree
is level-6 the algorithm should update all size-6 subsets of ‘acdfghk’. Consider
‘acdfgh’; the algorithm will try to find this node starting from ‘a’ in level-1,
continuing to ‘ac’ in level-2, and then to ‘acd’, ‘acdf’ and ‘acdfg’. If ‘acd’ is
non-frequent, i.e. does not exist in level-3, the algorithm stops and considers
the lexicographically next size-6 subset of ‘acdfghk’. In fact, it saves even more
comparisons by considering ‘acfghk’ as next subset because there is no need to
check any subset that contains ‘acd’. On the other hand, PTF-old traverses
a potentially large list of candidate itemsets in order to check whether any of
them is a k-subset of I. This could be much slower than the above described
procedure, especially if I has few k-subsets in that list. A detailed description
of the update of level-k of the T-tree is given below.

Procedure Iteration(k) (* Building k-th level of T-tree *)

for each itemset X;_1 € Fr_1 do
for each item x greater than all items of X;_; do
add X := X1 U {ZL‘} to Fi;
let the z-th down pointer of Xj_1 point to X;

(* Update total supports of nodes in Fi *)
for each node I of the P-tree do
non-frequent := {dummy};
for each itemset J C [with |J| =k do
if J C par(I) or non-frequent C J then
proceed to the lex. next J C I such that
J is not subset of par(I) and does not contain non-
frequent
else
descend the T-tree following prefixes of J
until J is found or some J'C.J is missing;
if J is found then T'(J) :=T(J) + P(I)
else non-frequent := J'; (* J' is not in the T-tree *)

remove from Fj, all nodes with support < ¢ (threshold);

6 Experimental Comparison

We implemented four algorithms in ANSI-C: TTF, TTF-old, PTF and PTF-
old. We run several experiments using a Pentium 1.6 GHz PC. We first experi-
mented with datasets created by using the IBM Quest Market-Basket Synthetic
Data Generator (described in [4]). We follow a standard notation according to
which a dataset is described by four parameters: T represents the average
transaction length (roughly equal to the database density times the number of
items), I represents the average length of maximal frequent itemsets, N rep-
resents the number of items, and D represents the number of transactions in
the database. We generated datasets T10.14.N50.D10K and T10.14.N20.D100K
and run experiments with all four algorithms. The execution time of each al-
gorithm for these two datasets and threshold varying from 5% to 1% is shown
in Figure 1.

These results show that both algorithms TTF and PTF are faster than their
predecessors, except for rather large thresholds. As regards TTF and TTF-old,
the reason for this behaviour is that TTF-old performs fewer tests at each P-
tree node that it visits; thus, whenever a contiguous part of the tree is traversed
by both TTF and TTF-old, it is TTF-old the one which does it faster. Now,
whenever the frequent itemsets are few, they are also (most probably) of small
size; a small itemset has higher chances to appear in a contiguous part of the
P-tree which therefore cannot be pruned by TTF. PTF-old can also be faster
than PTF if there are only few frequent itemsets because in such a case it can
be faster to traverse the list of candidate itemsets than generating all subsets
of a node.

300 1600

1400
1200

—TIF 1000
—e—TTF-0ld
— -+ -PTF

~-m--- PTF-0ld

8
150

e(sec)

800

time(sec)

ti

600 u--- PTF-old

400
200

threshold(%) threshold(%)

Figure 1: Results for datasets T10.14.N50.D10K (left) and T10.14.N20.D100K
(right).

Comparing now the two new algorithms, we observe that PTF is faster than
TTF for small thresholds (< 2%). This is due to the fact that whenever the
number of frequent itemsets is large, TTF performs a lot of P-tree traversals,
while PTF performs only one full P-tree traversal per T-tree level. Since the size
of the P-tree can be rather large (even comparable to the size of the database)
its traversal is quite slow; hence, whenever TTF performs many traversals,
even partial, the overall slowdown is considerable. On the other hand, PTF
performs several T-tree traversals at each level but these are fast thanks to the
use of multiple pointers. The two algorithms have comparable running time
for thresholds above 2%. This is because for relatively sparse T-tree the P-tree
traversals performed by TTF are few; in this case the economizing techniques
of TTF balance, or even beat the advantages of PTF.

To further compare TTF and PTF we implemented a probabilistic generator
in order to create datasets of variable item density (each item has a different
expected density). This generator fills the i-th item of a row with probability
ps — (i — 1)ps, i.e., the probability decreases linearly as we move from the first
to the last item of a row; ps represents the probability of appearance of the
first item and p, is the decrement step. The expected density of the database
is equal to py — ("2;1);05 = ”2;’", where p; is the probability of appearance of
the last item and n is the number of items in each row.

We have generated four variable-density datasets, one for each of the follow-
ing four types (where letter ‘V’ stand for ‘variable-density’): V.T4.N20.D10K,
V.T6.N20.D10K, V.T4.N20.D100K, and V.T6.N20.D100K; the corresponding
first item selection probabilities and decrement steps (in parentheses) are 0.4
(0.02), 0.6 (0.03), 0.4 (0.02), and 0.6 (0.03) respectively.

We run experiments with support thresholds ranging from 5% to 0.5%. For
each dataset type / threshold combination we have measured the execution
time of PTF and TTF, averaging over ten experiments, one for each dataset of
the type.

Results for the datasets with 10K transactions appear in Figure 2. Figure 3
shows results for the datasets with 100K transactions.

Comparison of the algorithms for Variable-Density Datasets. The compar-

~

3
5

time(sec)

o v & o

threshold(%) threshold(%)

Figure 2: Results for datasets V.T4.N20.D10K (left) and V.T6.N20.D10K
(right).

time(sec)

threshold(%) threshold(%)

Figure 3: Results for datasets V.T4.N20.D100K (left) and V.T6.N20.D100K
(right).

ison of the two algorithms is much more interesting when it comes to variable-
density data sets. As before, PTF behaves better for small thresholds (roughly
smaller than 2%) but TTF is faster for larger thresholds. Besides, PTF exhibits
almost constant running time in most experiments. Now, whenever the T-tree
is small and sparse, it happens that the few full P-tree traversals performed by
PTF can take longer than the (more but not too many) partial P-tree traversals
of TTF. The main reason is that potentially frequent itemsets consist mainly
of lexicographically smaller items, hence the partial P-tree traversals of TTF
are limited to a small part of the P-tree and are therefore much faster. On the
other hand, TTF performs a full P-tree traversal at each level of the T-tree
that contains potentially frequent itemsets, regardless of the number of these
itemsets, hence it needs almost the same time as before, since it considers a
similar number of levels.

Comparing the performance of the two algorithms with respect to unifor-
mity of item densities one observes that while PTF exhibits roughly the same
performance for both uniform and variable item densities, TTF is considerably
faster on instances of variable item density; indeed, our results show that for
variable-density datasets, TTF outperforms PTF for support thresholds above
3%, even above 2% or 1% in some cases. This is due to the fact that the perfor-
mance of PTF is mainly determined by the rank of the higher level of frequent

itemsets, while the performance of TTF depends heavily on the part of the
P-tree that must be visited each time — which is much smaller for variable
density instances, because frequent itemsets consist mainly of lexicographically
smaller items.

Let us note here that for our experiments we built the variable-density
datasets in such a way that the lexicographically greater items are of smaller
density. This property is essential for the performance of TTF, since it guaran-
tees that most frequent itemsets consist mainly of lexicographically small items
which appear in a small part of the P-tree. Therefore, to make TTF work well
for real datasets, a sorting of the items in order of decreasing density should
be performed in a preprocessing step.

7 Conclusions

In this work we have developed and implemented two Apriori-style algorithms
for the problem of frequent itemsets generation, called T-Tree-First (TTF) and
P-Tree-First (PTF), that are based on the interim-support tree approach [9].
The two algorithms follow inverse approaches: TTF iterates over the itemsets
of T-tree, and for each of them traverses the relevant part of the P-tree in order
to count its total support; PTF starts by traversing the P-tree and for each
visited node it updates all relevant nodes at the current level of the T-tree.

Our algorithms are improved versions of known algorithms, described in
[9] and [7]. We have introduced several new techniques that result in faster
algorithms comparing to these earlier attempts. The most important of them
are the fized-prefix potential inclusion technique, which is used in algorithm
TTF, and the use of multiple pointers in the T-tree, employed by PTF. The
former allows faster support counting for P-trees that are built using only two
pointers per node, thus being particularly memory-efficient. The latter provides
fast access to the T-tree and makes PTF a generally efficient algorithm. We
show experimentally that our new algorithms achieve considerable speedup
comparing to their predecessors.

The main difference between the two algorithms is that TTF performs a
partial P-tree traversal for each potentially frequent itemset, while PTF per-
forms only one, but full, P-tree traversal for each level of potentially frequent
itemsets. As a result, PTF is considerably faster than TTF in instances where
there are a lot of frequent itemsets, while TTF gains ground in instances where
there are fewer potentially frequent itemsets, especially if for each of them it
suffices to check only a small part of the P-tree. For example, the latter case
may occur whenever item densities have a high variance.

In conclusion, each of the two heuristics has its own merits and deserves
further exploration. As a suggestion for further research, it would be interesting
to investigate possible combinations of the two inverse approaches of TTF and
PTF. For example, it seems reasonable to use PTF as long as the current level
of the T-tree contains a lot of frequent itemsets, while it may be wise to turn
to TTF once the current level becomes sparse, especially if the majority of the

potentially frequent itemsets can be only found in a small part of the P-tree.

References

1]
2]

[10]

[11]
[12]

[13]

F. Angiulli, G. Tanni, L. Palopoli. On the complexity of inducing categorical and
quantitative association rules, arXiv:cs.CC/0111009 vol. 1, Nov. 2001

R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between
Sets of Items in Large Databases. In Proc. of ACM SIGMOD Conference on
Management of Data, Washington DC, May 1993.

R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance
perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6):914—
925, Dec 1993. Special Issue on Learning and Discovery in Knowledge-Based
Databases.

R. Agrawal and R. Srikant. Fast Algorithms for mining association rules. In
VLDB’94, pp. 487-499.

R. Agrawal, C. Aggarwal and V. Prasad. Depth First Generation of Long Pat-
terns. In KDD 2000, ACM, pp. 108-118

E. Boros, V. Gurvich, L. Khachiyan, K. Makino. On the complexity of generating
maximal frequent and minimal infrequent sets, in STACS 2002.

F. Coenen, G. Goulbourne, and P. Leng. Computing Association Rules using
Partial Totals. In L. De Raedt and A. Siebes eds, Principles of Data Mining and
Knowledge Discovery (Proc 5th European Conference, PKDD 2001, Freiburg,
Sept 2001), Lecture Notes in AI 2168, Springer-Verlag, Berlin, Heidelberg: pp.
54-66.

F. Coenen, G. Goulbourne and P. Leng. Tree Structures for Mining Association
Rules. Data Mining and Knowledge Discovery, 8 (2004), pp. 25-51

G. Goulbourne, F. Coenen and P. Leng. Algorithms for Computing Association
Rules using a Partial-Support Tree. Journal of Knowledge-Based Systems 13
(2000), pp. 141-149.

J. Han, J. Pei, Y.Yin and R. Mao. Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge
Discovery, 8 (2004), pp. 53-87

A. Savasere, E. Omiecinski and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. In VLDB 1995, pp. 432-444

H. Toivonen. Sampling Large Databases for Association Rules. In VLDB 1996,
pp- 1-12.

M. J. Zaki. Generating Non-Redundant Association Rules. In Proc. SIGKDD-
2000, pp. 34-43, 2000.

