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Abstract. The boundary labeling problem was recently introduced in [5]
as a response to the problem of labeling dense point sets with large labels.
In boundary labeling, we are given a rectangle R which encloses a set of n
sites. Each site is associated with an axis-parallel rectangular label. The
main task is to place the labels in distinct positions on the boundary
of R, so that they do not overlap, and to connect each site with its
corresponding label by non-intersecting polygonal lines, so called leaders.
Such a label placement is referred to as legal label placement.

In this paper, we study boundary labeling problems along a new line
of research. We seek to obtain labelings with labels arranged on more
than one stacks placed at the same side of R. We refer to problems of
this type as multi-stack boundary labeling problems.

We present algorithms for maximizing the uniform label size for bound-
ary labeling with two and three stacks of labels. The key component of
our algorithms is a technique that combines the merging of lists and the
bounding of the search space of the solution. We also present NP-hardness
results for multi-stack boundary labeling problems with labels of variable
height.

1 Introduction

A common task in the process of information visualization is the placement of
extra information, usually in the form of text labels, next to the features of a
drawing (diagram, map, technical or graph drawing). When the labels are small
and the features are sparsely distributed in the drawing, it may be feasible to
place most labels next to the features so that the labels do not overlap with
each other and they do not obscure other drawing features. Obtaining optimal
label placements with respect to some optimization criterion is, in general, NP-
hard [8]. An extensive bibliography about map labeling can be found at [12].

In the case of very large labels (or, equivalently, dense feature sets), it is usually
impossible to find a label placement, i.e. to place each label next to the feature.
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In response to this problem, Bekos, Kaufmann, Symvonis and Wolff [5] (an ex-
tended journal version appears in [4]) proposed the boundary labeling model. In
this model the labels are placed on the boundary of a rectangle enclosing all fea-
tures and each label is connected to its associated feature with polygonal lines,
called leaders. If the labels are non overlapping and the leaders non intersecting
we have a legal labeling or a legal label placement. The boundary labeling model is
a realistic model for medical atlases and technical drawings, where certain features
of a drawing are explained by blocks of text placed outside the drawing so that no
part of the drawing is obscured. SmartDraw [10] provides boundary labelings in
a primitive form based on labeling templates. It does not support any form of au-
tomated boundary labeling optimization. Bler [6] supports the boundary labeling
process and facilitates the annotation of drawings with text labels.

Sites model features of the drawing. If they model a point-feature (e.g., a city
on a map) they are naturally represented as points (see points in rectangle R of
Fig. 1, 2 and 5). So, in its simplest form, a boundary labeling problem specifies
as part of its input a set P of n points pi = (xi, yi) on the plane in general
position, i.e. no three points lie on a line and no two points have the same x- or
y-coordinate. Another interesting variation is the one with two candidate points
on the plane for each site (see Fig. 3). In practice, several times we want to
associate a label with an area-feature (e.g., a region on a map). To keep things
simple, we specify these regions by a closed polygonal line or by a line segment
internal to the feature area, and assume that the site “slides” along the boundary
of the polygon or on the line segment (see Fig. 4).

R
Track Routing Area

Fig. 1. Type-opo leaders

R

Fig. 2. Type-po leaders

R

Fig. 3. Sites with 2 candidate
points

R

Fig. 4. Sites are vertical line segments

R

Fig. 5. Three stacks of labels

In general, each site pi has a corresponding axis-parallel rectangular, open
label li of width wi and height hi. The labels are to be placed around an axis-
parallel rectangle R = [lR, rR]x[bR, tR] of height H = tR − bR and width W =
rR − lR which contains all sites pi ∈ P . While in the general case the labels are
of variable dimensions, we also consider the restricted cases where the labels are
of uniform size (height and/or width), or of maximum uniform size.
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Each site is connected with its corresponding label in a simple and elegant way
by using polygonal lines, called leaders. In our approach we have leaders that
consist of a single straight line segment or a sequence of rectilinear segments.
When a leader is rectilinear, it consists of a sequence of axis-parallel segments
either parallel (p) or orthogonal (o) to the side of R containing the label it leads
to. The type of a leader is defined by an alternating string over the alphabet
{p, o}. We focus on leaders of types-opo and po, see Fig. 1 and 2, respectively.
Furthermore, we assume that each type-opo leader has its parallel p-segment (or
equivalently its both bends) outside R, routed in the so-called track routing area.
We consider type-o leaders to be of type-opo and of type-po as well.

A further refinement of the labeling model has to do with the sides of the
enclosing rectangle containing the labels. Labels can be placed on one or more
sides of R (in Fig. 1, 2, 3 and 5 all labels are placed on the east side of R).
In order to allow for greater numbers of larger labels, we might have the labels
arranged in more than one stack at each side of the enclosing rectangle. This
paper is devoted to the case of multi-stack labelings. Figure 5 shows a labeling
where the labels occupy three stacks to the east side of R. Notice that in the
case of multiple stacks of labels (say m stacks), a leader of type-opo can have
its p segment either in between R and the first stack (called first track routing
area) or between the i-th and the (i + 1)-th stack, where i < m (called (i + 1)-th
track routing area).

Each leader that connects a site to a label, touches the label on a point on
its side that faces R, this point is called port. We can assume either fixed ports,
i.e. the leader is only allowed to use a fixed set of ports on the label side (a
typical case is where the leader uses the middle point of the label side) or sliding
ports where the leader can touch any point of the label’s side. The labelings in
Fig. 1, 2 and 5 use fixed ports, while in Fig. 3 and 4 they use sliding ports.

Keeping in mind that we want to obtain simple and easy to visualize labelings,
the following criteria can be adopted from the areas of VLSI and graph drawing:
minimizing the total number of bends of the leaders, minimizing the total leader
length and minimizing the maximum leader length. An additional criterion that
we consider is the maximization of the uniform label size. This is a quite common
optimization criterion in the map labeling literature. In this paper, we seek to
obtain labelings with labels of maximum uniform size arranged on more than
one stacks of labels at the same side of R.

This paper is structured as follows: Section 2, reviews preliminary results re-
quired for the development of our algorithms. In Section 3, we present algorithms
for obtaining multi-stack labelings of maximum uniform label size for the cases
of two and three stacks of labels arranged at the same side of R. In Section 4, we
present several NP -hardness results for non-uniform labels placed in two stacks.
We conclude in Section 5 with open problems and future work.

Previous Work
Most of the known results on boundary labeling with point sites were presented
in [4]. A legal labeling, on one side with type-opo (type-po) leaders can be
achieved in O(n log n) time (in O(n2) time, respectively), whereas on all four
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sides with type-opo leaders in O(n log n) time. The problem of minimizing the
total number of leader bends on one side with type-opo leaders can be solved
in O(n2) time. The minimization of the total leader length when uniform sized
labels can be placed on two opposite sides of R with either type-opo and type-po
leaders needs O(n2) time. For the similar problem, where non-uniform labels can
be placed on two opposite sides of R and the leaders are of type-opo, O(nH2)
time is needed. An algorithm for minimizing the total leader length on four sides
with type-opo leaders in O(n2 log3 n) (O(n3)) time for fixed ports (sliding ports)
is presented for points in [1] and for polygons in [3].

2 Preliminaries

Throughout the paper we use lists that contain pairs of integers describing dif-
ferent label placements. Given a pair (a, b) of integers, a and b are referred to as
the first and the second coordinate of the pair, respectively. Inspired by an idea
of Stockmeyer [11] which was subsequently used by Eades et. al. [7], we manage
to keep the length of each list bounded by pruning pairs that cannot occur in
an optimal solution.

Definition 1. A list L of pairs of integers is sorted if the pairs it contains are
lexicographically sorted in decreasing order with respect to their first coordinate
and in increasing order with respect to their second coordinate.

Definition 2. Let (a, b) and (c, d) be pairs of integers.

(a, b) dominates (c, d) ⇐⇒ a ≥ c and b ≥ d.

Suppose that we have to solve a problem where the search space of the solution
consists of pairs of integers, and let f be a monotone function computing a
minimization objective on pairs from the solution search space. If (a, b) and
(c, d) represent possible solutions and (a, b) dominates (c, d), then the pair (a, b)
can never be involved in an optimal solution and may be safely removed from
the solution set. Given a list L of pairs of integers, a pair (a, b) ∈ L that does
not dominate any other pair in L is called an atom (with respect to L).

In our algorithms we maintain lists (of pairs) that contain only atoms. A
frequently performed operation is the merging of two lists of atoms, resulting in
a new list of atoms. The merging algorithm resembles the merging step of merge
sort algorithm. It supports the following lemmas:

Lemma 1. k sorted lists L1, L2, . . . , Lk, k ≥ 2, of atoms can be merged in
O((k − 1)

∑k
i=1 |Li|) time into a new sorted list L of at most

∑k
i=1 |Li| atoms.

Lemma 2. Let A and B be two finite sets of integers and let L = {(a, b)| a ∈
A and b ∈ B} be a list of atoms. Then, |L| ≤ min(|A|, |B|).

Finally, we present some notation and terminology that we use in the description
of our algorithms. We say that a pair (a, b) obeys the boundary conditions, if
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a ≤ H and b ≤ H , where H is the height of the enclosing rectangle. We also
define operator ⊕H : R × R → R, where:

a ⊕H b =
{

a + b, if a + b ≤ H
∞, otherwise .

3 Label Size Maximization

3.1 Two Stacks of Labels on the Same Side

We consider boundary labeling with type-opo leaders, where the labels are placed
at two stacks on the same side (say, the east side) of the rectangle R. We assume
that all labels have the same size (width and height) and we seek to maximize
the uniform height h of all labels, so that a legal labeling exists. To determine
the maximum value of h, we apply a binary search on all possible discrete values
for height h. We assume the more general case of sliding ports. Additionally,
the type-opo leaders connecting sites to labels that are at the second stack are
allowed to bend either in the first or in the second track routing area.

Observe that, in any legal one-side labeling with type-opo leaders, the vertical
order of the sites is identical to the vertical order of their corresponding labels
on both stacks. This, together with the assumption that no two sites share the
same y-coordinate, guarantees that leaders do not intersect. So, we assume that
the sites are sorted according to increasing y-coordinate.

For a fixed h, we propose a dynamic programming algorithm that outputs a
boolean value, which indicates whether there exists a legal label placement, when
all sites have labels of height h. Imagine that a label placement L is given, then
we say that a pair (a, b) describes L, if a (b) is the highest occupied y-coordinate
of the first (respectively second) stack. Our algorithm maintains a table T of
size (n + 1) × (n + 1), where each entry T [i, k], i ≥ k, of table T contains a list
of atoms (a, b) decribing the label placement of the first i sites when k out of
them have leaders bending in the second track routing area. List T [i, k] is empty,
when it is impossible to place the first i labels, with k leaders bending in the
second track routing area.

Assuming that we have placed the labels for the first i−1 sites, we try to place
the label li of the i-th site. Label li can be placed at the first or second stack.
Additionally, if li is to be placed at the second stack, then we have to check
whether this can be done with a leader bending in the first or second track
routing area. Obviously, such placements can be obtained from label placements
of the first i − 1 sites with either k or k − 1 leaders bending in the second track
routing area.

Label li is placed at the first stack: Let T1[i, k] be a list of pairs (a, b)
describing the label placement of the first i sites when the i-th site has its label
at the first stack and k leaders have their bends in the second track routing area.
T1[i, k] can be computed based on entry T [i − 1, k] (see Fig. 6a), as follows:

T1[i, k] = {(a ⊕H h, b) : ∀(a, b) ∈ T [i − 1, k]}
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(a) li in 1st stack; bend in
1st track routing area.

R

b

h
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(b) li in 2nd stack; bend in 1st
track routing area.

R

b

h
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a

(c) li in 2nd stack; bend in
1st track routing area.

R

b

h

a

pi

(d) li in 2nd stack; bend in
2nd track routing area.

Fig. 6. Different placements obtained for the label of site i. In Figures 6a, 6b and 6c:
(a, b) ∈ T [i − 1, k], whereas in Fig. 6d: (a, b) ∈ T [i − 1, k − 1].

Label li is placed at the second stack - bend at the first track routing
area: Let T21[i, k] be a list of pairs (a, b) describing the label placement of
the first i sites when the i-th site has its label at the second stack using a
leader bending at the first track routing area and k leaders have their bends in
the second track routing area. Again, T21[i, k] can be computed based on entry
T [i − 1, k]. If for some pair (a, b) ∈ T [i − 1, k] it holds that a ≤ b (i.e. the first
stack is lower or equal than the second stack), then a pair (b, b ⊕H h) is added
in T21[i, k] (see Fig. 6b). Else pair (a, max{b ⊕H h, a}) is added in T21[i, k] (see
Fig. 6c). Therefore, T21[i, k] is computed as follows:

T21[i, k] = A21[i, k] ∪ B21[i, k],

where:

A21[i, k] = {(b, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k] s.t. a ≤ b}
B21[i, k] = {(a, max{b ⊕H h, a}) : ∀(a, b) ∈ T [i − 1, k] s.t. a > b}

Label li is placed at the second stack - bend at the second track routing
area: Let T22[i, k] be a list of pairs (a, b) describing the label placement of the
first i, when the i-th site has its label placed at the second stack using a leader
bending at the second track routing area and k leaders have their bends in the
second track routing area. T22[i, k] is computed based on entry T [i − 1, k − 1]
(see Fig. 6d), as follows:

T22[i, k] = {(yi, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k − 1] s.t. a < yi}

All pairs (∞, a), (a, ∞) can be removed from lists T1[i, k], T21[i, k] and T22[i, k],
in linear time, since they do not capture possible placements. The implied lists
are merged into list T [i, k] of atoms, based on Lemma 1. We can easily show
that |T [i, k]| ≤ 2|T [i−1, k]|+3. This implies that |T [n, k]| = O(2n), n ≥ k. Also,
by Lemma 2, we have that |T [n, k]| ≤ H . However, by employing the following
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Lemma 3, we can improve on both of these bounds. Its correctness can easily
be shown inductively, by proving that the distinct values that both coordinates
of the pairs in T [i, k] can receive are drawn from the sets {0, h, 2h, . . . , ih},
{y1, y2, . . . , yi}, and

⋃i
j=1{yj + h, yj + 2h, . . . , yj + (i − 1)h}.

Lemma 3. List T [n, k], n ≥ k contains O(n2) pairs.

To prove the correctness of our algorithm, consider a pair (a, b) ∈ T [i, k] that
dominates pair (c, d) ∈ T [i, k]. Assume, for the sake of contradiction, that pair
(a, b) yields a solution and pair (c, d) does not. That means that, for at least
one pair out of {(yi, b + h), (b, b + h), (a, max{b + h, a}), (a + h, b)} the bound-
ary condition holds while the boundary condition does not hold for any of the
pairs {(yi, d+h), (d, d+h), (c, max{d+h, c}), (c+h, d)}. This is impossible since
a ≥ c and b ≥ d. Therefore (a, b) can never be involved in an optimal solution
and can be discarded. This implies that each list T [i, k] should only contain
atoms.

Each of the (n + 1) × (n + 1) entries of T is computed in O(n2) time. Thus,
our algorithm terminates after O(n4) time. For a fixed label height h, the al-
gorithm outputs a boolean value, which indicates whether there exists a legal
label placement. This is done by identifying whether there exists a non-empty
list T [n, j], with 0 ≤ j ≤ n. By using an extra table of the same size as T , our
algorithm can easily be modified, such that it also computes the label and leader
positions.

Theorem 1. Given a rectangle R of integer height H and a set P ⊂ R of
n points in general positions, there exists an O(n4 log H) time algorithm that
produces a legal multi-stack labeling with two stacks of labels on the same side of
R and with type-opo leaders such that the uniform integer height of the labels is
maximum.

Proof. In order to solve the label size maximization problem, we can simply apply
a binary search on all possible discrete values for height h. To complete the proof,
observe that H

n ≤ h ≤ 2H
n . ��

Fig. 7. A regional map of UK Fig. 8. A regional map of Italy
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Sample Labelings
Figures 7 and 8 are produced from the algorithm of Section 3.1 and depict two
regional maps of UK and Italy, respectively. The labels occupy two stacks on the
east side of the enclosing rectangle. In both labelings the label size is maximum.

3.2 Three Stacks of Labels on the Same Side

In this section, we extend the algorithm of Section 3.1 to support an additional
stack of labels. We consider the case, where leaders connected to labels at the
i-th stack are restricted to bend in the i-th track routing area. The objective,
again, is to maximize the uniform height h of all labels.

Theorem 2. Given a rectangle R of integer height H and a set P ⊂ R of
n points in general positions, there exists an O(n4 log H) time algorithm that
produces a legal multi-stack labeling with three stacks of labels on the same side
of R and with type-opo leaders such that the uniform integer height of the labels
is maximum and the leaders connected to labels at the i-th stack are restricted
to bend in the i-th track routing area.

Proof. We use dynamic programming algorithm employing a table T of size
(n + 1) × (n + 1) × (n + 1). For each i ≥ k + m, entry T [i, k, m] contains a
list of pairs (a, b), where a (b) is the y-coordinate of the first (second) stack,
that is needed to place the first i labels, when m labels are placed in the third
stack, k labels are placed in the second stack and i − k − m labels are placed in
the first stack. Note that the height at the third stack is mh, since all leaders
connected to labels of the third stack are restricted to bend in the third track
routing area. List T [i, k, m] is empty, when it is impossible to route the first i
labels using k labels in the second stack and m in the third stack. This implies
that table entries T [i, k, m], where i < k + m, contain empty lists. Following
similar arguments as in Section 3.1, entry T [i, k, m] can be computed based on
the following recurrence relation:

T [i, k, m] = Merge{T1[i, k, m], T2[i, k, m], T3[i, k, m]} (1)

where:

T1[i, k, m] = {(a ⊕H h, b) : ∀(a, b) ∈ T [i − 1, k, m]}
T2[i, k, m] = {(yi, b ⊕H h) : ∀(a, b) ∈ T [i − 1, k − 1, m] s.t. a < yi}
T3[i, k, m] = {(yi, yi) : ∀(a, b) ∈ T [i − 1, k, m − 1], s.t. mh ≤ H and (a, b) < (yi, yi)}

List T1[i, k, m] of Eq. 1 captures placements of the i-th label at the first stack.
Similarly, list T2[i, k, m] of Eq. 1 captures placements of the i-th label at the
second stack. Since we assumed that leaders connected to labels at the second
stack are restricted to bend in the second track routing area, this is possible
only for pairs (a, b) ∈ T [i − 1, k − 1, m] with a ≤ yi . Finally, list T3[i, k, m] of
Eq. 1 captures placements of the i-th label at the third stack. This is possible
only for pairs (a, b) ∈ T [i − 1, k, m − 1] with (a, b) ≤ (yi, yi) . To compute entry
T [i, k, m], we first remove all pairs (∞, a), (a, ∞) from lists T1[i, k, m], T2[i, k, m]
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and T3[i, k, m] and then we merge the implied lists to T [i, k, m] of atoms, based
on Lemma 1.

Lemma 4. For n ≥ k + m, |T [n, k, m]| ≤ n + 1.

Proof. Lists T2[i, k, m] and T3[i, k, m] contain pairs of numbers with the same
first coordinate. This implies that they contribute at most one atom, while list
T1[i, k, m] contains at most i elements, since |T [i−1, k, m]| ≤ i. Thus, T [i, k, m] ≤
i + 1. ��
Each of the (n + 1) × (n + 1) × (n + 1) entries of T is computed in O(n) time.
Thus, our algorithm terminates after O(n4) time. For a fixed label height h, the
algorithm outputs a boolean value, which indicates whether there exists a legal
label placement. This is done by identifying whether there exists a non-empty
list T [n, i, j], with 0 ≤ i + j ≤ n. By using an extra table of the same size as
T , our algorithm can easily be modified, such that it also computes the label
and leader positions. In order to solve the label size maximization problem, we
can simply apply a binary search on all possible discrete values for height h. To
complete the proof, observe that H

n ≤ h ≤ 3H
n . ��

4 Computational Complexity of the Multi-stack Labeling
Problem

In this section, we investigate the computational complexity of several multi-
stack boundary labeling problems with either type-opo or po leaders and labels
of arbitrary size, which can be placed at two stacks on the same side of the
enclosing rectangle. Without loss of generality, we assume that the labels are
located on the east side of the enclosing rectangle. We consider several different
type of sites. In the most applicable case, site si is associated with a point
pi = (xi, yi) on the plane. However, we also consider the cases, where site si is
associated with either two candidate points p1

i = (x1
i , y

1
i ) and p2

i = (x2
i , y

2
i ) on

the plane (see Fig. 3) or with a vertical line segment, so that the site “slides”
along the boundary of the proposed line segment (see Fig. 4). The assumed
models are quite general, since we allow sliding labels with sliding ports.

4.1 Line Sites with Type-opo Leaders at Two Stacks on One Side

We focus on type-opo leaders, where each site si can slide along a line segment
parallel to the y-axis and is associated with a label li of height hi. We seek to
find a legal labeling.

Theorem 3. Given a rectangle R of height H, a set P ⊂ R of n line segments
(sites) that are parallel to the y-axis and a label of height hi for each site si ∈ P , it
is NP -hard to place all labels at two stacks on one side of R with non-intersecting
type-opo leaders.

Proof. We reduce the Partition problem [9] to our problem. The Partition

problem is defined as follows: Given positive integers a1, a2, . . . , am, is there a
subset I of J = {1, 2, . . . , m} such that

∑
i∈I ai =

∑
i∈J−I ai?
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Our site set P = {s1, s2, . . . , sm} consists of m (parallel to y-axis) line seg-
ments of identical length H = 1

2

∑
i∈J ai (H : height of R). Each site si is also

associated with a label li of height ai. Both stacks contribute 2H height, which
is equal to the sum of all label heights.

Suppose that there exists a subset I of J = {1, 2, . . . , m} such that
∑

i∈I ai =∑
i∈J−I ai. Without loss of generality, we further suppose that |I| ≥ |J − I|.

For each site si with i ∈ I, we choose to place its label at the first stack. The
remaining labels are placed at the second stack. The leaders of the sites with
labels at the first stack are of type-o. In this case, the ports of both sites and
labels can be chosen arbitrarily. Since the labeling is tight (i.e. the sum of the
label heights on each stack is equal to H), we use the fact that the labels are open
and use the gaps between them as corridors to route the leaders, that connect
sites with labels at the second stack. Since we assumed that |I| ≥ |J − I|, there
exist enough corridors to route all leaders: The leader which corresponds to the
lowest label that has not been routed yet, can use the lowest available corridor.
In this case the site ports are defined based on the corridors, whereas the label
ports can be chosen arbitrarily again. ��

4.2 Two Candidate Points with Type-opo Leaders at Two Stacks
on One Side

We will show that the problem remains NP -hard even if we restrict ourselves
in sites, which may have two candidate points, i.e. leader of site si connects
either point p1

i = (x1
i , y

1
i ) or point p2

i = (x2
i , y

2
i ) with label li. To show NP -

hardness, we reduce the following variant of Partition to our problem. The NP -
hardness of this problem follows easily from the Even Odd Partition problem
(see [9] pp. 223).

Lemma 5 (RPartition). Given 2m non-negative integers a1, a2, . . . a2m, the
problem of finding a subset I of J = {1, 2, . . .2m} such that the following three
conditions are satisfied is NP -hard. 1) I contains exactly one of {2i − 1, 2i} for
i = 1, 2, . . .m. 2)

∑
i∈I ai =

∑
i∈J−I ai and 3)

∑
i∈I&i≤k ai <

∑
i∈J−I&i≤k ai

for k = 2, 4, . . . 2m − 2.

Theorem 4. Given a rectangle R of height H, a set P ⊂ R of n sites, each
associated with two candidate points, and a label of height hi for each site si ∈
P , it is NP -hard to place all labels at two stacks on one side of R with non-
intersecting type-opo leaders.

Proof. Let A = {a1, a2, . . . a2m} be an instance of RPartition. We will con-
struct an instance B of our problem as follows: Let C be a very large number,
e.g. C = (2m + 1)2

∑
i∈J ai. Set P = {s1, s2, . . . , s2m} consists of 2m sites.

Site si is associated with p1
i = (xi, y

1
i ) and p2

i = (xi, y
2
i ). Consecutive sites

s2i−1 and s2i, i = 1, 2, . . . , m, form m parallelograms ri, i = 1, 2, . . . , m, such
that y1

2i−1 < y1
2i < y2

2i−1 < y2
2i and |y2

2i−1 − y1
2i| = a2i−1+a2i

2 + 1. We assume
that parallelogram ri−1 is placed lower than ri. The vertical distance between
two consecutive parallelograms is C, whereas the vertical distance between the
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bottommost (topmost) parallelogram r1 (rm) and the bottommost (topmost
respectively) side of the enclosing rectangle R is C/2. The height of the enclos-
ing rectangle is H = m(C + 1) + 1

2

∑
i∈J ai. The label li of site si has height

hi = C +ai +1, thus
∑

i∈J hi = 2m(C +1)+
∑

i∈J ai. Observe, that both stacks
contribute 2H height, which is equal to the sum of all label heights.

One can see that the construction ensures that the same number of labels are
placed at the two stacks and that all leaders should bend in the first track routing
area. Two consecutive sites s2i−1 and s2i, i = 1, 2, . . .m can not have their labels
both at the same stack, because at least one corridor is lost and therefore at least
one label at the second stack can not be routed. To avoid leader crossings, the
order of indices should be preserved at both stacks, i.e. if i < j then label li will
be stacked lower than lj. To connect all sites with their labels, it must either
hold

∑
i∈I&i≤k hi <

∑
i∈J−I&i≤k hi or

∑
i∈I&i≤k hi >

∑
i∈J−I&i≤k hi, for all

k = 2, 4, . . .2m − 2, which is equivalent to condition (3) of RPartition. The
indices of the sites with labels at the first stack imply the partition I of J .

Suppose that we have a subset I of J of A such that all three conditions of
RPartition are satisfied. If i ∈ I, then the label of site si is placed at the first
stack preserving the order of indices. The remaining labels (i ∈ J −I) are placed
at the second stack in the same manner. A legal labeling is obtained by taking
the lowest site which has not been routed. If its label is to be placed at the
second stack, use the lowest available corridor for its leader, else route it at the
first stack with a type-o leader. For two consecutive sites s2i−1 and s2i we can
determine in constant time which points will be used, such that their leaders do
not intersect. ��

4.3 Type-po Leaders at Two Stacks on One Side

Following similar arguments as in proof of Theorem 4, one can show that the
problem remains NP -hard if we use type-po leaders, even if we restrict ourselves
to a point pi = (xi, yi) or two candidate points p1

i = (x1
i , y

1
i ) and p2

i = (x2
i , y

2
i )

for each site si. Recall that for the case of two candidate points the leader of
each site si connects either point p1

i or point p2
i with label li. The corresponding

theorems follow. Detailed proofs of these theorems are given in the full version
of the paper (see [2]).

Theorem 5. Given a rectangle R of height H, a set P ⊂ R of n points and a
label of height hi for each site si ∈ P , it is NP -hard to place all labels at two
stacks on one side of R with non-intersecting type-po leaders.

Theorem 6. Given a rectangle R of height H, a set P ⊂ R of n sites, each
associated with two candidate points, and a label of height hi for each site, it is
NP -hard to place all labels at two stacks on one side of R with non-intersecting
type-po leaders.

Since, each point site can be thought as a line site of zero length, Corollary 1
follows immediately from Theorem 5.
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Corollary 1. Given a rectangle R of height H, a set P ⊂ R of n lines and a
label of height hi for each site si ∈ P , it is NP -hard to place all labels at two
stacks on one side of R with non-intersecting type-po leaders.

5 Open Problems and Future Work

We presented results for the label size maximization problem and for the legal
label placement for the case of two and three stacks of labels on the same side of
R. No results are known regarding the total leader length minimization and the
minimization of the total number of bends. Another line of research is to design
good approximation algorithms that solve the problems, that are proved to be
NP -hard.
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