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Solving Recurrence Relations

Introduction

A wide variety of recurrence problems occur in models.  Some of these recurrence relations can be solved

using iteration or some other ad hoc technique.  However, one very important class of recurrence relations

can be explicitly solved in a systematic way.  These are the recurrence relations that express the terms of a

sequence as a linear combination of previous terms.

Definition: A linear homogeneous recurrence relation of degree k with constant coefficients

is a recurrence relation of the form:

    an = c1an − 1 + c2an −2 + L+ ckan −k

where     c1,c 2 ,c 3 ,K ,c k  are real numbers, and   ck ≠ 0 .

The recurrence relation in the definition is linear since the right-hand side is a sum of multiple of the

previous terms of the sequence.  The recurrence relation is homogeneous since no terms of the recurrence

relation fail to involve a previous term of the sequence in some way.  The coefficients of the terms of the

sequence are all constants, rather than functions that depend on n.  The degree is k because   an  is expressed

in terms of the previous k terms of the sequence.  A consequence of strong induction is that a sequence

satisfying the recurrence relation in the definition is uniquely determined by this recurrence relation and

the k initial condition:

    

an = c1an − 1 + c2an −2 + L+ ckan −k

a0 = C0

a1 = C1

KK
ak −1 = Ck −1

Solving the Little Monsters

The basic approach for solving linear homogeneous recurrence relations is to look for solutions of the form

  an = rn , where  r  is a constant.  Note that   an = rn  is a solution to the recurrence if and only if:

    r
n = c1r

n −1 + c2rn − 2 + c3rn −3 + L+ ckrn −k

When both sides of the equation are divided by   r
n −k  and the right-hand side is subtracted from the left,

we obtain the equivalent equation:

    r
k − c1rk− 1 − c 2rk − 2 − c3rk − 3 −L − ck −1r − ck = 0



Consequently, the sequence with   an = rn  is a solution if and only if   r  is a solution to this last equation,

which is called the characteristic equation of the recurrence relation.  The solutions of this equation are

called characteristic roots of the recurrence relation.  As we’ll see, these characteristic roots can be used to

give an explicit formula for all the solutions of the recurrence relation.  First, we should develop results

that deal with linear homogeneous recurrence relations with constant coefficients of degree two.  The

results for second order relations can be extended to solve higher-order equations.  The mathematics

involved in proving everything is really messy, so even though I’ll refer to it in lecture, I don’t want to

place it in here, because you might incorrectly think you’re responsible for knowing the proof, and you’re

not.

Let’s turn our undivided attention to linear homogeneous recurrence relations of degree two.  First, consider

the case where there are two distinct characteristic roots.

A Fact Without Proof: Let   c1  and   c2  be real numbers.  Suppose that   r
2 − rc1 − c2 = 0  has two

distinct roots   r1  and   r2 .  Then the sequence   an{ }  is a solution of the

recurrence relation   an = c1an − 1 + c2an −2  if and only if   an = b1r1
2 + b 2r2

2

for     n = 0,1,2,3,4,5,K where   b1  and   b2  are constants determined by

the initial conditions of the recurrence relation.

Problem: Find an explicit solution to the tiling recurrence relation we developed

last time.  You may recall that it went a-something like this:

  

Tn = Tn − 1 + Tn − 2

T0 = 1

T1 = 1

Well, we surmise that the solution will be a linear combination or terms having the form   Tn = rn .

Following the rule from above, we just plug in   Tn = rn  into out recurrence relation and see what constraints

are placed on   r .  Let’s listen in:

  

Tn = Tn − 1 + Tn − 2

guess that Tn = rn ⇒

rn = rn − 1 + rn − 2

r2 = r + 1

r2 − r − 1= 0

r1 = 1+ 5

2
;r2 = 1 − 5

2

Well, so the guess that   Tn = rn  is a good one provided that   r  be equal to one of the two roots above.  In

fact, any linear combination of 
  

1+ 5

2

 

 
 

 

 
 

n

and 
  

1− 5

2

 

 
 

 

 
 

n

will also satisfy the recurrence if you ignore the

initial conditions for a moment—that is, 
  
Tn = b1

1+ 5

2

 

 
 

 

 
 

n

+ b2
1− 5

2

 

 
 

 

 
 

n

for any constant coefficients as

factors.  It’s only when you supply the initial conditions that   b1  and   b2  are required to adopt a specific

value.  In fact, the initial conditions here dictate that:
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b1 + b2 = 1

b1
1 + 5

2
+ b2

1− 5

2
= 1

And after solving for   b1  and   b2  do we finally arrive at the unique solution to our recurrence problem:

  
Tn =

5 + 5

10

1 + 5

2

 

 
 

 

 
 

n

+
5 − 5

10

1 − 5

2

 

 
 

 

 
 

n

How very satisfying.

Problem: Find a closed form solution to the bit string problem modeled in our last

handout.

Welllllll, the recurrence relation, save the initial conditions, is exactly the same as it that for the tiling

problem; that translates to a solution of the same basic form.  But the fact that the initial conditions are

different hints that the constants multiplying the individual terms:

note same form, but possibly

different constants

The different initial conditions place different constraint on the values of    b1  and   b2  do we.  Now the

following system of equations must be solved:

  

b1 + b2 = 1

b1
1 + 5

2
+ b2

1− 5

2
= 2

We end up with something like this as our solution in this case:

  
Bn =

5 + 3 5

10

1 + 5

2

 

 
 

 

 
 

n

+
5− 3 5

10

1− 5

2

 

 
 

 

 
 

n

Problem: Solve the recurrence relation given below

  

Jn = Jn −2

J0 = 3J1 = 5

You may be asking, “Jerry, where in the world is the   Jn− 1 term?”  Relax—it’s in there—it’s just that its

multiplying coefficient is zero, so I didn’t bother writing it in.  It’s still a homogeneous equation of degree

two, so I solve it like any other recurrence of this type.

  
Bn = b1

1+ 5

2

 

 
 

 

 
 

n

+ b2
1− 5

2

 

 
 

 

 
 

n
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Jn = Jn −2

J0 = 3J1 = 5
⇒

Jn = Jn −2

r2 = 1

r2 − 1 = 0

r1 = 1;r2 = − 1

Jn = b1 1( )n + b2 −1( )n = b1 + b2 −1( )n

Funny little twist—dropping the   1( )n
, since it’s transparent to us anyway.

  

b1 + b2 = 5

b1 − b2 =
5

3

b1 = 10

3
,b 2 = 5

3

⇒ Jn =
10

3
+

5

3
−1( )n

Solving Coupled Recurrence Relations

The first recurrences handout included examples where solutions involved coupled recurrence relations.

The circular Tower of Hanoi Problem, the   n × 3  tiling problem, the   2 × 2 × npillar problem, and the

Martian DNA problem were all complex enough to require (or at least benefit from) the invention of a

second counting problem and a second recurrence variable.  Remember the   2 × 2 × n pillar recurrence?  If not,

here it is once more:

  

Sn =
1

2

2Sn −1 + Sn − 2 + 4Tn −1

n = 0

n = 1

n ≥ 2

 
 
 

  
Tn =

0

1

Sn −1 + Tn −1

n = 0

n = 1

n ≥ 2

 
 
 

  

Because S and T are defined in terms of one another, it’s possible to use the second recurrence of the two to

eliminate all occurrences or T from the first.  It takes a algebra and a little ingenuity, but when we rid of

the second variable, we are often left with a single recurrence relation which can be solved like other

recurrences we’ve seen before.  The above system of recurrences reduces to a single linear, homogeneous,

constant-coefficient equation once we get rid of T.  Don’t believe me?  Read on, Thomas.

Problem: Solve the above system of recurrences for   Sn  by eliminating   Tn  and

solving the linear equation that results.

 I want to completely eliminate all traces of  T  and arrive at (what will turn out to

be) a (cubic) recurrence relation for just   Sn , and then solve it.  First things first: We

want to get rid of the  Tn −1  term from the recurrence relation for   Sn , and to do that, I make the neat little

observation that the second equality below follows from the first by replacing n by n-1:

 

 
  

Sn = 2Sn −1 + Sn − 2 + 4Tn −1

Sn −1 = 2Sn − 2 + Sn −3 + 4Tn −2

 

 Subtracting the second equation from the first, we get:
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Sn − Sn −1 = 2Sn − 1 + Sn − 2 + 4Tn −1( ) − 2Sn −2 + Sn − 3 + 4Tn − 2( )
= 2Sn −1 − Sn −2 − Sn − 3 + 4Tn − 1 − 4Tn − 2

Sn = 3Sn −1 − Sn −2 − Sn − 3 + 4Tn −1 − 4Tn − 2

= 3Sn −1 − Sn −2 − Sn − 3 + 4 Tn− 1 − Tn − 2( )
 

 Believe it or not, this is progress, because I have something very interesting to say about   Tn −1 − Tn − 2  —it’s

always equal to   Sn − 2 .  Just look at the crafty manipulations I work up from the  Tn  recurrence relation:

 

 

  

Tn = Sn −1 + Tn −1

Tn −1 = Sn − 2 + Tn − 2

Tn −1 − Tn − 2 = Sn − 2 + Tn − 2 − Tn −2

= Sn − 2

 

 How crafty!  Now I can eradicate any mention of  T  from the   Sn  recurrence relation, and I do so like-a this:

 

 

  

Sn = 3Sn −1 − Sn − 2 − Sn −3 + 4 Tn −1 − Tn − 2( )
= 3Sn −1 − Sn − 2 − Sn −3 + 4Sn −2

= 3Sn −1 + 3Sn − 2 − Sn −3

 

 Therefore, an uncoupled recurrence relation for   Sn  can be expressed as follows:

 

 

  

Sn =

1

2

2S1 + S0 + 4T1 = 9

3Sn −1 + 3Sn − 2 − Sn −3

n = 0

n = 1

n = 2

n ≥ 3

 

 
  

 
 
 

 

 Admittedly, that was a lot of work, but this is pretty exciting, because we’re on the verge of taking what

is clearly a homogeneous, constant-coefficient equation and coming up with a closed form solution.  As

always, guess a solution of the form   Sn = an  and substitute to see what values of   a  make everything work

out regardless of the initial conditions.  More algebra:

 

 

  

Sn S n = a
n = 3Sn −1 + 3Sn − 2 − Sn −3 Sn =a n

an = 3an −1 + 3an − 2 − an −3

a3 = 3a2 + 3a − 1

0 = a3 − 3a2 − 3a + 1

0 = a + 1( ) a2 − 4a + 1( )
0 = a + 1( ) a − 2 + 3( ) a − 2 − 3( )
a = − 1, 2 ± 3

 

 That means that the general solution to our recurrence (ignoring the initial conditions) is

  
Sn = x 2 + 3( )n

+ y 2 − 3( )n
+ z −1( )n

, where x, y, and z can be any real numbers.  Boundary conditions

require that:
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S0 = x + y + z = 1

S1 = 2 + 3( )x + 2 − 3( )y − z = 2

S2 = 7 + 4 3( )x + 1 − 4 3( )y + z = 9

 

 This is a system of three linear equations for three unknowns, and it admits exactly one solution.  Solving

for x, y, and z is a matter of algebra, and after all that algebra is over, we converge on a closed formula of

  
Sn =

1

6
2 + 3( )n +1

+
1

6
2 − 3( )n +1

+
1

3
−1( )n

, which is 
  

1

6
2 + 3( )n +1

rounded to the nearest integer.  Neat!

Problem: Revisit the Martian DNA problem, and show that the number of valid

Martian DNA strands of length n is given as   an + bn = F3n + 2  (yes, the Fibonacci

number!)

Let’s bring back the recurrence that defined a and b.

  

an =
0 n = 0

2 n = 1

an −1 + 2b n −1 n ≥ 2

 
 
 

  
bn =

1 n = 0

3 n = 1

2an− 1 + 3bn −1 n ≥ 2

 
 
 

  

Eliminate one of the recurrence terms in order to get a closed solution (though this time we’ll ultimately

need to solve for both variables, because you’re interested in their sum.)

  

an = an −1 + 2b n− 1

bn = 2an −1 + 3b n −1

Notice that the first one tells us something about   an − an −1 , so let’s subtract a shifted version of the second

equation from the original to get at something that’s all b and no a.

  

bn = 2an − 1 + 3bn −1

bn −1 = 2an − 2 + 3b n −2

bn − bn −1 = 2 an −1 − an − 2( ) + 3b n −1 − 3bn − 2

bn = bn −1 + 2 an −1 − an − 2( ) + 3bn −1 − 3bn − 2

The first equation tells us that   an −1 − an − 2 = 2b n− 2 .  Substitution yields

  

bn = bn −1 + 4bn − 2 + 3b n −1 − 3bn − 2

= 4bn −1 + bn − 2

The characteristic equation here is   r
2 − 4r − 1 = 0 ; 

  
bn = c1 2 + 5( )n

+ c2 2 − 5( )n
.  Because   b0 = 1 and

  b1 = 3 , we determine   c1 ,   c2  by solving the following two equations:
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c1 + c2 = 1

2 + 5( )c1 + 2 − 5( )c2 = 3
⇒  

  
c1 =

5 + 5

10
, 
  
c2 =

5 − 5

10
.

  
bn =

5 + 5

10
2 + 5( )n

+
5 − 5

10
2 − 5( )n

.

You might think you have to do the same thing for a, and in theory you’re right in that you need to solve

it, but we more or less have.  Because

  bn = 2an −1 + 3b n −1

we actually know that

  

bn = 2an −1 + 3bn −1

2an −1 = bn − 3b n −1

an −1 =
1

2
bn −

3

2
bn − 1

an =
1

2
bn +1 −

3

2
bn

an + bn = 1

2
bn +1 − 3

2
bn + bn

= 1

2
bn +1 − 1

2
bn

Recall that we’re really just interested in   an + bn , and since it can be defined just in terms of the   bn , we get:

  

an + bn =
1

2
bn +1 −

3

2
bn + bn

= 1

2
bn +1 − 1

2
bn

=
1

2

5 + 5

10
2 + 5( )n +1

+
5 − 5

10
2 − 5( )n +1 

 
 

 

 
 −

1

2

5 + 5

10
2 + 5( )n

+
5 − 5

10
2 − 5( )n 

 
 

 

 
 

=
1

2

5 + 5

10
2 + 5( ) − 1( ) 2 + 5( )n

+
1

2

5 − 5

10
2 − 5( ) − 1( ) 2 − 5( )n

= 1

2

5 + 5

10
1 + 5( ) 2 + 5( )n

+ 1

2

5 − 5

10
1 − 5( ) 2 − 5( )n

= 1

2

10 + 6 5

10
2 + 5( )n

+ 1

2

10 − 6 5

10
2 − 5( )n

= 5 + 3 5

10
2 + 5( )n

+ 5 − 3 5

10
2 − 5( )n

That’s typically the closed-form you’d leave it in, but we also want to show that   an + bn = F3n + 2 .  Here

goes:
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F3n + 2 = 1

5

1+ 5

2

 

 
 

 

 
 

3n +2

− 1

5

1− 5

2

 

 
 

 

 
 

3n + 2

= 1

5

1+ 5

2

 

 
 

 

 
 

2
1+ 5

2

 

 
 

 

 
 

3n

− 1

5

1− 5

2

 

 
 

 

 
 

2
1− 5

2

 

 
 

 

 
 

3n

= 1

5

6 + 2 5

4

1+ 5

2

 

 
 

 

 
 

3 

 
 
 

 

 
 
 

n

− 1

5

6 − 2 5

4

1− 5

2

 

 
 

 

 
 

3 

 
 
 

 

 
 
 

n

=
6 + 2 5

4 5
2 + 5( )n

−
6 − 2 5

4 5
2 + 5( )n

= 5

5

6 + 2 5

4 5
2 + 5( )n

− 5

5

6 − 2 5

4 5
2 + 5( )n

=
10 + 6 5

20
2 + 5( )n

+
10 − 6 5

20
2 + 5( )n

=
5 + 3 5

10
2 + 5( )n

+
5 − 3 5

20
2 + 5( )n

Therefore,   an + bn = F3n + 2 , and we rejoice.

Problem: What about the Circular Tower of Hanoi recurrence?  Why can’t we solve

that one as easily?

Well, you probably already noticed that both the pillar and the DNA recurrences

didn’t have any inhomogeneous terms anywhere.  That’s not the case with the

Circular Tower of Hanoi recurrence, so while we are certainly invited to eliminate one of the variables

from the set of recurrences, there’s not much hope for solving it like we did for Martian DNA.

  
Q n =

0;

2Rn − 1 + 1

if n = 0

if n > 0

 
 
 

Rn =
0;

Qn + Q n −1 + 1

if n = 0

if n > 0

 
 
 

Clearly, it’s a piece of cake to define   Q n  in terms of previous Qs, but these 1s just aren’t going to go away.

  

Q n = 2Rn − 1 + 1

= 2 Q n −1 + Qn − 2 + 1( ) + 1

= 2Qn − 1 + 2Qn − 2 + 3

so that

  

Q n =
0

1

2Q n + 2Qn −1 + 3

if n = 0

if n = 1

if n > 1

 
 
 

  

We’re sorta bumming because of that inhomogeneous 3.

There is a trick to solving this one, but it’s not something I’m formally going to require you to know, since

there’s little pedagogical value in memorizing tricks.  For those of you with nothing to do on a Friday

8



night, try substituting    Q n = An −1 − 1 into the above system (making sure to adjust those base cases as

well.)  Solve for   A n , then take whatever you got there and subtract 1 from it to get   Q n .

General Approach to Solving all Linear First-Order Recurrences

There is a general technique that can reduce virtually any recurrence of the form

  anTn = bnTn− 1 + cn

to a sum.  The idea is to multiply both sides by a summation factor,   sn , to arrive at

  snanTn = snbnTn − 1 + sncn .  This factor   sn  is chosen to make   snbn = sn− 1an −1 .  Then if we write   Sn = snanTn

we have a sum-recurrence for   Sn  as:

  Sn = Sn −1 + sncn

Hence 

  

Sn = s0a0T0 + sk ck

1≤ k ≤n
∑ = s1b1T0 + sk ck

1≤ k ≤n
∑  and the solution to the original recurrence becomes 

  

Tn =
1

snan

s1b1T0 + skck

1≤k ≤ n
∑

 

 
  

 

 
  .

So, you ask: How can we be clever enough to find the perfect   sn ?  Well, the relation   sn = sn− 1an −1 bn  can

be unfolded by repeated substitution for the   s i  to tell us that the fraction:

 
    
sn =

an − 1an− 2an− 3 Ka1

bnbn− 1bn− 2 Kb2

(or any convenient constant multiple of this value) will be a suitable summation factor.

 Problem: Solve 
  
Vn =

5 n =0

nVn− 1 + 3 ⋅ n! n ≥ 1

 
 
 

 by finding the appropriate summation

factor.

 

Derivation of the solution just follows protocol.  You're specifically told to use

summation factors here, so we should do that.  Notice here that   an = 1 and   bn = n, so that the summation

factor should be chosen as:

  
sn =

1n − 1

n!
=

1

n!

  V0 = 5  for sure, but the recurrence formula   Vn = nVn − 1 + 3 ⋅ n! becomes 
  

1

n!
Vn =

1

n − 1( )! Vn −1 + 3.  Let

  
Tn =

1

n!
Vn  for the time being, just so we can solve an easier recurrence relation.  We tackle   Tn = Tn − 1 + 3,

and wouldn't you know it: 
  
Tn = 3n + T0 = 3n +

1

0!
V0 = 3n + 5 .  

  
Tn =

1

n!
Vn .  We need   Vn = n!Tn , so therefore

we have that   Vn = n! 3n + 5( ) .  Woo!
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Problem: Solve 

  

Cn =
0 n =0

n + 1 + 2

n
Ck

0≤k ≤n − 1
∑ n ≥ 1

 
 
 

  
 by finding the appropriate

summation factor.

Let’s write out the recurrences for   Cn  and   Cn −1  a little more explicitly.

  

Cn = n + 1 +
2

n
Ck

0≤k ≤n − 1
∑

  

Cn −1 = n +
2

n − 1
Ck

0≤k ≤n − 2
∑

Subtracting the second one from the first one is a good idea, but only after the multiply through by a factor

that’ll make each of the summations equal to each other:

  

Cn = n + 1 +
2

n
Ck

0≤k ≤n − 1
∑

  

n − 1

n
Cn −1 = n − 1

n
n + n − 1

n

2

n − 1
Ck

0≤k ≤n − 2
∑

= n − 1 + 2

n
Ck

0≤k ≤n − 2
∑

Subtracting the second one from the first, we arrive at:

  

Cn − n − 1

n
Cn − 1 = n + 1 + 2

n
Ck

0≤ k≤ n −1
∑

 

 
  

 

 
  − n − 1+ 2

n
Ck

0 ≤k ≤n − 2
∑

 

 
  

 

 
  

= 2 + 2

n
Cn −1

Cn = n + 1

n
Cn −1 + 2

nCn = n + 1( )Cn − 1 + 2n

If we choose a summation factor of 
    
sn =

an − 1an− 2an− 3 Ka1

bnbn− 1bn− 2 Kb2

=
n − 1( ) n − 2( ) n − 3( )K1

n + 1( )n n − 1( )K3
=

2

n n + 1( )  and multiply

through, we arrive at:

  

2

n n + 1( )
nCn = 2

n n + 1( )
n + 1( )Cn −1 + 2

n n + 1( )
2n

2

n + 1( ) Cn =
2

n
Cn − 1 +

4

n + 1( )
Cn

n + 1
=

Cn −1

n
+

2

n + 1
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If we let   n + 1( )Dn = Cn , then we finally arrive at an equation that looks reasonable: 
  
D n = Dn −1 +

2

n + 1
.

Repeated substitution yields the following:

    

D n = Dn −1 + 2

n + 1

= D n −2 +
2

n
 
 
  

 
 +

2

n + 1

= D n −3 +
2

n − 1
 
 
  

 
 +

2

n
+

2

n + 1

= D n −4 + 2

n − 2
 
 
  

 
 +

2

n − 1
+ 2

n
+ 2

n + 1

M

= D0 + 2
1

k + 1
1≤k ≤n
∑

= 2 Hn +1 − 1( )

= 2 Hn +
1

n + 1
− 1

 
 
  

 
 = 2 Hn −

n

n + 1
 
 
  

 
 

Recall that   Cn = n + 1( )D n , so that 
  
Cn = 2 n + 1( ) Hn −

n

n + 1
 
 
  

 
 = 2 n + 1( )Hn − 2n.
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