
Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 1

Section 5.1
Recurrence Relations

Definition: Given a sequence {ag(0) ,ag(1),ag(2) ,...}, a
recurrence relation (sometimes called a difference
equation) is an equation which defines the nth term in the
sequence as a function of the previous terms:

ag(n) = f (ag(0) ,ag(1),..., ag(n−1))

Examples:

• The Fibonacci sequence an = an−1 + an−2 . (g(n) = n).

• If g(n) = mn, the recurrence an = can /m + b describes
the complexity of many divide and conquer algorithms.

• Pascal's recursion for the binomial coefficient is a
 two variable recurrence equation:

n +1

k

 =

n

k

 +

n

k −1

Normally, there are infinitely many sequences which
satisfy the equation.

We distinguish them by the initial conditions, the values of
ag(0), ag(1), ag(2) ,... to uniquely identify the sequence.

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 2

Examples:

• In the Fibonacci recurrence we must specify a0 and
a1

• In the divide and conquer recurrence we must
specify am0 = a1.

• In Pascal's identity we must specify C(1,0) and
C(1,1).

Example:

If f(n) = 3n, find a recursive definition for f:

• Initial condition: f(0) = 30 = 1

• Recurrence relation:

f(n + 1) = 3(n+1) = 3(3n) = 3 f(n)

so

f(n+1) = 3 f(n)

Modeling with Recurrence Relations

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 3

Many relationships are most easily described using
recurrence relations.

Examples:

• EASY:

At the credit union interest is compounded at 2% annually.
If we do not withdraw the interest, find the total amount
invested after n years if the initial amount deposited is d.

Initial Condition: a0 = d
Recurrence equation: an = (1.02)an−1

• HARD:

Find a recurrence relation for the number of bit strings of
length n which contain 3 consecutive 0's.

Let S be the set of all such strings.

First define the set inductively BUT in such a way as to
avoid counting the same string twice:

• Basis: 000 is in S

• Induction (1): if w is in S and u and v are in
{0,1}* then uwv is in S.

• Extremal clause: (as usual)

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 4

The above definition is adequate to define S but NOT for
counting (why?)

A better induction clause:

Induction (2): if w is in S and u is in {0,1}* then

• 1w
• 01w
• 001w
• 000u

are in S.

This yields the recurrence

an = an−1 + an−2 + an−3 + 2n−3

with initial conditions:

a3 = 1, a4 = 3, a5 = 8

• a3::

- {000}

• a4::

- {1000, 0000, 0001} since 1w is in S

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 5

• a5::

- 11000, 10000, 10001 since 1w is in S

- 01000, since 01w is in S

- 00000, 00001, 00010, 00011 since wu is in S

Check:

• a6 = a5 + a4 + a3 + 23 = 8 + 3 + 1 + 8 = 20

a5:: 111000, 110000, 110001, 101000, 100000,
100001, 100010, 100011 = 8

a4 : 011000, 010000, 010001 = 3

a3:: 001000 = 1

23: 000000, 000001, 000010, 000011, 000100,
000101, 000110, 000111 = 8

Every string is present and nothing is counted twice.

More Examples:

Find a recursive program which determines if a bit
string has at most a single 1.

 Then determine the worst case number of recursive
calls for a string of length n.

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 6

Recall the recursive definition:

• Basis:

0, λ , 1 are in S.

• Induction:

If w is in S then so are 0w and w0.

• Extremal clause: (as usual)

A recursive procedure:

procedure at_most_one_1 (string, basis)

/* a recursive procedure to determine if a bit string has at
most a single 1 based on the recursive definition.

- string: the input bit string;

- basis: a variable to remember a ‘1’ has been found
at a higher level in the recursion.

- If another ‘1’ is found, the string is not in the
language and we pass back ‘NO’. Else ‘YES’ */

/* basis step: */

if string = λ or string = ‘0’ then
return ‘YES’

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 7

if string = ‘1’ and basis = 0 then
return ‘YES’

if string =‘1’ and basis = 1 then return ‘NO’
 else

/* inductive step */

if first and last character of string = ‘0’ then return
at_most_one_1 (remainder of string, basis)

if first and last character of string = ‘1’ return ‘NO’

if first or last character of string = ‘1’ and
basis = 0 then return at_most_one_1 (remainder
of string, 1)

return ‘NO’

The procedure is called with the string to be tested and the
basis variable set to zero .

At any level we check both the first and last character of
the input string.

We assume the string is all zeros until we find a ‘1’. Then
we set the basis variable to one .

If we find two ones at the same time, we return ‘NO’

If we find another ‘1’ and the basis variable is one, then
we return ‘NO’, else we keep on stripping off zeros from

Discrete Mathematics by Section 5.1
and Its Applications 4/E Kenneth Rosen TP 8

the front and the back until we get to the empty string or a
single character.

Let f(n) be the number of recursive calls to the procedure
(worst case) where n is the length of the input string.

• Basis: f(0) = f(1) = 0

• Induction: f(n) = f(n-2) + 1
