Section 5.4 Generating Functions

Generating functions are useful for manipulating sequences and therefore for solving counting problems.

Definition: Let $S = \{a_0, a_1, a_2, a_3, ...\}$ be an (infinite) sequence of real numbers. Then the *generating function* G(x), of S is the series

$$G(x) = \underset{k=0}{a_k x^k}$$

Note: For students of calculus -

There is no issue of convergence here. The variable x and its powers allow us to assign a position to the numbers a_k . We will use the closed form expressions which represent G if the series converges but for symbol manipulation purposes only.

Examples:

• Let $S = \{1, 1, 1, 1, \dots \}$. Then

$$G(x) = 1 + x + x^{2} + x^{3} + ... + x^{k} + ... = x^{k}$$

• Let $S = \{0, 1, 2, 3, 4, 5, ...\}$. Then

$$G(x) = kx^{k}$$

• If S is the finite sequence $\{1,1,1\}$ then we pad S with an infinite number of zeros $\{1,1,1,0,0,...\}$ and we have

$$G(x) = 1 + x + x^2 = \frac{(1 - x^3)}{(1 - x)},$$

a closed form for G.

The Binomial Theorem Revisited

For producing expressions for G(x), recall the *binomial* theorem:

$$(a+b)^{n} = \frac{a^{n}}{0!} + \frac{na^{n-1}b}{1!} + \frac{n(n-1)a^{n-2}b^{2}}{2!} + \dots$$
$$+ \frac{n(n-1)\dots(n-k+1)a^{n-k}b^{k}}{k!} + \dots + \frac{n(n-1)\dots(n-n+1)a^{n-n}b^{n}}{n!}$$

which terminates when n is an integer to produce a finite sum.

However, the formula can also be extended to include the case when n is <u>not</u> an integer:

- the sum does not terminate
- useful for producing expressions for generating functions.

Example:

We apply the procedure to the expression

$$\frac{1}{(1-3x^2)}$$

where we let $a = 1, b = (-3x^2)$, and n = -1:

$$\frac{1}{(1-3x^2)} = (1-3x^2)^{-1} = \frac{1^{-1}}{0!} + \frac{(-1)1^{-2}(-3x^2)}{1!} + \frac{(-1)(-2)1^{-3}(-3x^2)^2}{2!} + \frac{(-1)(-2)(-3)1^{-4}(-3x^2)^3}{3!} + \dots + (3x^2)^k + \dots$$

Since there are no odd powers of x, the expression is the generating function for the sequence

$$S = \{1, 0, 3, 0, 3^2, 0, 3^3, 0, ...\}$$

Manipulation of Generating Functions

Let

$$F(x) = a_k x^k \text{ and } G(x) = b_k x^k.$$

Then

• Sum

$$F(x) + G(x) = (a_k + b_k)x^k$$

• Product

$$F(x)G(x) = (\sum_{k=0}^{k} a_{j}b_{k-j})x^{k}$$

To derive the expression we multiply each term of F by all terms of G and place the coefficients of like powers of x in the same column:

$$(a_0 + a_1x + a_2x^2 + a_3x^3 + ...)(b_0 + b_1x + b_2x^2 + ...)$$

$$x^{0}$$
 x^{1} x^{2} x^{3} ... $a_{0}b_{0}$ $a_{0}b_{1}$ $a_{0}b_{2}$ $a_{0}b_{3}$ $a_{1}b_{0}$ $a_{1}b_{1}$ $a_{1}b_{2}$ $a_{2}b_{0}$ $a_{2}b_{1}$ $a_{3}b_{0}$

Example:

A expression for the generating function of the sequence $S = \{1, 1, 1, 1, 1, 1, \dots\}$ is

$$\frac{1}{(1-x)}$$

Hence, the expression

$$\frac{1}{\left(1-x\right)^2}$$

is the generating function for the sequence

$$S = \{1, 2, 3, 4, ..., k + 1, ...\}.$$

Counting with Generating Functions

Recall that

$$x^a x^b = x^{a+b}$$

and therefore if

$$S = \{a_0, a_1, a_2, a_3, ...\}$$
 and $T = \{b_0, b_1, b_2, b_3, ...\}$

there will be a contribution of $a_m b_n$ to the m + n power of x in the product of the generating functions for S and T.

Example:

Suppose we wish to count the integer solutions to a + b =10 but a and b are constrained by

> 6 and 3 b 1 9 a

There are 6 possible solutions:

$$1+9$$

 $2+8$
 $3+7$

$$3 + 7$$

$$4 + 6$$

$$5 + 5$$

$$6 + 4$$

where the first number is a and the second is b.

If we construct the sequences

$$A = \{0, 1, 1, 1, 1, 1, 1, 0, 0, ...\}$$

where $a_k = 1$ if k is a possible value of a and

$$B = \{0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...\}$$

where $b_k = 1$ if k is a possible value of b then the product of the two generating functions for A and B will have the total possible solutions to

$$a + b = 10$$

as a coefficient of x^{10}

$$\begin{array}{c}
10 \\
a_k b_{10-k} \\
k=0
\end{array}$$

Solving Recurrence Relations

First some observations:

If

$$G(x) = \underset{k=0}{a_k x^k}$$

then

$$xG(x) = a_k x^{k+1} = a_{k-1} x^k$$

and

$$x^{2}G(x) = a_{k} x^{k+2} = a_{k-2} x^{k}$$

etc.

Example:

Solve the nonhomogeneous recurrence system

$$a_n = 3a_{n-2} + 1, a_0 = a_1 = 1.$$

Solution:

Multiply each term on both sides of the equation by x^n and sum from 2 to infinity to produce:

$$a_n x^n = 3 a_{n-2} x^n + x^n$$

$$n=2 n=2 n=2$$

Now adding $a_0 + a_1 x$ to both sides and using the initial conditions we have

$$a_0 + a_1 x + a_n x^n = 3 a_{n-2} x^n + x^n + 1 + x$$

which gives

$$a_n x^n = 3 a_{n-2} x^n + x^n$$

$$n=0 n=2 n=2 n=0$$

or

$$G(x) - 3x^2G(x) = \frac{1}{(1-x)}$$

or

$$G(x) = \frac{1}{(1-3x^2)} \frac{1}{(1-x)}$$

We leave it to the student to find the terms of the sequence represented by G.