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Abstract. We study routing and path coloring problems in all-optical
networks as non-cooperative games. We especially focus on oblivious
payment functions, that is, functions that charge a player according to
her own strategy only.

We first strengthen a known relation between such games and online
routing and path coloring. In particular, we show that the price of an-
archy of such games is lower-bounded by, and in several cases precisely
equal to, the competitive ratio of appropriate modifications of the First
Fit algorithm.

Based on this framework we provide results for two classes of games
in ring networks: in Selfish Routing and Path Coloring a player must
determine both a routing and a coloring for her request, while in Selfish
Path Coloring the routing is predetermined and only a coloring of re-
quests needs to be specified. We prove specific upper and lower bounds
on the price of anarchy of these games under various payment functions.

1 Introduction

In all-optical networks, communication requests are carried out by assigning to
them a path in the network (routing) as well as a transmission wavelength. By
using wavelength division multiplexing (WDM) it is possible to route several
requests through the same link(s) of the network, and carry them out simulta-
neously by assigning a different wavelength to each request.

In this context, given a network topology and a set of communication requests,
several interesting questions arise. If the routing of the requests is also given,
the Path Coloring (PC) problem asks for the minimum number of colors (wave-
lengths) required such that requests sharing a common link are assigned different
colors. If the routing of the requests is not given, the Routing and Path Color-
ing (RPC) problem asks for both a routing and a color assignment minimizing
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the number of colors under the same constraint. More optimization questions
can be stated by introducing additional parameters and constraints. During the
last decades a large body of work has been concentrated on the complexity and
approximability questions for these optimization problems [TJ2/3[4] (for a nice
survey of early results see [5] and references therein).

A recent research direction concerns network optimization under game-
theoretic criteria [6I7/8]. In such a context, an optimization problem can be mod-
eled as a non-cooperative game of independent entities (players). These entities
have their own objectives; they do not necessarily have to obey to a centralized
protocol or they can manipulate this protocol (e.g. by providing false informa-
tion) in order to achieve their own goals. The algorithmic game theory approach
is used to optimize global objective functions taking into account the selfish
behavior of the participating entities.

Following this direction we study the PC and RPC problems in all-optical
networks as non-cooperative games. Each communication request is considered
as a player and a payment function charges each player a cost depending on the
(routing and color) choices of all players (including her own choices). Given a set
of choices for all players we say that the game is in an equilibrium if no player
can decrease her own cost by changing her choices. This equilibrium concept
was first introduced by John Nash [9] and it is known as a Nash equilibrium.
Although Nash has shown that each non-cooperative game has a mixed Nash
equilibrium, the existence of a pure one is an open question for many games.
Moreover, due to the selfish behavior of the players, such a pure equilibrium does
not necessarily optimize a global objective goal. Such a goal is also known as
social cost and for our problems can be defined as the number of colors used for
(routing and) coloring a given set of requests. The global performance of Nash
equilibria is measured by the Price of Anarchy (PoA) or coordination ratio which
is defined as the ratio of the social cost of the worst Nash equilibrium over the
optimal centralized solution [6], and reflects the loss in the global performance
due to lack of coordination between players.

In this paper we study selfish PC and RPC in all-optical networks of ring
topology; let us mention that, as far as we know, selfish PC has not been con-
sidered before. We first prove some general properties that further clarify the
relation between selfish (R)PC and online (R)PC; the most important one is
that the PoA of (R)PC under any oblivious collision-free payment function f
is not smaller than the competitive ratio of a modification of the First-Fit al-
gorithm that uses f as a selection criterion. (Note that the notion of oblivious
collision-free payment function includes all functions that guarantee that no color
collisions occur, but apart from that charge a player according to the player’s
own strategy only.) This property allows to obtain lower bounds on the PoA
from lower bounds on the competitive ratio of First-Fit and its modifications; to
the best of our knowledge no such lower bounds have been presented before for
games in all-optical networks. We then study selfish PC and propose a payment
function with PoA between 5.4 and 9. Finally, we propose two quite natural
payment functions for selfish RPC. For the first of them, which forces players
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to choose the smallest possible color, we show a tight upper bound for the PoA
which is half the trivial upper bound Olng, where R is the given set of requests
and OPT is the value of an optimal centralized solution for the corresponding
RPC instance. For the second, which forces players to choose shortest path rout-
ing, we give an upper bound for its PoA which does not depend on the number
of players but only (logarithmically) on the size of the network. Although a pay-
ment function with PoA bounded by a constant was already known [I0] our
payment functions are more natural.

The paper is organized as follows: In the next section we describe the formal
model for our problems and the notation used in the paper, while in Section 3 we
give a brief review of related work. In Section 4 we examine the relation between
the solutions obtained by online and offline algorithms for PC and RPC and
the Nash equilibria for the corresponding non-cooperative games. In Sections 5
and 6 we study selfish PC and RPC, respectively; we define payment functions
yielding Nash equilibria and we present upper and lower bounds for the Price of
Anarchy in both cases. We conclude in Section 7 by giving a brief comparison
to earlier techniques and results.

2 Game Theoretic Model

We are given a network (graph) G = (V, E) and a set of communication requests
R. Each request r is a pair of nodes of G, i.e., r = (z,y). When the routing
of requests in R is also given in advance (pre-determined) we simply consider
that a set of paths P is given instead of R. Therefore, an instance of the RPC
problem is denoted by (G, R) and an instance of the PC problem, where players
only have to choose a color for their paths, is denoted by (G, P).

In selfish RPC (selfish PC) on G each player 7 issues a request r; (a path resp.).
For simplicity, we identify a player with a request. A strategy o; for player i is
a pair (p;,¢;) (just (¢;) for selfish PC), where p; is a simple path connecting
the endpoints of r; and ¢; is a color assigned to p;. Let S; denote all possible
strategies of player i. The possible strategies for each player are implicated by the
topology of graph GG and the number of colors allowed. If we restrict the number
of colors to be no more than |R| then there is a finite number of strategies for
each player (we do not need to define them explicitly). There is also a payment
function for each player i, that is: f; : S1 x ... x S g — IN. From now on, we will
restrict our study to games where all players have the same payment function f.

Definition 1. By S-RPC we denote the class of Selfish-RPC games, and a
game in S-RPC with input graph G, set of requests R, and payment function f,
is denoted by a triple (G, R, f).

By S-PC we denote the class of Selfish-PC games (pre-determined routing),
and a game in S-PC with input graph G, set of routed requests P, and payment
function f, is denoted by a triple (G, P, f).

Given a class of graphs G and a payment function f, we denote by S-RPC
(G, f) (S-PC(G, f)) the subclass of S-RPC (S-PC resp.) that consists of games
(G,R, f) (G, P, ) resp.) such that G € G.



74 1. Milis, A. Pagourtzis, and K. Potika

For a game (G,R,f) (and similarly for a game (G,P,f)) we define the
following:

— A pure strategy profile, or simply strategy profile, is a vector § =
{o1,09,...,0/g} of strategies, one for each player.

— A (pure) strategy profile is a pure Nash Equilibrium (NE) if for each player
7 it holds that

flor,...,06,...,01r) < f(01,...,00,...,0R])

for any strategy o} € S;.
— The social cost sc(S) of strategy profile S is the number of colors used for
(routing and) coloring, if no color collisions appear; otherwise sc(S) = co.

Let OPT denote the optimum social cost for a game, that is, OPT =
minges sc(S), where S is the set of all possible strategy profiles. Note that
OPT coincides with the cost of an optimal solution of the corresponding RPC
(PC) instance.

The price of anarchy (PoA) of a game is the worst-case number of colors used
in a NE (social cost) divided by OPT, that is,

maxg ;. ng S¢(.5)

Price of Anarchy = OPT

The price of stability (PoS) of a game is the best-case number of colors used
in a NE (social cost) over OPT, that is,

ming ;, ng 5¢(5)
OPT

The price of anarchy (stability) of the class of games S-RPC(G, f)
(S-PC(G, f)) is the maximum price of anarchy (resp. stability) among all games
in S-RPC(G, f) (resp. S-PC(G, f)).

Price of Stability =

Definition 2. We say that a payment function for a selfish (routing and) path
coloring game is oblivious collision-free if:

(a) it guarantees that in a Nash Equilibrium no color collisions occur (by charg-
ing a very large amount to players that use the same color and share links
of the network) and

(b) it charges a player (who does not collide with other players) according to
the player’s own strategy only.

Let us observe that for any instance of S-RPC (S-PC) with oblivious collision-
free payment function it holds that sc(S) < |R]| (sc(S) < |P|, resp.) if S is a
NE; hence, PoA < Olng (PoA < O|£|T, resp.). All functions considered in this
paper are oblivious collision-free. For the sake of simplicity we will omit from the
descriptions of our payment functions the condition that guarantees collision-free

Nash Equilibria.
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3 Previous Work

Bilo and Moscardelli [IT] consider the existence and performance of Nash equi-
libria of selfish RPC games in all-optical networks. They study four possible
payment functions. They show that only two of these payment functions, namely
when each player pays for her own color and when she pays for the maximum
color used by any other overlapping player, guarantee convergence to a pure NE.
However, they prove that the PoA is as high as |R| even for rings. In [I0] they
refine this result to OlﬁlT for any payment function which is a non-decreasing
function of the color of the player.

Bild et al. [T0] consider different information levels of local knowledge that
players may have for computing their payments in selfish RPC games and give
bounds for the PoA in chains, rings and trees. In the complete level of infor-
mation each player knows all other players’ routing and coloring strategies. In
the intermediate level of information each player only knows which colors are
used on any edge of the network and in the minimal level of information each
player knows which colors are used only on edges along paths that the player can
choose. For the complete level they prove that the PoA is the same as the best
approximation ratio for RPC, thus 1 in chains and 2 in rings, under payment
functions specifically constructed according to the corresponding algorithms. For
the intermediate level they give a payment function specifically constructed ac-
cording to Slusarek’s algorithm [I2] for online PC in rings (also known as online

circular arc coloring) that results in a PoA that is 3 + O(loiL) in chains and

6+ O(loiL) in rings, where L is the maximum load. For the minimal level they
prove that for any payment function which is a non-decreasing function of the
color of the player, the PoA in chains is bounded by the competitive ratio (say
FFopain) of the First-Fit algorithm for online PC in chains and the PoA in trees
is O(log |R]); they also give a payment function for rings with PoA bounded by
2 FFepain. Pemmaraju et al. [I3] have recently shown that F Fepein < 8, there-
fore the ratios obtained in [I0] are in fact 8 in chains and 16 in rings (instead of
25.72 and 51.44 originally mentioned).

The existence of Nash equilibria and the complexity of recognizing and com-
puting a Nash equilibrium for selfish RPC under several payment functions are
considered by Georgakopoulos et al. [T4]. Their results indicate that recognizing
a Nash equilibrium can be done in polynomial time, when each player pays for
her own color, when she pays for the maximum color used by any other overlap-
ping player and when she pays for the most loaded edge that she uses. On the
other hand, when the player pays for all the different colors appearing along her
path, recognizing a Nash equilibrium is NP-complete.

4 Solutions to PC and RPC as Nash Equilibria

In this section we explore the relation of the solutions obtained by online and
offline algorithms for PC and RPC to Nash equilibria for S-PC and S-RPC with
respect to various oblivious collision-free payment functions.
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In the online version of RPC problem requests arrive as an ordered sequence
(R) = (r1,72,...,7g)). Such an online instance of RPC is denoted by (G, (R)).
Upon arrival of a request r;, an online algorithm should decide a path and a color
assignment to r; so that no color collisions appear on any edge of paths that are
already colored (that is, corresponding to requests r; with j < ¢); the algorithm
has no knowledge of requests that are going to appear later (that is, requests r;
with j > 7). The objective is to minimize the number of colors used. As before,
an instance of online PC is denoted by (G, (P)), where (P) is a sequence of
paths ordered by arrival time.

Probably the simplest online algorithm for PC is First-Fit, which colors each
request r; with the smallest available color, provided that no color collisions
occur. We will also make use of the following version of First-Fit, which is ap-
propriate for online RPC: the algorithm chooses a path and color for request r;
in such a way that no color collisions occur and the color assigned to r; is the
minimum possible.

We now define a useful generalization of First-Fit for RPC. Consider a cost
function f which specifies a cost for each path and color assignment (p,c) to a
request 7;, taking into account the path and color assignment to requests r;, j <
i. Then, First-Fit with criterion f (FF(f) for short) assigns to each request r; the
path p and color ¢ that minimize f(r;, p, ¢), breaking ties arbitrarily. For example,
the standard First-Fit for RPC described above can be seen as FF(f), where
f(ri,p,¢) = cif p does not overlap with any path of color ¢, otherwise f(r,p,c) =
oo. A similar generalization of First-Fit for PC is defined analogously by using
cost functions that take into account only the color assignment to requests (since
paths are given; in this case the payment function has two arguments p and c).
Formally, in the above description for each payment function f, the path-color
(or just color) assignment to requests r;, j < 4, should also appear as argument
of function f; we will omit it here for the sake of simplicity.

The following two lemmata reveal an interesting relation between selfish rout-
ing and coloring and the corresponding online (centralized) problems. The second
lemma is in fact a slight reformulation of an observation from [10)].

Lemma 1. Consider a game (G, R, f) in S-RPC (S-PC) where f is an obliv-
ious collision-free payment function. For any ordering (R) of R, an execution
of FF(f) algorithm on (G, (R)) gives a strategy profile for (G, R, f) which is a
Nash Equilibrium.

Proof. Consider the path-color assignment obtained by an execution of F'F(f) on
(G, (R)). A request r; cannot be assigned a path-color combination of lower cost
unilaterally, otherwise F'F(f) would have chosen that path-color combination
for ;. The reason is that if such a different assignment is possible then it does
not cause color collisions with respect to the path-color assignment of all other
requests. Therefore, it certainly does not cause any color collision with respect
to requests rj,j < 4; hence, upon arrival of r;, FF(f) would have chosen this
lower cost assignment. O
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Lemma 2 ([I0]). Consider a game (G, R, f) in S-RPC (S-PC) where f is
collision-free and non-decreasing on the players’ color (hence also oblivious).
For every strategy profile S that is a Nash Equilibrium for (G, R, ), there is
an ordering (R) of R such that there is an execution of FF(f) algorithm on
(G, (R)) yielding the same path-color assignment to R as S.

We now show how to convert any (routing and) coloring solution to RPC (PC)
to a Nash Equilibrium for the corresponding game in S-RPC (S-PC resp.) with
at most the same number of colors.

Lemma 3. Let k be the number of colors used in a solution to instance (G, R) of
RPC ((G, P) of PC respectively). We can compute a strategy profile which is a
Nash Equilibrium of social cost at most k for game (G, R, f) in S-RPC (S-PC
respectively) where [ is oblivious collision-free and a non decreasing function of
the players’ color.

Proof. We convert the solution to instance (G, R) for RPC into a strategy profile
which is a Nash Equilibrium for game (G, R, f) in S-RPC by using the Nash
Conversion algorithm described below.

Algorithm 1. Nash Conversion
for each color ¢:=1 to k do
for each request r colored with ¢ do
for each color ¢ :=1to c— 1 do
if there exists a path (including the current one) for request r that does not
overlap with any other path colored with ¢’
then { use that path to route r and color it with ¢’; exit for }

For PC the above algorithm works by modifying the “if” statement as follows:
“if the path of r does not overlap with any path colored with ¢’ then assign color
d tor”.

Note that no request can move to a smaller color, because Algorithm [ assigns
the smallest available color, say ¢/, to r and does not affect afterwards the path-
color assignment of requests that have color smaller than ¢’. a

Combining the above lemmata we obtain the following theorem:

Theorem 1. Let G be a class of graphs.

1. The price of anarchy for the class of games S-RPC(G, f) (S-PC(G, f)),
where f is oblivious collision-free, is at least as large as the competitive ratio
of FF(f) for RPC (PC, resp.) in graphs that belong to G.

2. The price of anarchy for the class of games S-RPC(G, f) (S-PC(G, f)),
where [ is oblivious collision-free and is a non-decreasing function of the
players’ color, is equal to the competitive ratio of First-Fit for RPC (PC,
resp.) in graphs that belong to G.
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3. The price of stability for any game (G, R, f) in S-RPC (S-PC), where f is
oblivious collision-free and is a non-decreasing function of the players’ color,
is equal to 1.

Proof. [t By Lemmall] each execution of FF(f) leads to a path-color assignment
which is a NE for a game in S-RPC(G, f) (S-PC(G, f)); the social cost of that
NE is equal to the number of colors used by FF(f). Dividing by OPT we get
the claim.

Let S be a NE of the highest social cost. By Lemmal[2 it turns out that there
is an execution of F'F(f) on the corresponding RPC (PC) instance that requires
the same number of colors as S. Dividing by OPT we get that the competitive
ratio of FF(f) is at least as large as the price of anarchy for S-RPC(G, f)
(S-PC(G, f) resp.). Combining with [l we get the claim.

Bt It suffices to consider the optimal coloring and convert it to a NE by using
the Nash Conversion algorithm. O

Using Theorem and the fact that the competitive ratio of the First Fit
algorithm for online PC in chains is between 4.4 and 8 [I3], we have that:

Corollary 1. The payment function f(p,c) = c¢ induces S-PC games in chains
with a price of anarchy between 4.4 and 8.

5 S-PC in Rings

In this section we propose and study an oblivious collision-free payment function
that results in a relatively low PoA for S-PC in rings.

We first observe that the natural choice of taking as payment function the one
that charges the color value gives 2.53logn +5 (n is the number of nodes) on the
PoA for S-PC in rings. This is obtained by Theorem and the competitive
ratio of the First Fit algorithm for online PC in rings shown in [I5].

Let L. be the load on edge e, i.e. number of paths that use e. Let £’ be a
set of edges then we denote by L/ the maximum load over all edges in E’. Let
L be the maximum load of G. Consider an arbitrary edge e of ring G. Payment
function f. is defined as follows: if a player p (recall that players can be seen
as paths in this case) uses edge e then she is encouraged to use the smallest
available color, since she pays the value of the color she uses; otherwise she is
encouraged to use the smallest available color which is greater than L. (for which
she pays the color value) instead of using any color in {1, ..., L.} (for which she
must pay a much higher price). Formally,

L.
fe(p,e) =zpe x| CJX [Pl +c

0, if p traverses edge e
1, otherwise

Recall that F'F,p.;n denotes the competitive ratio of First-Fit for online PC
in chains (online interval coloring).

where z), . =
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Theorem 2. The payment function f. induces S-PC games in rings with a
price of anarchy equal to F Fepgim + 1.

Proof. Observe that the graph G —e is a chain. Payment function f. implies that
all players that have their path in path set P;_. = P\ P. have no gain by using
a color from the set {1,..., L.}, because it results in high cost (at least |P]|).
Therefore, a Nash equilibrium S can be seen as the result of two independent
executions of First-Fit on players: (a) the first execution is on players (paths)
that use e, with available colors {1,..., L.}, and (b) the second execution is on
players that do not use e, with available colors {L. + 1,...,|P|}. Both subsets
of players are ordered according to their color in S (increasingly).

For the first group of players L. colors will be used, while for the second, of
load Lg_., First Fit will need at most F F.pqin - Lg_e colors. Hence, the total
number of colors in S will be

SC(S) < Le + FFchain : LGfe < (FFchain + ]-) max {L€7 LGfe}
S (FFchain + ]-)OPT

because any algorithm will need at least as many colors as the maximum load
of requests. Since no specific assumption was made for S, the above inequality
holds for all NE implying that PoA < FFepain + 1.

It is also possible to bound PoA from below by considering an instance where
P. consists of L requests and Pg_. consists of a worst-performance chain instance
for First-Fit of load L. Assume that paths in P, do not overlap paths in Pgs_..
Then OPT = L. On the other hand, if we give this instance as input to FF(f.)
algorithm, with the requests in Pg_, ordered as in the worst-performance in-
stance of First-Fit, then FF(f.) will need (FF.pqin + 1)L colors. By Theorem
[ this implies that PoA > FFopain + 1. a

Corollary 2. The payment function f. induces S-PC games in rings with a
price of anarchy between 5.4 and 9.

6 S-RPC in Rings

In this section we consider S-RPC in rings induced by two different oblivious
collision-free payment functions. The first one forces players to choose the smallest
possible color while the second one forces them to choose shortest path routing.

6.1 The Color-Length Payment Function

We consider the payment function f(r,p,c) = ¢-n + length(p), where n is the
number of nodes in the ring. It is clear that under this function a player r always
selects the smallest possible color even if it requires to follow the longest one of
her two possible alternative paths.

Theorem 3. The payment function function f(r,p,c) = c-n+length(p) induces

17l 4 1, where R 1is

S-RPC games in rings with a price of anarchy equal to o ;pp

the given set of requests.
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Proof. We first prove that PoA < S

Let S be a NE for a (Ring, R, f) game. Let Ry be the subset of requests
assigned an exclusive color (assigned only to one of these requests) and Ry be
the subset of requests that share a color with at least one other request. It follows
that
R| n | R |
2 2

We shall prove that |R21| < OPT and therefore

R
sc(S) < | 22| +|Ry| = |

poa =8 o IA

=opr Soopr Tt

Clearly the requests in R; are routed via paths that overlap each other, for
otherwise at least two of them can take the same color. Moreover, each of them is
routed via its shortest path for otherwise S would not be a NE for (Ring, R, f).
This is because such a request, routed via its longest path, can improve its own
cost by choosing its shortest path and keeping its (unique) color. Hence, the
requests in Ry are routed via paths of length at most n/2.

Consider the optimal solution; it uses OPT colors. According to this col-
oring the set of requests, R, can be partitioned into OPT disjoint subsets
C1,Cs,...,Copr, each one containing the requests assigned the same color.
The requests in each C;, 1 < i < OPT, are routed via non overlapping paths
and hence they are consecutive in a clockwise traversal of the ring i.e., no request
starts or ends between the start and the end point of any other. Therefore, they,
but at most one, are routed via their shortest paths; that is, at most one of them
is routed via a path of length greater than n/2.

Consider now the routing of the requests in R; in S and in the optimal solu-
tion. In both cases the routing of these requests coincides (shortest path routing)
except for at most O PT requests i.e., the single requests that are possibly routed
via longest paths in each set C;, 1 < i < OPT. Since the requests in R; are
routed via paths overlapping each other, it follows that at most two requests
from each set C; can be in Rj: the one that is routed via its longest path, now
routed via its shortest path, and one of the rest. Therefore, |[Ry| <2 OPT.

We prove next, by a counterexample, that PoA > I(;% 1|>T + 1.

Consider the following instance: A ring of 2k+ 6t nodes and a set R of requests
consisting of k + 2 subsets Ry, ..., Rit1, each containing ¢ requests:

— Ry consists of ¢ ‘crossing’ requests {k+2t+ (j — 1), 2k +5t+7)}, 1 <j <t
(the last request is between node k 4 3t — 1 and node 2k + 6t).

— R;,1 <4 <k, consists of ¢ identical requests {i,7 + 1} (from node 7 to node
i+ 1).

— Ry41 consists of ¢ ‘crossing’ requests {k + j,k+j+t},1<j <t.

The optimal solution routes R; to Rjy; with shortest paths and Ry with
longest paths, and assigns to each R; colors {1,...,t} (see Figure [[). Thus
OPT = t.
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v
2k+5t+1

Fig. 1. Example of a S-RPC game and its optimal centralized solution

Consider now the execution of FF(f) algorithm on instance (Ring, (R)) of
online RPC, assuming that requests in R; appear in (R) before requests in R; for
i < j. Then, FF(f) first routes requests in Ry via their shortest paths, that is,
via {1,k + 2t}, and assigns them colors {1,...,t}. Then, for each R;,1 <1i < k,
every two requests are routed via complementary paths and receive the same
color; thus t/2 new colors are needed for each R;,1 < i < k (see Figure [2).
Finally, requests in Rj4+; would overlap each other and every other previously
considered request, no matter which of the two possible paths is used. Therefore
t new colors are needed for requests Rjy1 and the shortest path is chosen for
each of them. Altogether, F'F(f) uses }“; +2¢ colors. By Theorem [[I] the number
of colors used by FF(f) is a lower bound of the social cost of the worst Nash
equilibrium, that is

Mot (k+2)t

P0A22t +1= 2]

_ 1.
91 sopT T

6.2 The Length-Color Payment Function

We consider the payment function f(r, p,c) = length(p) - |R| + ¢, where R is the
given set of requests. It is clear that under this function a player r always selects
the shortest one of its two possible alternative paths even if it requires to take a
larger color.

Theorem 4. The payment function f(r,p,c) = length(p) - |R| + ¢ induces S-
RPC games in rings with a price of anarchy such that FFepgin +1 < PoA <
5.06logn + 10, where n is the number of nodes in the ring.
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7,
2k+5t+1

Fig. 2. Solution obtained by applying algorithm FF'(color-length) on the instance of
Figure [ (only subsets R;, 0 < ¢ < k, are shown, for the sake of clarity)

Proof. The proof of the upper bound is based on a result for dynamic wavelength
assignment on rings in [I5]. This result states that the First Fit algorithm needs
at most 2.53Llogn + 5L wavelengths, where L is the maximum load on the
ring. Combining this result with the observation that any shortest path routing
produces a maximum load that is at most twice the one produced by an optimal
routing we get the upper bound.

For the proof of the lower bound we consider the following S-RPC game: A
ring of 2k nodes and a set R of requests consisting of 2 subsets R; and Rs such
that:

— Rj consists of an arbitrary number of requests which, when routed via their
shortest paths, yield a maximum load of L in the ring links. Moreover, for
each request (i,j) € Ry it holds that 1 <i# j<a <k —1.

— Ry consists of L identical requests (1,4), k> i > a.

The optimal solution routes R; via shortest and Ro via longest paths. This way
no request in R; overlaps with any request in R,. Requests in Ry require L
colors, since they are on the chain 1,2, ..., a, and requests in Ro can be colored
by the same L colors. Therefore, OPT = L.

The FF(f) online algorithm on instance (Ring, (R)) of RPC, if requests in
Ry appear in (R) before requests in R (or vice versa), routes all requests via
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shortest paths and therefore it uses L - F'F_.pq;n colors for Ry and L new colors
for Rs. Using Theorem [l it follows that PoA > FF.pain + 1. O

7 Conclusions

In this paper we studied selfish (routing and) path coloring games in all-optical
networks. We proposed a payment function for S-PC in rings with a PoA be-
tween 5.4 and 9. For S-RPC in rings we studied two natural payment functions:
one called ‘color-length’ which favors smallest colors and one called ‘length-color’
which favors shortest paths. We have shown that the color-length function fails
to achieve a low PoA; however, its PoA is half the PoA of any payment function
that charges according to the value of the color only [TO/TT]. On the other hand,
the length-color function achieves a PoA which does not depend on the number
of requests but only on the number of nodes of the ring (logarithmically). It is
still open whether the upper bound for the length-color function can be further
improved taking into account that the lower bound we have shown is as low
as 5.4. Note that all our functions require only local color information, namely
to know which colors are used along edges that can be used by a player (minimal
level of information using the classification in [10]).

Comparing to earlier work we observe that, as far as we know, S-PC has not
been considered before. For S-RPC in rings, a payment function with PoA < 16
has been proposed in [I0]; however, that payment function forces players to
avoid routing through a particular edge of the graph, which may increase the
total traffic of the network. Therefore, our length-color function might be more
appropriate in cases where reducing the total traffic is important (e.g. if the
social cost takes into account the sum of the loads over all edges).

In order to obtain our results we established a connection of the PoA of selfish
(routing and) path coloring games to the competitive ratio of First-Fit-like algo-
rithms for the corresponding online (routing and) path coloring problems. This
connection is a generalized and strengthened form of an observation from [10]. In
particular, the observation in [I0] was used in order to obtain an upper bound on
PoA from the competitive ratio of First-Fit. Our strengthening allows to obtain
lower bounds as well.
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