
CS103A Handout 21

Winter 2002 February 20, 2002

Recurrence Relations

Introduction

The number of bacteria in a colony doubles every hour.  If a colony begins with five bacteria, how many

will be present after 3 hours? After 5 hours? After 1900 hours? After n hours?  Since the number of bacteria

doubles every hour, the relationship   an = 2an − 1 holds whenever n is a positive integer.  This relationship,

together with the initial condition that   a0 = 5  uniquely determines   an  for all nonegative integers n.  We

can find a formula for   an  using only this information.

Many counting problems can be solved by finding relationships just like we did above.  Such relationships

are called recurrence relations, and are going to be the focus of the next few lectures.  We’re going to study a

variety of counting problems that can be modeled using recurrence relations.  We will develop methods

here and in the next few handouts for finding explicit formulae for the terms of sequences that satisfy

certain types of recurrence relations.

Recurrence Relations

Recall that a recursive definition of a sequence specifies one or more initial terms and a rule or two for

determining subsequent terms for those that follow.  Recursive definitions can be used to solve counting

problems, and that can often be a good thing, because finding a closed formula for a recurrence relation and

then using it to explicitly and quickly calculate a term for a particular integer is much quicker than

calculating the term all the way up from the initial term—the base case, in a sense.

Handy Definition 1: A recurrence relation for a sequence of integers   an{ }  is a formula that expresses

  an  in terms of one or more of the previous terms of a sequence—namely, the

values     a0 ,a1,K , an − 1, for all integers n with   n ≥ n0  where   n 0  is a nonnegative

integer.  A sequence is called a solution of a recurrence relation if its terms

satisfy the recurrence relation.

Problem: Let   an = an −1 − an −2  for     n = 2,3,4,5,K , and suppose that   a0 = 3  and

  a1 = 5 ? What are   a4  and   a6 ?

This isn’t too bad.  We can first find   a2  using a0 and a1, and the find   a3  using a1

and a2.  We can do all this like so:

  

a2 = a1 − a0 = 5 − 3 = 2

a3 = a2 − a1 = 2 − 5 = − 3

a4 = a3 − a2 = −3 − 2 = −5

a5 = a4 − a3 = −5 − −3( ) = −2

a6 = a5 − a4 = −2 − −5( ) = 3



Problem: Determine whether the sequence   an{ }  is a solution to the recurrence

relation   an = 2an − 1 − an −2  for     n = 2,3,4,5,K , where   an = 3n  for every nonnegative

integer   n .  Answer the same question where   an = 2n  and where   an = 5.

Well, suppose that   an = 3n  for every nonnegative integer   n . Then, for   n ≥ 2 we

have that   an = 2an − 1 − an −2 = 2 3 n − 1( )( ) − 3 n − 2( ) = 6n − 6 − 3n + 6 = 3n .  Therefore,   an = 3n  sure seems to

work.  But what about this   an = 2n  idea?  Plugging in the proposed solution, we see that

  an = 2an − 1 − an −2 = 2 ⋅ 2n −1 − 2n − 2 = 4 ⋅ 2n − 2 − 2n −2 = 3 ⋅ 2n − 2 = 0.75 ⋅ 2n , which conflicts with the notion that

  an = 2n .  Therefore,   an = 2n  just doesn’t work for us.  Nope, no-sirree Bob!  Finally,   an = 5—how about it?

Well, suppose that   an = 5.  Then for every integer n greater than or equal to 2, we should have that

  an = 2an − 1 − an −2 = 2 ⋅ 5 − 5 = 10 − 5 = 5.

The initial conditions for a sequence specify the terms that precede the first term where the recurrence

relation takes effect.  For instance, in the first example,   a0 = 3,a1 = 5  are the initial conditions.  The

recurrence relation and initial conditions uniquely determine a sequence.  This is clearly the case, since a

recurrence relation, together with the initial conditions, provide a recursive definition of the sequence.

Any term of the sequence can be found from the initial conditions using the recurrence relation a sufficient

number of times.  However, there are better ways for computing the terms of certain classes of sequences

defined by recurrence relations and the initial conditions.  We’ll discuss them soon enough, my little

angels.  Just wait.

Modeling with Recurrence Relations

We can use recurrence relations to model a wide variety of problems, such as finding compound interest,

counting the number of ways place dominoes on an   n × 2  board, determining the number of moves in the

Tower of Hanoi puzzle, and counting bit strings with certain properties.

Problem:  Suppose that a person deposits ten thousand bucks in a savings account at

a bank yielding 11% per year with interest compounded annually.  How much will

be in the account after 30 years?

To solve this problem, just let   Pn  denote the amount of cash in the account after n

years.  Since the amount in the account after n years equals the amount in the account after n-1 years plus
the interest for the nth year, we see that the sequence   Pn{ }  satisfies the recurrence relation:

  Pn = Pn −1 + 0.11Pn − 1 = 1.11Pn −1

where the initial condition is simply stated as   P0 = 10,000 .

We are totally entitled to use an iterative approach to find a closed formula for   Pn .  Note that:

2



When we insert the initial condition   P0 = 10,000 , the formula

  Pn = 1.11Pn −1 = 1.11( )n
10,000  is obtained.  We can use mathematical induction to

establish its validity.  That the formula is valid for   n = 0  is a consequence of

the initial condition.  Now, assume that   Pn = 1.11( )n
10,000 .  Then, from the

recurrence relation and the inductive hypothesis,

  Pn +1 = 1.11( )Pn = 1.11( ) 1.11( )n
10,000 = 1.11( )n +1

10,000 .  This shows that the

explicit formula for   Pn  is valid.  Sweet.

Substituting   n = 30  into the formula   Pn = 1.11( )n
10,000  shows that after 30 years the account contains

  P30 = $228,922.97 .  If only banks offered that much interest on savings accounts, we’d all be set.

Problem:  How many ways are there to tile a   2 × n strip with   2 × 1 dominoes?

Actually, let’s just worry about coming up with a recurrence relation and listing the

first few values of the related sequence. Deep breath.

This may seem complicated.  After all, it seems that dominoes can be placed

horizontally or vertically, but that a horizontally placed domino mandates that a second horizontally

placed domino be placed directly below or above it.  It seems like the number of possibilities grows

tentacles much more quickly than we can comprehend.  Not to worry.  Let’s go nuts artistically and draw

out   2 × n strip.

Okay, so it doesn’t

look as dazzling in

the photocopy, but

trust me. it’s

beautiful.

Aaaaaanway, let’s not think so big, rather than thinking about the number of ways to cover the entire

strip, let’s just think about the number of ways to cover just the left end of the strip—that is the two

smallest dashed boxes at the left of the strip above.

Well, we could cover

both using a single

domino, as in the

drawing to the right.

Or we could use two

dominoes, each placed

horizontally to cover

one of the two squares

that need to be covered.

Well, it’s east to convince ourselves that these are the only two ways to cover the leftmost column of

squares of our strip.  But it tells us a great deal!  It tells us that the number of ways to cover an   n × 2  strip is
equal to the number of ways to cover an   n − 1( ) × 2  strip plus the number of ways to cover an   n − 2( ) × 2  strip.

    

P0 = P0

P1 = 1.11P0

P2 = 1.11P0 = 1.11( )2
P0

P3 = 1.11P2 = 1.11( )3 P0

KKK

Pn = 1.11Pn −1 = 1.11( )n
P0

3



The number of tilings can be modeled using a recurrence relation, which is nice, cause that’s what today’s

topic is.  In particular, there is exactly one way to tile a   1× 2 strip using   1× 2 dominoes, and there are

precisely two ways to tile a   2 × 2  strip using   1× 2 dominoes.  Hmmmm... let’s summarize:

  

T1 = 1

T2 = 2

Now what about more complicated boards?  Well, we should translate our observation from above about

how to tile an   n × 2  strip:

  Tn = Tn − 1 + Tn − 2

Coincidentally, this recurrence relation is exactly the same as that used to calculate the Fibonacci

numbers.

One thing two note about this particular recurrence is that the nth term is defined in terms of two earlier

values of the sequence.  This feature of the recurrence makes it more difficult to solve that that for the

bank account example.  However, it is still solvable, and we’ll see an example soon enough where we get to

actually compute a closed formula, which solves the recurrence for the tiling problem.  I can’t wait.

Problem: Define a ternary string as a string which contains only 1's, 2's, and 3's.

Construct a recurrence relation to represent the number ternary strings of length n

free of double digits.  Provide a recurrence relation which models the counting

problem, and then solve it.

 The easiest way to construct the recurrence relation for this one was to realize that, in

promoting a legal ternary string from length n-1 to another legal string of length n, we can

append either of two characters to the end.  Specifically, if a legal string of length n - 1 ends

in a 0, then we can append either a 1 or a 2 to the end to get a legal string of length n.  This

leads to the simple formula:

 

 
  

T1 = 3

Tn = 2Tn −1

 

 I specifically omitted the n = 0 case, because it interferes with the recurrence relation a

tad—I'll show how to come up a solution for this.  Anyway, it's pretty clear that this

recurrence has the solution:

 

   Tn = 3 ⋅ 2n −1,n ≥ 1

 

 Unfortunately, this doesn't really work for n = 0, since the empty string is a legal ternary

string in this case, but   T0 = 3 ⋅ 2−1 = 3 2, and we all know that   3 2 ≠ 1.

 

 One way to fix this puppy is to let   n = 0[ ] be an expression which evaluates to 1 when n = 0 and

to 0 otherwise.  Then we can just rewrite the formula above to embrace the n = 0 case as well.

4



 Ah, romance.

 

  Tn = 3 ⋅ 2n −1 − n = 0[ ] 2

Problem:  Find a recurrence relation and give initial conditions for the number of

bit strings of length n that do not contain two consecutive 0s.  How many such bit

strings are there of length five?

Well, let   Bn  be the number of bit strings of length n that do not have two

consecutive zeros.  To obtain a recurrence relation for   Bn{ } , note that the number of bit strings of length n

that do not have two consecutive 0s equal the number of such bit strings ending in 0 plus the number of bit

strings ending in 1.  We can assume that n is greater than or equal to three, so that only bit strings of length

three or more need be considered.

The valid bit strings of length n ending with 1 are precisely the bits strings of length n - 1 with no

consecutive zeros with a 1 appended onto the end.  Consequently, there are   Bn −1  such bit strings.  Valid bit

strings of length n ending in a zero must have 1 as their second to last bit; otherwise, they would end with

a pair of 0s, and that just can’t be.  It follows that the legal bit strings of length n ending in zero are the

valid bit strings of length n - 2 with 10 tacked on to the end.  Consequently, there are   Bn −2  such bit strings.

We conclude that, for n greater than or equal to 3, that:

  Bn = Bn − 1 + Bn −2

The initial conditions are   B1 = 2 , since both bit strings of length one, 0 and 1, do not have two consecutive

0s, and   B2 = 3 .  To obtain   B5 , we simply use the recurrence relation three more times to find that:

  

B3 = B2 + B1 = 3 + 2 = 5

B4 = B3 + B2 = 5 + 3 = 8

B5 = B3 + B2 = 8 + 5 = 13

Problem:  A computer system considers a string of decimal digits to be a valid code

word if and only if it contains an even number of zero digits.  For instance,

1230407869 is valid, whereas 3141529046 is not.  Let   Vn  be the number of valid n-

digit code words; find a recurrence for   Vn .

I think the base case is the easiest to see first—  V1 = 9, since there are 10 one-digit strings and only one of

them is illegal.  A recurrence relation can be derived for this sequence by considering how a valid n-digit

string can be obtained from strings of n - 1 digits.

First, a valid string of n digits can be obtained by appending a nonzero digit to the end of a valid codeword

of length n-1.  This appending, then, can be done in nine different ways, so that a valid string of length n

can be formed in this particular manner in   9Vn −1  ways.

5



Second, a valid string of n digits can be obtained by appending a 0 to the end of a length-(n-1) codeword
that is not valid.  The number of ways this can be done equals the number of invalid   n − 1( ) -digit strings.

Since there are   10n − 1 − Vn −1  illegal code words of length n-1,   10n − 1 − Vn −1  valid code words can be formed

by simply appending a zero to the end of each.

Since all valid strings of length n are produced in one of two ways, it follows that there are

  

Vn = 9Vn −1( ) + 10n −1 − Vn −1( )
= 8Vn −1 + 10n −1

valid code words of length n.

Problem: Let’s look at the Towers of Hanoi problem.  A popular puzzle of the late

19th century, the Tower of Hanoi, consists of three pegs mounted on a board

together with disks of different sizes.  Initially these disks are placed on the first

peg, with the largest on the bottom.  The rules of the puzzle allow disks to be

moved one at a time from one peg to another as long as a disk is never placed on top

of a smaller one.  The goal is to move the entire tower from the original peg to a second one, but obeying the

rules with every move.

 If we let   Hn  denote the number of moves needed to solve the Tower of Hanoi problem with n

disks, then we can set up a recurrence relation for the sequence   Hn{ }  as follows.

 

 Begin with n disks on one peg.  We can transfer the top n - 1 disks, following the rules of the

puzzle, to peg 3 using   Hn −1  moves, keeping the largest disk fixed during all of these moves.

Then, we use one move to transfer the largest disk to the second peg.  We can transfer the n-1

disks from peg 3 to peg 2 using an additional   Hn −1  moves, placing them on top of the largest

disk, which always stays fixed on the bottom of peg 2.  Moreover, it is easy to see that the

puzzle cannot be solved using fewer steps, so that our recurrence formula is simply given as:

 

   Hn = 2Hn −1 + 1

 

 The initial condition is   H1 = 1.

 

 We can use the iterative approach that we used for the bank example to solve this particular

recurrence relation.  Note that   H1 = 1, since a tower of height 1 can be transferred from peg 1 to

peg 2, according to the rules of the puzzle, in one move.  Look what happens; it’s lovely.

 

6



 

    

Hn = 2Hn −1 + 1

= 2 2Hn −2 + 1( ) + 1 = 22Hn − 2 + 2 + 1

= 22 2Hn −3 + 1( ) + 2 + 1 = 23Hn − 3 + 22 + 2 + 1

KK

= 2n −1H1 + 2n − 2 + 2n− 3 + 2n −4 + L+ 22 + 21 + 1

= 2n −1 + 2n − 2 + 2n− 3 + 2n − 4 + L+ 22 + 21 + 1

= 2 i

0≤ i≤ n −1
∑ =

2n − 1

2 − 1
= 2n − 1

 

 Note that I’ve used the recurrence relation repeatedly to express   Hn  in terms of previous

values of the sequence.  In the next to last equality, the initial condition that   H1 = 1 was used,

and the last equality is based on the formula for the sum of the terms of a geometric series.

Problem: Find the shortest

sequence of moves that transfers

a tower of   n  disks from the left

peg   A  to the right peg   B , if

direct moves between A and   B

are disallowed.  (Each move must be to or from the

middle peg.  As usual, a larger disk must never appear

above a smaller one.)

 This isn't all that different than the normal Tower of Hanoi problem.  If we let   Tn  denote the

number of disk moves required to move a tower of height n in this manner.  We first need to

move the top n - 1 disks from A to B (requiring   Tn −1  disk moves,) then move the largest disk

from A to the center peg.  Next we should transfer the n - 1 disks from B back to A (requiring an

additional   Tn −1  moves), and move the largest disk to peg B.  Then we need only transfer the

tower of height n - 1 from A to B again, requiring   Tn −1  moves.  Therefore, the recurrence

relation is given as:

 

 
  

Tn = 0

Tn = 3Tn −1 + 2

n = 0

n > 0

 

 We can solve this baby by repeated substitution, in exactly the same way we solved the

original Tower of Hanoi recurrence.

 

A B

7



 

    

Tn = 3Tn −1 + 2

= 3 3Tn − 2 + 2( ) + 2 = 32 Tn −2 + 3 ⋅ 2 + 2

= 32 3Tn − 3 + 2( ) + 3 ⋅ 2 + 2 = 33 Tn − 3 + 32 ⋅ 2 + 3 ⋅ 2 + 2

= 33 3Tn − 4 + 2( ) + 2 3 j

0≤j <3
∑ = 34 Tn − 4 + 2 3 j

0 ≤j< 4
∑

LL

= 3k Tn − k + 2 3j

0≤ j< k
∑

 This is also true when   k = n, so that

 

 

  

Tn = 3n T0 + 2 3 j

0≤ j< n
∑

= 0 + 2
3n − 1

3 − 1
= 3n − 1

 gives the required number of moves to transfer a tower of height n from peg A to peg B under

the specified constraints.

Problem: Let   Q n  be the minimum number

of moves needed to transfer a tower of   n

disks from   A  to   B , if all moves must be

clockwise—that is, from   A  to   B , or from

  B  to the other peg, or from the other peg

to   A .  Also, let   R n  be the minimum number of moves needed to

go from   B  back to   A  under this restriction.  Justify why the

following coupled set of recurrences applies:

 

 
  
Q n =

0;

2Rn − 1 + 1

if n = 0

if n > 0

 
 
 

Rn =
0;

Qn + Q n −1 + 1

if n = 0

if n > 0

 
 
 

 

 I want to emphasize the clockwise constraint of the problem; rather than drawing the three

pegs side by side in a line, I place them equidistantly on a circle, the A peg at 4 o'clock, the B

peg at 8 o'clock, and the third peg at high noon.  Also note: moving a tower of height n from

peg A to B is the same as moving a tower from B to the other peg or from the other peg to A.  By

definition, each requires   Q n  individual disk moves.  Similarly, moving a tower of height n

from B to A is identical to moving any tower of height n from A to the other peg of from the

other peg to B, and by definition that requires   R n  moves.  Note that   R n  isn't necessarily equal

to   2Qn —moving a tower of height n from B to A doesn't necessarily require that the tower be

fully and intermittently transferred to the other peg.

 

 Anyway, to move the tower of height n from A to B, we need to move all but the largest disk to

the other peg so that the largest disk can be transferred from A directly to B.  Only after

we've placed the largest disk where it needs to be should we transfer the tower of height n - 1

from the other peg to B.  Moving a tower of height n from A to the other peg requires, by

 B  A

8



definition,   R n −1  disk moves.  Then we require a single disk move to move the largest disk, and

then an additional   R n −1  disk moves to finish off the job.  That justifies the following:

 

 
  

Q n = 0

Q n = 2Rn − 1 + 1

n = 0

n > 0

 

 Now, trying to move a tower of height n from B back to A clearly requires that the largest disk

be moved twice—once from B to the other peg, and once more from the other peg to A.  That

means that the tower of height n - 1 has to be moved out of the way two times, and then moved

a third time to place it on the destination peg.  We must make   R n −1  disk moves to move the

top n-1 disks to peg A, so that the largest disk can be moved to the other peg.  Then we must

make   Q n −1  moves to transfer the (n-1)-tower from B back to A, so that the largest disk can be

moved from the other peg to A.  Finally, we can make   R n −1  disk moves to move the (n-1)-

tower from B to A.  The total number of disk moves is then given as:

 

 
  

R n = 0

R n = Rn −1 + 1+ Qn −1 + 1+ Rn −1

n = 0

n > 0

 

 But we know   Q n = 2Rn − 1 + 1 from the first half of the solution, so that:

 

One of the first recurrence relation problems I covered above answers the question: How many ways are

there to tile an   n × 2  board using   2 × 1 dominoes?  Our discussion brought us to the following recurrence

relation:

  

Tn = 1

Tn = Tn − 1 + Tn − 2

n = 0,1

n ≥ 2

Problem: Now consider a similar but more difficult question: How many ways are

there to tile an   n × 3  board using   2 × 1 dominoes?  Model this counting problem

using a coupled set of recurrence relations which in theory could be solved to give

you a closed formula.

 One thing to note is that whatever the solution is, it should evaluate to zero for odd n.  But I

don't even want you to solve the set of recurrence relations—I just want the recurrence relation.

 

 Whenever you are constructing a recurrence relation, you always try to break down the

problem into smaller similar sub-problems.  In this case, we should realize that every   3 × n

board must be partially tiled in one of three ways!

 

  

R n = 0

R n = Qn + Q n −1 + 1

n = 0

n > 0

9



 
 

 One important thing to note is that the first two cases are distinct but computationally

identical.  If we let   U n  denote the number of ways to tile a   3 × n  board, then clearly   U n  is

related to the number of ways you can tile a   U n −2  board.  Check out the first two cases—the

exposed portion is almost related to   U n −1 , except we have that annoying lip jutting out to the

left.  Well, that annoying lip makes that  tiling problem a completely different tiling

problem—one that needs a new name.  I'm feeling alphabetical, so let's let   Vn  represent the

number of ways to tile a   3 × n  board with a big fat upper lip.  Then all of a sudden, we can

come up with a recurrence relation for   U n  (recalling that the first and second cases are

computationally identical and have no single tiling in common.)

 

   U n = Un − 2 + 2Vn −1

 

 Now, we wonder: Can   Vn  be related to smaller versions of U and V?  Let's look at a generic   Vn

board, and see how it can be tiled:

 

 
 

 That means that   Vn  can be computed as follows:

 

   Vn = U n− 1 + Vn − 2

 

 That gives us the entire system of equations, provided we seed them with some initial

conditions:

 

 

  

U n =
1

0

Un − 2 + 2Vn −1

n = 0

n = 1

n ≥ 2

 
 
 

  
Vn =

0

1

Un −1 + Vn − 2

n = 0

n = 1

n ≥ 2

 
 
 

  

 

This is a pretty tough one.  Very cool, but difficult.

Problem: How many ways are there to build a   2 × 2 × n pillar using   1× 1 × 2  bricks?

Model this counting problem using another coupled set of recurrence relations that

can in theory be solved to give you a closed formula.  Make sure you understand the

  n × 3  domino board problem before tackling this one, since your target set of

recurrences will be similar in structure to that given there.

10



 Let   Sn  represent the number of ways to build a   2 × 2 × n pillar using   2 × 1× 1 bricks, and let  Tn

be the number of ways to build such a pillar with a flat   2 × 1× 1 notch missing.

 

 Whenever you are constructing a recurrence relation, you always try to break down the

problem into smaller yet similar subproblems.  In this case, we should realize that every

  2 × 2 × n pillar must be partially built in one of seven ways!

 

 

 

 

 

 

 The first of the seven corresponds to the placement of four bricks, each of which is standing on

its  1× 1 side, to create a   2 × 2 × 2foundation for the   Sn − 2  pillars of height   n − 2  that can be

built on top of it.  The next two illustrate the two ways to build a   2 × 2 × 1 foundation for the

  Sn −1    2 × 2 × n − 1( ) pillars that can used to complete the full construction.  Note that the second

and third partials are distinct but computationally identical cases, so both cases contribute

the same number to the final answer.  Foundations 4 through 7 are each the result of placing

two tall-standing bricks aside a flat one.  Note that each of these four is structurally different

from the other three, and that all four are different from foundations 1, 2, and 3.  In order to

build a full   2 × 2 × npillar from each of these four “  2 × 2 × 1.5 ”, we need to choose one of the

  Tn −1  ways to build a   2 × 2 × n − 1.5( ) skyscraper and rest it on top of it.  These seven cases form a

partition of all the ways one can start to build a pillar of height n, and based on that

observation, we can state with a good amount of confidence that the recurrence relation for   Sn

is given by:

 

 

  

Sn =
1

2

2Sn −1 + Sn − 2 + 4Tn −1

n = 0

n = 1

n ≥ 2

 
 
 

  

 

 Formulating the recurrence relation for  Tn  is much simpler, because there are only two distinct

ways to begin building.

 

 

   Tn                               Sn −1 + Tn −1

 

 

 

  

Sn =
1

2

2Sn −1 + Sn − 2 + 4Tn −1

n = 0

n = 1

n ≥ 2

 
 
 

  
Tn =

0

1

Sn −1 + Tn −1

n = 0

n = 1

n ≥ 2

 
 
 

  

 

11



Problem: A space probe has discovered that organic material on Mars has DNA

composed of five symbols, denoted by   a,b,c,d,e{ } , instead of the four components

in earthling DNA.  The four pairs cd, ce, ed, and ee never occur consecutively in a

string of Martian DNA, but any string without forbidden pairs is possible.  (Thus,

bbcda is forbidden but bbdca is just fine.)  We’re curious how many Martian DNA

strings of length n are possible?  (When n = 2, the answer is 21, because left and right ends of a string are

distinguishable.)  Let   an  stand for the number of legitimate DNA strands that end in either c or e, and let

  bn  stand for those that don't.  Arrive at a coupled recurrence relation for each of the   an  and the   bn .

Understand that the real answer we’re interested in is   an + bn .

 Consider any of the   an −1  strands ending in c or e.

 Now consider adding each of the five bases:

• a: forms one of the   bn  DNA strands

• b: forms one of the   bn  DNA strands

• c: forms one of the   an  DNA strands (but note that it ends in c, hence   an  and not   bn)

• d: forms an illegal strand.

• e: bzzzzt! forms another illegal strand

Consider any of the legal   bn− 1 strands ending in a, b, or d, and then consider what happens when

you  tack on one more base:

• a: forms one of the   bn  DNA strands

• b: forms one of the   bn  DNA strands

• c: forms one of the   an  DNA strands (and once again note it’s   an  and not   bn)

• d: forms one of the   bn  DNA strands

• e: forms one of the   an  DNA strands (for the same reason)

The recurrence relations that follow here are:

  

an =
0 n = 0

2 n = 1

an −1 + 2b n −1 n ≥ 2

 
 
 

  
bn =

1 n = 0

3 n = 1

2an− 1 + 3bn −1 n ≥ 2

 
 
 

  

12


