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Abstract. An adaptive impedance control scheme with estimation of robot and environment param-
eters is proposed in this paper. It consists of two stages of adaptation and control. The first one
performs an on-line estimation of the robot inertial parameters, during the complete (constrained
or not) motion of the leg, while the second one compensates for the uncertainties on the charac-
teristics of the ground (position and stiffness). Simulation results obtained for a single leg of a
pneumatic driven, quadruped robot show the effectiveness of the proposed control scheme in case
of considerable uncertainty both in the robot and ground parameters.
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1. Introduction

Many robotics application tasks, like grasping and manipulating an object or
assembling devices, inevitably involve direct interaction with the environment.
Contact between the robot and the environment may also occur unpredictably
due either to presence of unknown obstacles in the robot’s workspace or to
imprecision in positioning the robot end-effector. All the above situations may
result in application of excessive and uncontrollable forces between the robot and
its environment. The goal of a general force control methodology is to control
these interaction forces in order to assure correct and safe execution of the robot
task.

Whitney was the first one to report on the use of force feedback techniques in a
computer-controlled manipulator [19]. Since then, various force control method-
ologies have been developed which can be classified in the following three major
axes: impedance control, explicit force control and hybrid control.

Impedance control [5] is essentially a position control scheme where force
feedback is used to modify the apparent inertia of the robot seen from the envi-
ronment. The goal of this methodology is to explicitly regulate the compliance of
the manipulator, i.e. its ability to yield under the application of external forces.
These forces are then indirectly controlled by commanding the end-effector to
follow an appropriate reference position trajectory. In explicit force control, on
the contrary, the variable being directly measured and controlled is the external
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106 COSTAS S. TZAFESTAS ET AL.

force. The objective here is to follow a desired force trajectory defined in the task
space (Cartesian coordinate system). The desired and measured force signals are
compared and processed to provide an actuation signal directly to the process.
Most existing work uses a subset of PID servo loop together with some form of
linear or non-linear filtering [14, 20].

A methodology that tries to combine the advantages and the potential of a
pure force and a pure position control scheme is the hybrid force/position con-
trol. Mason, in 1981, presented a formalization of this methodology in terms
of defining the geometry of a compliant task and the appropriate control strate-
gies. Craig and Raibert developed a hybrid control architecture where the parti-
tioning of the Cartesian space in two, purely position or force controlled, sub-
spaces is conveniently performed by a selection matrix [2]. Khatib has also
proposed a hybrid force/position control architecture where the complete dynam-
ic model of the robot, expressed in the task cartesian coordinate frame, is
used [8].

All these control methodologies in general attempt to cope with the difficulties
present in the execution of complex contact tasks, where motions and forces have
to be taken into account simultaneously. The major problems encountered by such
a methodology are:

• The problem of dynamic stability in case of unpredictable contact with a
stiff environment.
• The problem of uncertainties in the dynamic parameters of the robot and

compensation for its nonlinear characteristics.
• The uncertainty in the characteristics of the environment (stiffness, posi-

tion).

In the last case, an insufficient control design can, in case of a contact with
a stiff environment, lead to an under-damped or even unstable system. A robust
or adaptive control methodology can be generally used to tackle this type of
problem, but such a control scheme here should also take into account the forces
of robot–environment interaction, before eventually proceeding in an on-line
estimation of these dynamic characteristics.

We must also note that the use of force derivative or angular acceleration
feedback in the control law must be avoided due to the noisy nature of signals
supplied by force sensors and optical encoders.

The system considered in this paper is a single leg of a pneumatic-driven
robot, called SAP, developed in our laboratory to study the dynamic problems
related with walking machines (Figure 1). Dynamic interaction with an unknown
environment is inherent in the complete motion of a walking mechanism. Our
goal here is to design a force controller for a single leg in interaction with
the ground, taking into account the above mentioned problems. To robustify the
control system with respect to these external disturbances we develop an adaptive
impedance control scheme consisting of two stages:
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Figure 1. SAP pneumatic legged robot.

1. A first stage that compensates for the nonlinear characteristics and the
uncertainty on the dynamic model of the leg, performing an on-line estimation of
its dynamic parameters imposing the desired mechanical impedance. It constitutes
the kernel of the control system and has to be active during the complete motion
of the leg. This consists of a free motion phase (no contact with the ground, where
the control objective is to closely follow a reference position trajectory), and a
constrained motion phase, where we have to monitor and control the contact
forces exerted on the endpoint of the leg.

2. A second stage of adaptation is necessary during the contact phase, in
order to deal with the problem of uncertainty in the dynamic parameters of the
ground and ensure the desired force trajectory tracking. As will be shown, one
way of doing this is to perform an on-line estimation of the ground parameters
(position and stiffness) during the contact phase, using the forces measured on
the end-point of the leg.

This stage actually constitutes an external force compensation loop closed
around the internal nonlinear impedance controller. A simple algorithm for the
numerical computation of the defined impedance error is presented where only
the available feedback information is used.

The paper is organized as follows. In Section 2 we present the dynamic
model of the system used for the simulations. Section 3 starts by discussing the
compensation of the pneumatic actuators dynamics and by presenting the overall
control architecture of the system. A fixed impedance control law based on the
computed torque control concept is presented in Section 3.3. The two stages of
adaptation are therafter introduced (Sections 3.4 and 3.5) and stability analysis
based on Lyapunov’s theory is performed. Simulation results obtained for SAP’s
leg are presented in Section 4. Finally, Section 5 offers brief concluding remarks.
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Figure 2. Kinematic model of the leg.

2. Modelling of the System

2.1. DYNAMIC MODEL OF A PNEUMATIC LEG

Each leg of the SAP robot has the kinematic structure of Figure 2. It consists of
a supporting platform and two rigid links connected together with two rotational
joints. The hardware configuration of the leg is presented by Figure 3. An incre-
mental encoder is mounted on each joint to measure the angular displacements.
In addition to that, a force sensor can be placed on the endpoint of the leg in
order to measure the interaction forces with the ground. Each link is equipped
with a pneumatic cylinder, an electropneumatic servovalve to control the pres-
sure applied on the piston, and a piezoresistive sensor to measure the differential
pressure zi between the two chambers of each actuator. The linear motion of the
piston is transformed in rotational motion through a cable.

The dynamic model of this rigid two link system can be written as:

M(q) · q̈ + h(q, q̇) = τ + JTFe, (1)

where q denotes the 2×1 vector of joint angular positions (q = [q1, q2]
T ), M(q)

is the 2 × 2 generalized inertia matrix of the robot, h(q, q̇) = C(q, q̇)q̇ + g(q)
contains the Coriolis, centrifugal and gravitational terms, J is the Jacobian matrix
of the robot, τ the actuator torques and Fe the external force applied on the end-
point of the leg.

For the torques τ applied by the pneumatic actuators on the leg joints we can
obtain the following equation (see [13] for details):

τ̇ +B · τ = G · i−E · q̇, (2)
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Figure 3. Hardware structure of the leg.

where B, G and E are 2 × 2 diagonal parameters matrices, depending on the
actuators initial conditions, and i is a vector containing the input currents supplied
in the servovalves. To obtain this equation some assumptions have been made,
considering the displacement of the piston being due to small slide variations
around its central position and the pneumatic system symmetric. If z = [z1, z2]

T

contains the differential pressures between the two chambers of each actuator
(z = Pp − Pn), we have:

τ = k0 · S · l · z, (3)

where S is the cross-section area of the piston and l the radius of the pulley. The
differential pressures zi are directly measured by the piezoresistive sensors.

2.2. ROBOT-ENVIRONMENT INTERACTION MODELLING

During the contact of the leg with the ground the compound systems leg + con-
troller/force sensor/environment (ground) interact with each other by mutual
application of forces. The models most oftenly used either to study the impact of
a robot with its environment [6, 21] or to analyse its dynamic stability [1, 3], are
the linear models of type inertia-damping-stiffness (see Figure 4). Let us sup-
pose for simplicity that the stiffness Kf of the force sensor approaches infinity
(compliance close to zero). In fact, this is equivalent in saying that Ke represents
the effective stiffness of the whole {force-sensor/ground} and Be the relevant
damping coefficient. The whole {robot + controller} can be ideally represented
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Figure 4. Robot-environment interaction model.

by the equivalent 2nd order impedance (Mr, Br,Kr) imposed by the control law.
We can then write the following equations:

Fe = Ke(xe − x), (4)

where xe is the position of the ground, Fe the force applied on the end point of
the robot leg, and{

Mrp
2 + (Br +Be)p+ (Kr +Ke)

}
· x = −Fd +Krxd +Kexe, (5)

where xd, Fd are the position and force reference signals, respectively, and x the
end-point position of the robot. This system is linear, 2nd order and stable if
Br, Be > 0. Its natural frequency is ωn =

√
(Kr +Ke)/Mr . If the ground is

very stiff (Ke � Kr), a choice of Mr less than a critical value may excite the
neglected, high-frequency dynamics of the system, like flexibility of the links,
delays in the control loop etc. This critical value, however, cannot be precisely
known due to the uncertainty on the parameters of the ground. A trade-off must
usually be found between free-motion speed and constrained-motion stability.

From Equations (4) and (5) in steady-state we obtain:

Fef = Fe(t→∞) =
Ke

Kr +Ke
Fd +

KrKe

Kr +Ke
(xe − xd). (6)

This equation will be used to study the force tracking capacity of the impedance
controller during contact with the ground.

3. Two-stage Adaptive Impedance Control

3.1. COMPENSATION OF PNEUMATIC ACTUATORS DYNAMICS

The torque is controlled by a current i that is fed to the actuators’ servovalves.
Let us assume for simplicity of equations that G is known and B̂ and Ê are
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Figure 5. Compensation of actuators dynamics.

estimates of B and E respectively. In order to control the pneumatic actuators
and compensate for their dynamic characteristics we can use an inner control
loop of the form:

i = G−1 · [u+ B̂ · τ + Ê · q̇] and u = Kτ · (τd − τ). (7)

This is actually a feedback-linearization control law conceived from Equa-
tion (2) which describes the dynamic behaviour of the pneumatic actuators. We
note also the presence of a current saturation at 20 mA. An adaptive version
of control Equation (7) and an identification procedure for the pneumatic actua-
tors characteristics have been recently developed in our laboratory [11, 13] (see
Figure 5).

The objective of this control step is to allow us impose a desired torque to the
leg joints using pneumatic actuators. Combining Equation (2) of the pneumatic
leg with Equation (7) we obtain for the first (internal) control loop the following
equation

τ̇ +B · τ = Kτ · (τd − τ) + B̂ · τ + Ê · q̇ −E · q̇,

Kτ · (τd − τ) = τ̇ + B̃ · τ + Ẽ · q̇ with B̃ = B − B̂ and Ẽ = E − Ê.

This leads to τ = τd −K−1
τ (τ̇ + B̃ · τ + Ẽ · q̇) ' τd − 0(K−1

τ ).
This proves that with feedback pressure gain Kτ , we obtain an applied torque

practically equal to the desired one. Physically, this is made possible by the fact
that frequency characteristics of the electric part and pneumatic part (respectively
about 200 Hz and 70 Hz for our case) of the system lead to faster dynamics
with regard to the mechanical one. Implementing this internal control loop for
pneumatic actuators allow us to focus our attention on the two steps of impedance
control and adaptation regarding mechanical dynamics.

3.2. CONTROL ARCHITECTURE

The control architecture of the system is decomposed into two levels, as shown
in Figure 6. The coordinator-level generates the position and force reference
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Figure 6. Control system architecture.

trajectories xd and Fd respectively, which are afterwards supplied as command
signals to the low-level control of each leg. The position reference trajectory can
be chosen such as to ensure that the speed of the leg’s endpoint at the moment
of impact with the ground will be close to zero. We can also set a desired speed
at this time instant by imposing a constant descent rate when approaching the
ground. The ground is modelled as a conveyor belt with a constant horizontal
speed of−0.1 m/s. In this control level we perform the second stage of adaptation,
which is presented in Section 3.4. The goal of this adaptation stage is to ensure
the desired force trajectory tracking during contact with the ground.

The leg-level performs the control of each joint and ensures the tracking of
the position reference trajectory. In fact, the first control block has as its goal to
impose the desired mechanical impedance on the leg, despite uncertainty in its
dynamic parameters and interaction with the ground. The signal τd represents the
desired control torque to be applied by the pneumatic actuators. An identification
procedure for the pneumatic actuators characteristics has been recently developed
in our laboratory, as discussed in the previous paragraph. In what follows, we
focus our attention on the two stages of impedance control adaptation.

3.3. COMPUTED-TORQUE IMPEDANCE CONTROL LAW

The first step in implementing an impedance control scheme is to define the
desired dynamic behaviour of the robot, that is the target-impedance. We choose
a linear, second order model as the desired impedance:

Mr · (ẍd − ẍ) +Br · (ẋd − ẋ) +Kr · (xd − x) = Fd − Fe (8)

where xd is the desired trajectory for the end point of the leg, Fd is the desired
force reference trajectory and Mr, Br, Kr are the desired apparent inertia, damp-
ing and stiffness matrix respectively.
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The system dynamic equation is expressed in the cartesian coordinate frame
R0, fixed on the platform. This leads to the kinematic equation of the robot:

ẋ = J · q̇ ⇒ ẍ = J · q̈ + J̇ · q̇ (9)

as well as the static equation

τ = JT · F. (10)

The dynamic model of the robot rewritten in the same coordinate frame has
the following form:

M∗ · ẍ+ h∗ = F + Fe, (11)

where M∗ is the generalized inertia matrix expressed in the cartesian coordinate
frame. We have:

M∗ = Q−1, Q = (J ·M−1JT ) (12)

and

h∗ = J−T · h−M∗ · J̇ · q̇. (13)

Assuming a perfect knowledge of the dynamic parameters of the robot, a
linearizing control law for the implementation of the target impedance can be
written as follows:

τ = (JTM∗) · (u− J̇ · q̇) + h− JT · Fe. (14)

The variable u is an auxiliary control signal which is chosen such that the
closed-loop behaviour of the system is identical to the target impedance defined
by Equation (8). From Equations (11) and (14) we obtain the closed-loop equa-
tion:

u = ẍ. (15)

In order to ensure that the closed-loop behaviour of the system is identical to
the target impedance, the auxiliary control signal u must be chosen equal to:

u = ẍd +M−1
r ·

[
Kr · (xd −G(q)) +Br · (ẋd − J(q) · q̇)− (Fd − Fe)

]
, (16)

where x = G(q) is the direct geometric model of the robot. The characteristics
Mr, Br, Kr of the target impedance are chosen so as to achieve the following
goals:

• Ensure a satisfactory trajectory tracking in case of free motion of the leg. For
this reason, matricesMr,Br,Kr can be chosen diagonalMr = diag[Mx,My],
Kr = diag[Kx,Ky] with values Kx/Mx and Ky/My sufficiently large to
give the robot a fast trajectory tracking capability. Bx, By must provide a
well damped behaviour.
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• Ensure the stability of the whole system in case of contact with a stiff ground.
For this reason Mx, My must be chosen greater than some minimum critical
values, in order not to excite the unmodelled high frequency modes of the
robot. In fact, Mr determines the force feedback gain matrix KF , used
implicitly in the control law (16). This gain matrix has the form:

KF = (M∗ ·M−1
r − I2), (17)

where M∗ is the effective inertia of the robot, Mr is the desired inertia and
I2 is the 2 × 2 identity matrix. It is, therefore, the external force feedback
that allows us to modify the apparent inertia of the robot and impose the
desired inertia term in the target impedance equation.

3.4. FIRST-STAGE: ON-LINE ESTIMATION OF THE LEG’S PARAMETERS

For the impedance control law presented in the previous paragraph we have
assumed a perfect knowledge of the parameters in the dynamic model of the
leg. In practice, however, the real values of these parameters cannot be precisely
known in advance. This imprecision in the dynamic model of the robot has to be
compensated for by the control law in order to robustify its dynamic behaviour.
In what follows, an adaptive impedance control law is proposed which accounts
for this uncertainty problem and a stability analysis based on Lyapunov theory
is performed.

The control law (14) decribed in the previous paragraph is now replaced by
the relation:

τ = (JT M̂∗) · (u− J̇ · q̇) + ĥ− JT · Fe, (18)

where M̂∗ and ĥ denote the estimates of M∗ and h respectively, and their
values are adjusted on-line by an adaptation law. The goal here becomes that
of designing such an adaptation algorithm in order to assure the stability of the
whole system despite the existence of the modelling uncertainty. One can easily
show that dynamic Equation (11) is linear on a set of robot parameters θ. If we
consider the inertial parameters as the main source of uncertainty in the dynamic
model of the robot, control equation (18) can be then written in the form:

τ = JT · [Φ∗(q, q̇, u)θ̂ − Fe] + τc, (19)

where τc = [γ1p, γ2p]
T , the constant part of the torque.

Φ∗ is the so-called regression matrix, with the difference that here it is computed
for the cartesian model of the robot. It is a 2× 4 known, nonlinear matrix, that
depends on the geometry and the instantaneous configuration of the robot. θ̂
is a vector that contains the estimates for the inertial parameters of the robot,
computed on line by the adaptation algorithm. If θ contains the real values of
the robot parameters, we can equally write:
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Φ∗(q, q̇, u) · θ = M∗ · u+ h∗ − JT τc
= (J−TMJ−1) · [u− J̇ · q̇] + J−T (h− τc). (20)

3.4.1. Stability Analysis

Let θ̃ = θ− θ̂ be the estimation error for the parameters of the robot. Combining
Equations (11), (19) and (20) we have:

Φ∗ · θ̃ = M∗ · (u− ẍ). (21)

We now define ξ(ed, eF ) an error signal:

ξ(ed, eF ) = u− ẍ = ëd +M−1
r [Br · ėd +Kr · ed − eF ]. (22)

Equation (21) can then be rewritten in the form:

Φ∗ · θ̃ = M∗ · ξ(ed, eF ). (23)

This is the cartesian-space error-dynamics equation, i.e. the dynamic behaviour
of the system (position and force tracking error) with respect to the estimation
error (disturbance in the model).

The error signal ξ(ed, eF ) can be interpreted as the so-called impedance error,
that is an error with respect to the target-impedance dynamic model. In fact, in
an impedance control methodology we are no longer interested in the position or
force tracking error alone but in their dynamic relation as defined by the target-
impedance equation. The goal here is to ensure that the closed-loop dynamic
behaviour of the system follows as close as possible the model defined by the
target-impedance equation (desired apparent inertia, damping and stiffness). This
is equivalent with the convergence of the impedance error, as defined by Equa-
tion (22), to zero.

Let us define now a function s = s(ed, eF ) of the error such that:

ṡ+A · s = ξ, (24)

where A is a positive definite matrix. Integrating this equation we obtain:

s(t) = s(0)−
∫ t

0
As(t) dt+ ėd +M−1

r

{
Bred +

∫ t

0
Kred dt−

∫ t

0
eF dt

}
(25)

that gives the value of s(t) directly from the available sensors information.
A similar methodology has been presented by [7, 12] who have introduced

an impedance error in the following manner: ξ = ed − (Fe/Zr), where Zr is
the target-impedance imposed on the robot. This definition leads to a different
formalization for the error-dynamics of the system. The main difficulty of this
approach in practice is the presence of the force derivative in the algorithm for

JINTST2.tex; 20/11/1997; 10:35; v.7; p.11



116 COSTAS S. TZAFESTAS ET AL.

the computation of s, used trereafter in the adaptation law. This problem is here
solved by Equation (25) where we make use only of the position ed, velocity ėd
and force eF feedback (i.e., only the available feedback information).

In Appendix A we present two simple algorithms for the numeric computation
of this signal s (also called “sliding surface” by [16] or error ėr with respect to
the velocity reference model by [9]).

Let us now define as a Lyapunov-candidate function V (t):

V (t) = 1
2 ·
{
θ̃TΓθ̃ + sTM∗s

}
. (26)

V (t) is a non-negative energy function whose derivative is given by the
equation:

V̇ (t) = θ̂TΓθ̃ + sTM∗ṡ+ 1
2s
T Ṁ∗s. (27)

Combining Equations (27), (24) and (23) and defining the following relation:

˙̂
θ = Γ−1 · (Φ∗)T · s (28)

we obtain

V̇ (t) = −(sT (M∗A)s) 6 0 (29)

(M∗: positive definite and A = diag(a1, a2) with a1, a2 > 0 which yields, for
2× 2 matrices, M∗A > 0).

We therefore deduce that the system, with the defined relation (28), is asymp-
totically stable. In steady-state we have: V̇ = 0 ⇔ s ≡ 0 which means that
ξ(ed, eF ) = 0. The convergence of the impedance error to zero means that
the imposed impedance on the leg, using the adaptive control law, approaches
asymptoticaly the desired dynamic behaviour defined by the target-impedance
equation.

Equation (28) defines the adaptation law which gives us, at each sampling
period, the necessary modifications of the robot parameters estimates:

θ̂k+1 = θ̂k + Γ−1Φ∗Tk · s(k). (30)

It constitutes, in fact, an Integral Parameter Adaptation Algorithm (P.A.A.) [9].
Simulation results for this control law, implemented on a single leg model of robot
SAP, are presented in Section 4.

3.5. SECOND-STAGE: ADAPTATION IN FACE OF AN UNKNOWN ENVIRONMENT

3.5.1. Uncertainty on the Parameters of the Ground and Force-Trajectory
Tracking

The key idea of the proposed method is to make an on-line estimation of the
ground parameters Ke and ye and then compute the desired end-point position
trajectory, using these estimates.

JINTST2.tex; 20/11/1997; 10:35; v.7; p.12



ADAPTIVE IMPEDANCE CONTROL OF A LEGGED ROBOT 117

As we have seen in Section 2.2, the force applied from the ground on the end
point of the leg, in steady-state, is given by the equation:

Fef = Fe(t→∞) =
Ke

Kr +Ke
(Fd +Kr(xe − xd)). (31)

In order, therefore, to ensure the desired force trajectory tracking (Fef = Fd)
during contact with the ground, we should have:

– either

xd = xe −
(
Fd
Ke

)
, (32)

i.e., feed the appropriate position command to the impedance controller,
– or Kr = 0, i.e., modify the desired stiffness imposed by the impedance

controller.
In fact, Kr = 0 means that the position error is no more taken into account,

so that the control law actually becomes a pure force control law. However, in
order to ensure the transition from a pure position control (free motion phase,
no external forces) to a pure force control scheme (constrained motion phase,
contact with the ground) we have to perform a switch in the parameters of the
impedance control law. Kr has to change from a rather large value (position
control) to a value equal or close to zero (force control). This discontinuity in
the parameters of the control, as many researchers have reported, may cause
instability problems in case of an unpredictable contact with a stiff environment.
To avoid this situation, we have chosen the first approach, that is to command the
desired position according to Equation (32), maintaining the kernel of the control
system (first-stage adaptive impedance controller) intact, with no modification
between the two different phases of motion. The control structure on its whole
has been presented in Section 3.1 (Figure 6).

The position reference signal Xd = [xd, yd]
T is therefore the one that is

going to be modified during contact with the ground to assure a good trajectory
tracking. These reference signals, during the contact phase, are computed from
the following equations:

xd(t) =

(
∆x

∆t

)
· (−t+ tk) + xd0, (33)

yd(t) = yd0, (34)

where ∆x is the length of each step, ∆t the duration of the contact phase, tk the
time instant of impact with the ground and xd0, yd0 reference positions related
with the ground parameters. If we knew in advance the exact position ye of the
ground and the value of its stiffness Ke precisely, we could calculate off-line the
reference positions xd0 and yd0 to obtain the desired force Fd between the leg
and the ground. yd0 could be calculated from the equation:

yd0 = ye −
Fd
Ke

. (35)
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However, in practice the values ye and Ke are not perfectly known and conse-
quently we cannot obtain the desired force by simply using Equations (33)–(35).
In what follows we use a method for the on-line adaptation of yd0 in order to
ensure the force trajectory tracking without precise knowledge of the ground
parameters (position and stiffness). This method is presented in [15]. Here it is
integrated, as the second stage of adaptation, in the coordinator-level of the leg’s
impedance control structure.

3.5.2. On-line Estimation of the Ground Parameters and Adaptation of the
Position Reference Signals

The key idea of this method is to make an on-line estimation of the ground
parameters Ke and ye and then compute the desired end-point position trajectory,
using these estimates. From Equation (35) we can define yd0 as:

yd0 = ŷe −
1

K̂e

· Fd, (36)

where ŷe and K̂e are the estimates of ye and Ke respectively. Let:

θ̂e = [K̂e, K̂y]
T

be a vector containing the ground parameters estimates, where

K̂y = K̂e · ŷe.

The actual force applied on the ground by the end point of the leg is:

Fe = Ke(ye − y) = Keye −Key = Ky −Key. (37)

We can therefore define a prediction F̂ e of the measured force Fe as follows

F̂ e = K̂e(ŷe − y) = K̂y − K̂ey. (38)

From the above equation we obtain:

F̂ e − Fe = [−y 1] · θ̃e.

The goal is now to find an adaptation law for K̂e and K̂y, based on the prediction

error ( F̂ e − Fe), in order to make F̂ e
t→∞−→ Fe. Let

Ve = 1
2 · θ̃

T
e Γeθ̃e, (39)

where Γe is a 2 × 2 positive definite matrix (we can for instance set Γe =
diag[γe1, γe2], with γe1, γe2 > 0).

We consider the Lyapunov function candidate:

Vcl = V + Ve = 1
2{s

TM∗s+ θ̃TΓθ̃}+ 1
2 θ̃
T
e Γeθ̃e. (40)
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Differentiating this equation (θe is considered constant) we obtain:

V̇cl = −sT · (M∗A) · s− θ̃Te · Γe ·
˙̂
θe.

Therefore, by defining the adaptation law as follows:

˙̂
θe = −Γ−1

e

[−y
1

]
(F̂e − Fe) (41)

we obtain:

V̇cl = −sT · (M∗A) · s− ( F̂ e − Fe)2 6 0. (42)

We hence deduce that the closed-loop adaptive control system (stage I and II)
is asymptotically stable. The first stage makes sure that in steady-state we will
have:

Kr · (yd0 − y) = Fd − Fe. (43)

The steady-state equation for the 2nd stage of adaptation ( F̂ e = Fe) can be
written as:

Fe = Fd + K̂e · (yd0 − y). (44)

Combining Equations (43) and (44) we obtain for the steady-state equation
of the closed-loop system:(

1 +
K̂e

Kr

)
(Fd − Fe) = 0 K̂e>0⇔ (Fe = Fd) (45)

which was the objective of the adaptive control during the leg-ground contact
phase.

The adaptation law (41) can also be written as:
K̂e = γe1 · y · ( F̂ e − Fe)

ŷe =
F̂ e − Fe
K̂e

· (−γe2 − γe1 · y · ŷe)

 . (46)

This adaptive control scheme, defined by Equations (36), (38) and (46), con-
stitutes the second stage of adaptation.

4. Simulation Results

4.1. FIXED CONTROL LAW AND EFFECT OF THE DIFFERENT UNCERTAINTY
SOURCES

We first consider the control law described in Section 3.3 by Equations (14) and
(16). In this control law we suppose a perfect knowledge of the robot and ground
parameters. The target-impedance characteristics are chosen as: Mx = My = 1,
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Bx = By = 30 and Kx = Ky = 225. The ground is supposed to be very stiff
with Ke = 2× 105 (Nt/m), Be = 150 (Nts/m) and ye = −0.5 m. For the force
sensor we set Mf = 250 g, Bf = 400 (Nts/m) and Kf = 4× 104 (Nt/m). The
effective stiffness of the environments is therefore: Kef = (KeKf )/(Ke+Kf ) =
(1/3)× 105 (Nt/m).

Let us suppose at first that the dynamic parameters of the robot and the envi-
ronment (force sensor and ground) are precisely known. The reference position
commanded during the contact phase will then be: yd0 = ye− (Fdy/Kef ). Simu-
lation results, for the complete motion of the leg, revealed that, as expected, with
a perfect knowledge of the system dynamic parameters we can precisely regulate
and control the interaction forces and achieve the impedance control objectives.

We start considering now the different sources of uncertainty and monitor
their influence in the dynamic behaviour of the system. The goal is to approach
the real conditions and analyse the robustness of the fixed impedance control law
with respect to the different error sources (imprecisions in the dynamic model of
the leg and uncertainties on the ground and force sensor parameters).

We first consider that the parameters of the leg are known with a 20% error:
em = eI = 20%. The parameters estimates used in the impedance control law
are therefore: m̂i = mi(1 + em) and Îi = Ii(1 + eI) (i = 1, 2). We also add
an imprecision of 2 cm on the estimated position of the ground. The simulation
results obtained, for the complete motion of the leg during the first 8 s, are shown
in Figures 7 and 8.

The different phases of this motion are the following:

(a) 0 < t < 2 s, the leg takes its initial configuration;
(b) 2 < t < 3 s, free motion of the leg, where its end point follows the reference

position trajectory, given by the equation:
xd = xd0 + r ·

[
ω · (t− tk)− sin(ω(t− tk))

]
,

yd = yd0 + r ·
[
1− cos(ω(t− tk))

]
,

where tk is the time instant for the beginning of each step;
(c) 3 < t < 4 s, contact phase with the ground.

Along the x-axis the leg follows the relative movement of the ground while
along the y-axis the leg is constrained by the ground.

The force reference signals are chosen as:

Fdy = Fdy0 + C ·
[

cos
(
πft

β

)
− q · cos

(
3πft
β

)]
and

Fdx = v · t · Fdy,
where C quantifies the fraction of the weight supported by each leg and v rep-
resents the mean horizontal speed of the leg’s endpoint. β and q are parameters
taken equal to β = 0.75 and q = 0.2.
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Figure 7. Motion of the leg’s end point [x, y] and reference position trajectory [xd, yd]
(fixed control law – no adaptation).

Figure 8. Force tracking (fixed control law).

The control objectives, thus, are: position trajectory tracking during free-
motion of the leg (phase (b)) and desired force tracking during contact with
the ground (phase (c)). These phase of motion repeat themselves periodically as
shown by Figure 7. Figure 8 shows the force applied on the endpoint of the leg
for the same period of time. Figure 9 shows the slipping of the endpoint of the
leg during contact with the ground (slip = 1 when slipping of the leg occurs).
We see clearly that the uncertainties introduced in the system result in slipping
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Figure 9. Slipping of the leg’s endpoint on the ground.

of the leg during large periods of time, which may jeopardise the safe execution
of the walking task.

Each source of uncertainty has its own effect in the degradation of the sys-
tem’s performance. The error in the dynamic parameters of the leg results in
the existence of a steady state positioning error as well as a small force track-
ing error. The uncertainty on the parameters of the ground adds on the top of
this a new component for the steady state force error deteriorating even more
the force tracking characteristics of the system. In the following section we see
how the two-stage adaptive impedance control, proposed in this paper, deals with
this problem, compensating for the uncertainty in the dynamic parameters of the
system as a whole.

4.2. TWO-STAGE ADAPTIVE IMPEDANCE CONTROL

Let us consider again that the parameters of the leg are not precisely known and
that the vertical position of the ground, with respect to the supporting platform,
is ye = −0.48 m instead of −0.5 m (estimation error, 2 cm). We start by
implementing the first stage of adaptation, described in Section 3.1. Let m̂1(t =

0) = m̂2(t = 0) = 0.5 kg and Î1(t = 0) = Î2(t = 0) = 0 be the initial estimates
for the leg parameters. The simulation results obtained, for the same motion of
the leg, are shown in Figures 10 and 11. The gains used in the adaptation law
(30) are γ1 = γ3 = γI = 0.001, γ2 = γ4 = γm = 2 and A = diag[aj], j = 1, 2,
aj = 15.

From Figures 10 and 11 we derive the following conclusions:
The steady state position tracking error is now eliminated, thanks to the on-

line estimation of the leg parameters. This adaptation stage thus robustifies the
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Figure 10. Position trajectory tracking (first stage of adaptation).

Figure 11. Force tracking (first stage of adaptation).

system with respect to imprecisions or unpredictable changes on the dynamic
model of the leg for the complete, free-space or constrained, motion.

The force tracking error however persists, due to the uncertainty on the posi-
tion and stiffness parameters of the ground and force sensor. Figure 12 shows
the slipping characteristics of the system in this case. We may notice a clear
improvement with respect to the results of the previous paragraph, when no
adaptation was performed. However, important slipping of the leg during con-
tact with ground still exists, which should be also due to the imprecision in the
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Figure 12. Slipping with first stage of adaptation (stage II not active).

Figure 13. Position trajectory tracking (stage I and II active).

knowledge of the ground characteristics, and the insufficient programming of the
position reference trajectories.

For this reason we now apply the second stage of adaptation as described
by Section 3.5. The simulation results in this case are shown in Figures 13–18.
The gains used for the second stage of adaptation are: γe1 = γe2 = 10 (see
Equation (46)). We can clearly see that the force tracking error is now almost
eliminated and that the transient response of the system is satisfactory. Notice
the large force Fey, and the important force error during the first contact with the
ground which is afterwards eliminated, clearly demonstrating the action of the
second stage of adaptation. The large values for Fex and the light slipping at the
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Figure 14. Force tracking (stage I and II active).

Figure 15. Slipping characteristics (stage I and II active).

time instants of contacting or leaving the ground are due to the discontinuities
for the xd reference signals at these time instants.

Figure 16 shows the actuators currents and torques during the complete motion
of the leg. We notice the fact that saturation for the current (20 mA) is limited
only on the first impact with ground, that is just before the second stage of
adaptation starts acting.

Figures 17 and 18 shows the adaptation procedure for the robot mi, Ii and
ground Ke, ye parameters respectively. We can observe that the estimates of these
parameters converge towards some values which are approximately equal to the
real ones. Moreover, the position (free motion) and force (constrained motion)
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Figure 16. Actuators torques and currents.

Figure 17. Robot parameters estimation (1st stage of adaptation).

tracking error converge rapidly to zero which was the objective of the whole
control system during the two phases of motion.

5. Conclusion

A two-stage adaptive impedance control was proposed and applied for a sin-
gle leg of a pneumatic driven robot. Our objective was to ensure the robust-
ness of the system despite the presence of considerable uncertainties both in the
robot and ground parameters. The first stage linearizes the dynamic behaviour
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Figure 18. Ground parameters estimation (2nd stage of adaptation).

of the robot imposing the desired mechanical impedance, defined in terms of an
apparent inertia, damping and stiffness matrix. It is based on a computed torque
impedance control law where the robot parameters are estimated on-line using
an integral parameter adaptation algorithm. The error signal used to update the
robot parameters estimates is simply computed from the available feedback infor-
mation. Measurements of joint acceleration as well as force derivative are not
needed. The second stage performs an on-line estimation of the ground param-
eters (stiffness and location) adapting afterwards the position reference signals
to ensure the desired force tracking during contact with an unknown environ-
ment. It constitutes in fact an external force control loop closed around the first
stage adaptive impedance controller. Simulation results obtained for a pneumat-
ic driven leg show the effectiveness of the proposed control scheme in case of
considerable uncertainty both in the robot and ground parameters.

Appendix A

The numerical computation of the error signal s(ed, eF ) can be performed, using
Equation (25), as follows:

s(k) =
[
ėd + (M−1B) · ed

]
+ integr(k), (A1)

integr(k + 1) = integr(k)−A · s(k) · h+M−1[Ked(k)− eF (k)
]
· h, (A2)

where k is a given sampling instant and h the sampling period which has been
taken equal to 3 ms.

This algorithm uses only the position, velocity and force feedback (i.e. the
available in practice feedback information). Measurements of joint acceleration
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or force derivative is therefore not needed for the computation of s. Numerical
integration can also be performed using the trapezoidal rule as follows:

integr(k + 1) = integr(k)−A · [s(k) + s(k − 1)] · h
2

+

+(M−1K)[ed(k) + ed(k − 1)] · h
2
−

− (M−1)[eF (k) + eF (k − 1)] · h
2
. (A3)

Equation (A1) and (A2) or (A3) involve only a few simple arithmetic oper-
ations and are, therefore, easily implemented on a digital impedance control
system.
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