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1. Introduction

Wavelength Division Multiplexing (WDM) is a dominating technology in contem-

porary all-optical networking. It allows several connections to be established through

the same fiber links, provided that each of the connections uses a different wave-

length. A second requirement is that a connection must use the same wavelength

from one end to the other in order to avoid the use of wavelength converters which

are costly or slow. In practice, the available bandwidth is limited to few dozens, or

at most hundreds, wavelengths per fiber and the situation is not expected to change

in the near future. It is therefore impossible to serve a large set of communication

requests simultaneously. It thus makes sense to consider the problem of satisfying a

maximum profit subset of requests, where profits may represent priorities or actual

revenues related to requests. In our model, requests are undirected, which corre-

sponds to full-duplex communication. We describe a request by its connection path

and its profit, and formulate the problem in graph-theoretic terms as follows:

MAXIMUM PROFIT PATH COLORING PROBLEM (MAXPR-PC)

Input: a graph G, a set of paths P , a profit function w : P → R and a number of

available colors k.

Feasible solution: a set of paths P ′ ⊆ P that can be colored with k colors so that

no overlapping paths are assigned the same color.

Goal: maximize
∑

p∈P ′ w(p).
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Here we study MAXPR-PC in rings with undirected requests and we present a

2-approximation algorithm.

While the cardinality version of the problem (MAXPC) has been studied by several

researchers [1, 3], MAXPR-PC has been considered in rather few papers [4–6].

Both MAXPR-PC and MAXPC areNP-hard even in simple networks such as rings
and trees; this can be shown by an immediate reduction from the corresponding

color minimization problem (see e.g. [1]).

MAXPR-PC in chains is also known as the “weighted k-coloring of intervals” prob-

lem, which can be solved exactly as shown by Carlisle and Lloyd [4]. In [6] an algo-

rithm based on linear programming and randomized rounding with approximation

ratio 1.49 for MAXPR-PC in rings is presented. Let us note here that, although

the algorithm in [6] achieves a better approximation ratio, the algorithm presented

here is purely combinatorial, therefore faster and easier to implement. Li et al. [5]

study a version of MAXPR-PC where requests are not routed in advance, that is,

an appropriate routing and coloring is sought. They also assume directed requests

and edge capacities that must be obeyed and present a 2-approximation algorithm
for rings.

2. Match and Replace for MAXPR-PC

In this section we present an algorithm for MAXPR-PC in rings. MAXPR-PC in

chains can be solved exactly in O(km logm)) time, using algorithm [4].

In our algorithm, we employ a popular technique used for rings, namely to choose

an edge e and remove it from a ring. We call this algorithm Match and Replace;

details are given in Algorithm 2. We denote the profit of a set of paths P with

w(P ) =
∑

p∈P w(p). Given a set of paths P , the set of paths in P that are colored

with the same color i is called the i-th color class of P; we use P(i) to abbreviate
this notion.

Theorem 1 Match and Replace is a 2-approximation algorithm.

Proof. Let OPT be the value of any optimal solution of the ring instance, OPT c

be the value of any optimal solution of the instance constrained to path set Pc and

OPT e be the value of any optimal solution of the instance constrained to path set

Pe. Recall that

OPT ≤ OPT c + OPT e . (1)

Let SOLc be the value of the solution obtained in step 2 of the algorithm (chain

subinstance solution), and SOL be the value of the final solution. Clearly,

SOL = SOLc + w′(M) (2)

where w′(M) is the sum of the weights of the edges that belong to the matching M

computed in step 5. The instance (G − e,Pc, w) is solved optimally in step 2.
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Algorithm 2 Match and Replace

1: Pick an arbitrary separation edge e of the ring. Let Pe be the set of paths that

use edge e and Pc = P \ Pe.

2: Color the instance (G−e,Pc, w) optimally, using the Carlisle-Lloyd algorithm
for MAXPR-PC in chains.

3: Let Pc(i) be the i-th color class of Pc, 1 ≤ i ≤ k (note that some color classes

may be empty).

4: Construct a weighted bipartite graph H = (S ∪ Pe, E), with S =
{Pc(i) : i = 1, . . . , k}. For every pair (Pc(i), q) ∈ S × Pe, define path set

Pc(i)
q such that Pc(i)

q ⊆ Pc(i) and ∀p ∈ Pc(i)
q, p and q overlap (that is

Pc(i)
q consists of those paths in Pc(i) that overlap q). If w(q)−w(Pc(i)

q) > 0
then we add edge (Pc(i), q) toH with weightw′(Pc(i), q) = w(q)−w(Pc(i)

q).
5: Find a maximum weight matching M in H .

6: for each edge (Pc(i), q) ∈ M do

7: uncolor all paths in Pc(i)
q and color path q ∈ Pe with color i.

8: end for

Therefore, taking also into account Eq. 2 we have that

OPT c = SOLc ≤ SOL . (3)

Let SM be the subset of S consisting of Pc(i)’s that are matched by M . Similarly,

let Pe,M be the paths in Pe that participate in M . Finally, let K be the set of the k

most profitable paths of Pe. We will now show that

OPTe = w(K) ≤ SOL . (4)

For the sake of analysis we will examine a solution SOL′ thatMatch and Replace

would have computed if it had chosen a matching M ′ of a subgraph H ′ of H in

step 5. Bipartite graph H ′ has the same node set and the same edge weight function

as H , but only a subset of the edges of H , namely for every pair (Pc(i), q): edge
(Pc(i), q) is in H ′, if w(q) − w(Pc(i)) > 0 and q ∈ K. Let M ′ be a maximum

matching in H ′, and let SM ′ and Pe,M ′ be defined analogously for M ′ as for M .

Similar to Eq. 2

SOL
′ = SOLc + w′(M ′) . (5)

Note that SOLc = w(S) and also that w′(M ′) = w(Pe,M ′)−
∑

(P (i),q)∈M ′ w(Pc(i)
q)

= w(Pe,M ′) −
∑

(Pc(i),q)∈M ′ [w(Pc(i)) − w(Pc(i)
¬q)] = w(Pe,M ′) − w(SM ′) +∑

(Pc(i),q)∈M ′ w(Pc(i)
¬q), where Pc(i)

¬q consists of these paths in Pc(i) that do

not overlap with q. Equation 5 may then be rewritten as follows: SOL′ = w(S \
SM ′)+w(Pe,M ′)+

∑
(Pc(i),q)∈M ′ w(Pc(i)

¬q). We observe that Pe,M ′ ⊆ K and there-

fore w(Pe,M ′) + w(K \ Pe,M ′) = w(K), so the last sum can be expanded in the

following way:

SOL′ = w(S \ SM ′) + w(K) − w(K \ Pe,M ′) +
∑

(Pc(i),q)∈M ′

w(Pc(i)
¬q) . (6)

Observe also that for any Pc(i) 6∈ SM ′ and q 6∈ Pe,M ′ , there must be no edge
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between them in H ′, hence w(Pc(i)) ≥ w(q). Moreover, w(S \ SM ′) and w(K \
Pe,M ′) are sums with the same number of terms because |K| = |S| = k and

|SM ′ | = |Pe,M ′ |. These observations imply that w(S \ SM ′) − w(K \ Pe,M) ≥
0, therefore Eq. 6 yields SOL

′ ≥ w(K). Since H ′ is a subgraph of H , M ′ is a

matching also for H , probably not a maximum one, therefore w′(M) ≥ w′(M ′)
which implies, from Eq. 2 and 5, that SOL ≥ SOL′. Combining this last inequality

with SOL
′ ≥ w(K) we obtain Eq. 4. By Eq. 3 and 4, SOL is an upper bound on

both OPTe and OPTc, which together with Eq. 1 gives SOL ≥ OPT

2
.

Computing a solution for the chain subinstance takes O(kmlogm). Graph H has

O(m) nodes (we assume that k < m) and O(km) edges, therefore maximum

weighted matching of H takes O(m2(k + logm)) time. Therefore the total time
complexity is O(m2(k + logm)). ♦
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