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ABSTRACT
In our present work we introduce the use of data fusion in
the field of DoS anomaly detection. We present Dempster-
Shafer’s Theory of Evidence (D-S) as the mathematical foun-
dation for the development of a novel DoS detection engine.
Based on a data fusion paradigm, we combine multiple ev-
idence generated from simple heuristics to feed our D-S in-
ference engine and attempt to detect flooding attacks.
Our approach has as its main advantages the modeling power
of Theory of Evidence in expressing beliefs in some hypothe-
ses, the ability to add the notions of uncertainty and igno-
rance in the system and the quantitative measurement of
the belief and plausibility in our detection results.
We evaluate our detection engine prototype through a set of
experiments, that were conducted with real network traffic
and with the use of common DDoS tools. We conclude that
data fusion is a promising approach that could increase the
DoS detection rate and decrease the false alarm rate.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
Security and Protection

General Terms
Measurement, Security

Keywords
Denial of Service, Anomaly detection, Data fusion

1. INTRODUCTION
We are considering the Internet increasingly often as a

standard utility, like electricity or telephone access. Relia-
bility of its offered services becomes then critical and even
a short downtime can cost hundreds of dollars. Distributed
Denial of Service attacks 1 are the main threat for such cut-

1We will refer with the term DoS attack to packet flooding
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offs, especially because they are planned and executed by
wicked individuals. In the 2000-2003 period we had several
examples of DDoS attacks (against one of the largest anti-
spam black-list company [5], against the ”Al-Jazeera” news
network [26], against the root name servers [19]) that high-
light their use in electronic warfare. Judging from the latest
trend to use worms as DDoS attack agents[7], the future
looks bleak.

We argue that having reliable DoS detection mechanisms
is a necessary step for all DoS mitigation approaches. Today
high false alarm rates and successful detection only when
damage is already done (near the vicinity of the victim where
the available bandwidth has already been consumed in the
upstream path) are the main problems that hinder the auto-
matic deployment and the effectiveness of countermeasures
like firewall filtering, rate limiting [11] or route blackholes[9].
Trying to move the countermeasures from the victim near
the sources of the attack with techniques like ”IP traceback”
[28] or ”IP Pushback” [20] is also a doubtful approach in a di-
verse networked world, like the Internet, because automated
large scale cooperation is needed. Other solutions like spoof-
ing prevention techniques (like Ingress [16] and RPF filtering
[10]) are useful but can only discourage a potential attacker
by making traceback easier.

An interesting potential is to detect and filter DoS attacks
on high bandwidth, overprovisioned backbone links of ISP’s.
Detection in this scenario is challenging as congestion is no
longer a detection criterion.

Today network engineers use custom detection methods
via traffic monitoring [2] and most of the existing detec-
tion techniques are weak as they utilize thresholds on single
metrics. To address this problem we utilize a data fusion
algorithm. Based on the ”Theory of Evidence” we combine
the output of several sensors that use simple heuristics in
order to detect attempted DoS attacks on a high bandwidth
link that can sustain the packet floods without severe con-
gestion. Our sensors are autonomous but are collaborating
by sharing their beliefs about the network’s state, ie whether
it’s under an attack or not. We view the network as a system
with stochastic behavior without assuming any underlying
functional model. The attempt to infer the unknown sys-
tem state is based on knowledge reported by sensors, that
may have acquired their evidence based on totally different
criteria. Possible sources of information are signature-based
IDS, custom DDoS detection programs, SNMP-based net-

attacks and not to logical DoS attacks that exploit certain
OS or application vulnerabilities regardless if the attackers
are truly distributed in the network topology.



Sensor
Detection &

Preprocessing
Data

alignment
Data

Association

Classification &
Identification

State Estimation

Situation
Assessment

...

Figure 1: Typical data fusion system architecture

work monitoring systems, active measurements or account-
ing systems like Cisco’s Netflow [8]. Our detection principle
which combines the reports of various network sensors dif-
fers from the existing detection techniques that are focused
on a single metric.

This paper is structured as follows: we begin with a brief
introduction to data fusion systems and a short justification
for our data fusion algorithm choice (sec.2). A more detailed
presentation of ”Theory of Evidence” and its mathematical
foundations follows, particularly in contrast to ”Bayesian In-
ference”, a traditional data-fusion approach (sec.3). In sec-
tion 4, we analyze the architecture of our detection engine
prototype. Based on a set of experiments in an academic-
network ISP, we carried out an evaluation of our detection
engine implementation (sec.5). Before we conclude, we sum-
marize the main advantages and disadvantages of our ap-
proach.

2. INTRODUCTION TO DATA FUSION
Generally, data fusion is a process performed on multi-

source data towards detection, association, correlation, es-
timation and combination of several data streams into one
with a higher level of abstraction and greater meaningful-
ness. In simpler words it’s the process of collecting informa-
tion from multiple and possibly heterogeneous sources and
combining it in order to get a more descriptive, intuitive
and meaningful result. Some of the most common data fu-
sion systems are military systems for threat assessment and
weather forecast systems.

The relevance of ’data fusion’ with the main problem that
current state of the art intrusion detection systems face has
been mentioned in [4]. Our innovation consists in the use of
a typical data fusion algorithm to develop a DoS detection
engine that can combine the knowledge gathered by inde-
pendent sensors and many different detection approaches in
a powerful way and under a clear mathematical framework.

The main processing stages in most data fusion systems
(Fig.1) are: the ”data collection phase” where various sen-
sors monitor, detect and report the environmental state, the
”data alignment & association phase” where the collected
data is aligned in time, space or measurement units, the
”state estimation phase” where based on a model of the sys-
tem behavior and the knowledge acquired by the sensors a
data fusion algorithm estimates the state of the system, the
”attribute classification & identification phase” where we
identify the different targets and events that are being mon-
itored and finally the ”situation assessment phase” where
the highest level of information fusion is performed. For
more details we refer the reader to references [21] and [18].
We reviewed many data fusion algorithms 2 based on their

applicability in the area of DoS attacks detection and we

2following a taxonomy that was proposed by Hall [18]

concluded that a promising method is Dempster’s-Shafer’s
”Theory of Evidence”. One of the main reasons that leaded
us towards the D-S approach is that we don’t have a good
model for the normal network state, so we excluded physical
methods, like the Kalman filter that requires the knowledge
of the state transition matrix. We avoided also methods
that need training data, like neural networks, because rep-
resentative data of a normal state (in terms of traffic trends
or other attributes) is hard to obtain and time consuming
to construct. Additionally there is a clear need to utilize in-
formation from multiple heterogeneous sources with differ-
ent sensitivity, reliability and false alarm rates; for example
anomaly detection heuristics that go beyond signature based
methods. Expert knowledge, acquired by network adminis-
trators, should be feasible to be incorporated into the system
but our detection decisions should not totally rely on it or
require the development of complex sets of rules that de-
scribe network behavior (like an Expert System). We could
argue that these algorithms could be very useful in terms of
the individual sensors detection functionality but we prefer
a more flexible modeling approach for data fusion.

3. MATHEMATICAL FOUNDATIONS
Our brief presentation of the ”Theory of Evidence” will

serve only as an introduction to the basic mathematical no-
tations and concepts and will attempt to set the background
for our application: the development of a DDoS detection
engine. To complement our presentation and highlight the
descriptive and modeling power of the theory, we will first
present the Bayesian method for estimation that is a tradi-
tional modeling approach and has been used for DoS detec-
tion in [25]. To ease the reader we will note here, that in our
application field, the observed system is the network and the
measurements of the deployed sensors serve as evidence.

3.1 Bayesian inference
Let the possible states of a system be θ1, ..., θN ∈ Θ and

that these states are mutually exclusive and complete (ex-
haustive), which means that the system is certainly in one
and only one of these states. The Probability P (θ1) is an
expression of the belief that the system is in state θ1 in
absence of any other knowledge. Once we obtain more
knowledge in form of an evidence E then the appropriate
expression to associate with the proposition θ1 is the con-
ditional probability P (θ1|E) also called ”posterior probabil-
ity”. Based on the definition of conditional probabilities we

have P (θ1|E) = P (θ1,E)
P (E)

. Bayes theorem dictates:

P (θ1|E) =
P (E|θ1)P (θ1)∑N
i=1 P (E|θi)P (θi)

(1)

If we have multiple evidence E1, ..., EM and assume statisti-
cal independence between them, then we can combine them
to infer the state of the observed system, similarly. We have
to note that this method needs the knowledge of the ”a pri-
ori” probability distribution of the states:P (θ1), ..., P (θN).
In addition it does not provide any information about the
quality of the result of our calculations, in terms of our trust
in our evidence or the existence of conflicting evidence.

3.2 Dempster-Shafer’s Theory of Evidence
Dempster-Shafer’s Theory of Evidence can be considered

an extension of Bayesian inference. There are many differ-



ent ways to interpret the basic mathematical formulations
of the theory that was introduced by Shafer in 1976 [29]. It
can be viewed either from a probabilistic or an axiomatic
point of view and all these approaches are concisely sur-
veyed in [22]. Besides the different theoretical approaches
and interpretations, all of them boil down to the same math-
ematical formulas. Theory of Evidence has been analyzed
in the fields of statistical inference, diagnostics, risk analysis
and decision analysis. Our approach and notations resemble
mostly the field of ”Diagnostics” [30].

Let us have a set of possible states of a system θ1, θ2, ..., θN ∈
Θ ,which are mutually exclusive and complete (exhaustive).
The set Θ is often called the frame of discernment. We will
call hypotheses Hi subsets of Θ, in other words elements of
the powerset 2Θ.

Our goal is to infer the true system state without having
an explicit model of the system, just based on some observa-
tions E1, ..., EM . These evidence can be considered as hints
(with some uncertainty) towards some system state. Based
on one evidence Ej we assign a probability that it supports a
certain hypothesis Hj . A basic probability assignment (bpa)
is a mass function m which assigns beliefs in a hypothesis
or as Shafer stated ”the measure of belief that is committed
exactly to H” [29].

m : 2Θ → [0, 1] (2)

This membership function m has to satisfy the following
conditions:

m(∅) = 0 and m(H) ≥ 0, ∀H ⊆ Θ and
∑

H⊆Θ

m(H) = 1 (3)

At this point we have to underline the flexibility and ad-
vantages of this theory in contrast to the Bayesian approach,
where we can only assign probabilities on single elements of
Θ and not on elements of the powerset of the possible states.
This theory gives us the opportunity to model uncertainty
and the fact that some observations can distinguish between
some system states, while they might not be able to provide
any hints about others. For example, we might know that
an evidence points to hypothesis H = {θ1, θ2} with a high
probability but on the same time it provides no information
(complete ignorance) whether the system is in θ1 or θ2.

Furthermore it is crucial that the ”Theory of Evidence”
calculates the probability that the evidence supports a hy-
pothesis rather than calculating the probability of the hy-
pothesis itself (like the traditional probabilistic approach).

We define a belief function Bel, describing the belief in a
hypothesis H , as:

Bel(H) =
∑

B⊆H

m(B) (4)

This definition says intuitively that a portion of belief com-
mitted to a hypothesis B must also be committed to any
other hypothesis that it implies, ie to any H ⊇ B.H A Be-
lief function has the following properties:

Bel(∅) = 0 and Bel(Θ) = 1

The Plausibility of H is defined as

P l(H) =
∑

B∩H �=∅
m(B) (5)

and can be correlated to the doubt in the hypothesis H:

P l(H) = 1 − Doubt(H) = 1 − Bel(Hc) (6)

where Hc is the complement of H. Intuitively, this relation
means that the less doubt we have in a hypothesis H the
more plausible it is. Generally we can characterize Bel(H)
as a quantitative measure of all our supportive evidence and
Pl(H) as a measure of how compatible our evidence is with
H in terms of doubt. The true belief in H lies in the interval
[Bel(H),Pl(H)]. Our degree of ignorance is represented by
the difference Bel(H)-Pl(H).

The second important element of Dempster-Shafer theory
is that it provides a rule to combine independent evidence
E1, E2 into a single more informative hint m12 = m1 ⊕ m2.

m12(H) =

∑
B∩C=H m1(B)m2(C)∑
B∩C �=∅ m1(B)m2(C)

(7)

Based on this formula we can combine our observations to
infer the system state based on the values of belief and
plausibility functions. In the same way we can incorpo-
rate new evidence and update our beliefs as we acquire new
knowledge through observations. Theory of Evidence makes
the distinction between uncertainty and ignorance, so it’s
a very useful way to reason with uncertainty based on in-
complete and possibly contradictory information extracted
from a stochastic environment. It does not need ”a pri-
ori” knowledge or probability distributions on the possible
system states like the Bayesian approach and as such it is
mostly useful when we don’t have a model of our system.
In comparison with other inference processes, like first order
logic which assumes complete and consistent knowledge and
exhibits monotonicity 3 or probability theory which requires
knowledge in terms of probability distributions and exhibits
non-monotonicity 4 , Theory of Evidence has a definite ad-
vantage in a vague and unknown environment. The main
disadvantage of Dempster-Shafer’s theory is the assumption
that the evidence are statistically independent from each
other, since sources of information are often linked with
some sort of dependence.

The ”Theory of Evidence” from a computational point of
view is in worst case exponential, because Dempster’s rule
of combination (Eq. (7) ) requires finding all pairs of sets

a,b such that a∩b = c which is o(2|Θ|−|c|×2|Θ|−|c|). Thus it
may be hard to compute in the general case, although some
efficient algorithms for fast computation exist. Nevertheless
for many practical applications with few focal elements, a
brute force approach is still feasible.

4. THE D-S DETECTION ENGINE
Based on the ”Theory of Evidence”, we have implemented

a prototype for our novel DDoS detection engine that might
aid network engineers to monitor their network more effi-
ciently and with small set up cost. Our system fuses the
knowledge collected from the reports of various sensors, in
order to infer the state of the monitored network. Our sen-
sors try to leverage on what network operators empirically
know as signs of flooding attacks. These signs or evidence
in the D-S notation, mostly stem from network monitoring
systems and are very simple in nature because network en-
gineers have feasibility as their primary concern. But these
signs are not always accurate or definite indications. They
are mere hints and there is a clear need to integrate them

3if a fact is believed it cannot be refuted, so our knowledge
always increases
4P (A|E1E2) not determined by P (A|E1)
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into a single higher level indication. Our system’s architec-
ture is depicted in Fig.2.

As in any data fusion system, our DDoS detection sys-
tem’s performance depends on the selection of its sensors.
The most obvious source of knowledge acquisition is passive
network monitoring. Other sensor types might make ac-
tive measurements like RTT or packet loss estimation [17].
Additional information can also be gathered from the Man-
agement Information Bases (MIB) that routers maintain or
Netflow accounting systems that provide flow level informa-
tion about network traffic. Generally speaking, some of the
constraints in the selection of our sensors are that they have
to be simple, efficient and easy to set up. The sensors that
we have implemented so far can be classified in two different
types:

• A preprocessor plugin for Snort (the popular open
source IDS [6]) that produces traffic statistics based
on captured packet data (libpcap format).The statis-
tics kept were chosen to be simple so that it’s feasi-
ble to run at high wire-speeds with minimum packet
drops. We collect data of the incoming and outgoing
TCP,TCP SYN, TCP FIN, UDP,ICMP packet rates
and their corresponding share of the link utilization.

• A SNMP data collector and analyzer that stores the
acquired data in round robin databases (using the RRD-
tool [27]). Some examples of variables that we measure
are number of active flows, flow learn failures (based
on Netflow [8]) and queue drop counters.

All sensors have their own ’intelligence’ based on expert
knowledge. In other words they have build-in functionality,
so that after the right configuration and fine-tuning they are
able to express beliefs about the network state by translat-
ing their measurements to ’basic probability assignments’
(bpa’s).

In our simplified implementation we define the following
network states that are based on a flooding attack cate-
gorization of the DDoS tools that are currently in use[23]:
Θ ={NORMAL, SYN-flood, UDP-flood,ICMP-flood}. SYN
attacks are targeted towards specific services mainly aiming
at OS resource consumption and the rest of the attacks base
their success on the sheer volume of the generated traffic,
thus bandwidth consumption. We have to note here, that
this set of network states (Frame of Discernment in ’Theory
of Evidence’ terminology) must be the same throughout the
system, from the sensors to the fusion node.

In the early stages of our prototype implementation we

Tlow THigh

1

0

m(H)

m(¬H)=1-m(H)-m(Θ)

m(Θ)

x

Figure 3: A generic guideline or ’rule of thumb’ to
define bpa’s (bpa:basic probability assignment)

have implemented a sensor that is able to detect UDP flood-
ing attacks as a change in the transferred UDP bit rate. Let
us illustrate the sensor’s functionality (transforming mea-
surements to bpa’s): if in one sampling interval our sensor
measures a ’suspiciously high’ value of the following metric

x = incoming UDP bytes/sec
outgoing UDP bytes/sec

5then it states its increased belief

in the H1 = {UDP} attack state. To be more specific, a
sensor defines a m-value for 3 possible sets:

• It assigns a value that expresses its support for a set
of states H that the sensor can recognize or is sensitive
to: m(H)

• It assigns a value to the set ¬H , to express the refuting
evidence of the hypothesis H: m(¬H).

• It assigns a value to the set Θ to express the igno-
rance of the sensor and the possibility that it might be
erroneous (proportional to the false alarm rate):m(Θ).

It follows from the equation (3) that m(H) + m(¬H) +
m(Θ) = 1. A guideline to help us define the individual
m-values based on a measured value x is shown in Fig.3.
The intuition behind this ’rule of thumb’ is that although
going over and under certain thresholds leads us towards a
quite certain decision, in the interval between these low and
high thresholds our beliefs should be treated with an in-
creased uncertainty. We would like to discuss here the effect
of changing the Thigh, Tlow thresholds on a sensor’s perfor-
mance. Assuming a typical sensor, moving the curve up and
to the left yields a more sensitive sensor increasing possibly
the false positive alarm rate. On the other hand a down or

5The DWard project [24] uses a similar metric and more

specifically UDP incoming packets/sec
outgoing packets/sec

. Our ratio is more ef-

fective because UDP attacks as bandwidth consumption at-
tacks use larger packets.



right movement makes the sensor less sensitive, increasing
the false-negatives. By condensing the curve along the x-
axis we move towards binary detection, whereas expanding
it yields a sensor with greater uncertainty but more sensi-
tivity.

Another kind of sensor, monitors the number of active
flows6 seen by a router. Although this metric cannot give
us an insight of the exact attack type it might still be a good
indication of a spoofed attack [2]. In this case the modeling
power of ”Theory of Evidence” is apparent and the sensor
states its high belief in the hypothesis H2 ={SYN-flood,
UDP-flood,ICMP-flood}.

Altogether our sensors periodically measure, calculate the
corresponding bpa’s and transfer the collected knowledge to
the fusion node based on a communication protocol that has
as its main information a bpa or an m-function definition in
the form:
< Timestamp >:

m < sensorid > (< hypothesisset >) =< value >
This information can be easily expressed in XML and car-
ried over an extension of the standard IDS communication
protocol IDMEF [12].

The periodic sensor’s reports update the current knowledge-
base (belief pool) of the fusion node that runs with the sam-
pling period of the fastest sensor (time alignment). The fu-
sion node that implements Dempster’s rule of combination
was programmed in C and calculates the belief intervals for
each member of the Frame of Discernment. All the cal-
culated data including both the sensors statistics and the
belief and plausibility values are recorded in Round Robin
Databases. This way we can keep data with a configurable
granularity and precision over different time scales without
growing needs in storage. In the same time we use a av-
eraging function to filter out short fluctuations. The be-
lief intervals that are visually presented with automatically
generated graphs, quantify the validity of our results. The
interpretation of the results is left to the human operator
and from all the possible hypothesis sets, special attention
must be paid to the sets: NORMAL ,¬NORMAL, and the
individual attack states.

5. PROTOTYPE TESTING
To test and evaluate our D-S detection engine prototype

we have performed a series of experiments on an academic
research network. As we argued in the introduction, DoS
detection on an over-provisioned high-bandwidth link where
traffic is aggregated but stays in low utilization levels is of
great interest. In practice, a single hosted network with a
fast upstream link had to be monitored for the sake of our
prototype evaluation. The Gigabit Ethernet link between
an ISP and a university was a good candidate. Some in-
teresting information is that the monitored link belongs to
the largest customer of the ISP and keeps a sustained rate
of 200Mbps with peaks higher than 300Mbps. Additionally
it contained a rich network traffic mix carrying both stan-
dard network services like web traffic, but also peer-to-peer
application traffic, online games, as well as streaming audio
traffic (Fig.5). This fact is significant because many of the
heuristics could be sensitive to specific anomalous-looking
but otherwise frequent network traffic. In other words, some

6A flow is defined as a unique set of the following 5 charac-
teristics <protocol, src IP, src port, dest IP, dest port>

detection algorithms might work in simulation or lab-testbed
experiments, but their high false alarm rate in the face of
real traffic would render them useless.

We conducted more than 40 experiments over several days
during business hours and with background traffic generated
from the more than 4000 hosts of the university campus. In
our experiment scenario the victim is located inside the cam-
pus with a 10Mbps link whereas the attacker was outside
the campus coming directly from the ISP. The attacker was
connected to a Fast Ethernet interface (100Mbps) to simu-
late the aggregation of traffic from several attacking hosts
and was running well known DDoS tools like Stacheldraht
[14] and TFN2K [3]. We performed a series of flooding at-
tacks with spoofed IP’s 7 like SYN-floods, UDP and ICMP
attacks. The network topology of our experiment setup is
shown in Fig.4.

The information sources that our sensors were build upon
were our Snort plugin monitoring the Gigabit Ethernet link
and the MIB entries from the backbone router that were
polled by our SNMP collector. The router had Netflow en-
abled, so that we could have access to flow level statistics.
We will present here some representative experiment results
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Figure 4: The topology of the experiment setup

protocol packets/sec Mbps
tcp 37184.8( 92.55%) 204.47( 94.32%)
ftp 1155.3 (2.87%) 8.19 (3.78%)
smtp 168.6 ( 0.42%) 0.94 ( 0.43%)
http/s 4011.6 ( 9.98%) 21.19 ( 9.78%)
nntp 362.9 ( 0.90%) 1.76 ( 0.81%)
p2p 7536,8 (18,75%) 41.53 (19,16%)
other 23911.9 (59.54%) 130.60( 60.25%)
udp 2854.1 ( 7.10%) 12.23 (5.64%)
dns 180.9 ( 0.45%) 0.19 (0.09%)
realaud 1312.1 ( 3.27%) 9.93 (4.58%)
other 1,361.10 ( 3.38%) 2.11 (0.97%)
icmp 111.2 ( 0.28%) 0.075 ( 0.03%)
Avg: 216.80Mbps Stddev:6.53M Peak: 237.13Mbps

Figure 5: Partial analysis of typical traffic mix on
the monitored link during a 30 min time interval

that highlight that even if one sensor fails to detect an out-
going attack, combined knowledge gathered from other sen-
sors indicate the increased belief on an attack state clearly.
In this experiment a UDP attack flooded the victim with a
34Mbps packet stream. As we see in Fig.7 the active flows
metric failed to identify the attack because the spoofing
mechanism was choosing source and destination ports from a

limited range. Nevertheless the incoming UDP bytes/sec
outgoing UDP bytes/sec

ratio

successfully identified an anomaly (Fig. 6). These sensor
measurements were then translated and expressed as bpa’s
that are shown in figures 8 and 9. The fusion node that
combined the reported beliefs generated the higher level net-
work state representation that we can see in Fig. 10. With
7Spoofing was performed by selecting source IP’s from the
attacker’s real subnet in order to bypass any e-gress or RPF
filtering.
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this picture as an input, the human operator could easily
identify a potential UDP attack and start an in depth ex-
ploration that will begin with an evaluation of the individual
sensor reports. Our experience with the implemented de-
tection engine showed that it’s feasible to adjust the thresh-
olds of our sensors (after a couple of experiments and with
the visual aid of the automatically generated graphs) in a
way that they will detect attempted flooding attacks suc-
cessfully without being too sensitive. In our setup, mea-
suring the false positive or false negative alarms is very
challenging because we monitored real network traffic. The
experiments that each one lasted a few minutes couldn’t
provide us with reliable indications. We had to develop a
methodology to estimate our system’s false alarm rate. Any-
way, for this small time span the probability of capturing an
attack that wasn’t initiated by us was minute. Beyond these
facts, the need of estimating our system’s false alarm rate
was still apparent.

Towards this goal, many open questions came into sur-
face. How useful is the notion of the false alarm rate? How
can we measure it in an unknown environment which is not
controlled by us? And at the very end, do we aim to de-
tect even unsuccessful DDoS attack attempts as anomalous
events? Although we don’t give final answers to these ques-
tions we present here some of our observations.

False alarm rate has been encountered in the literature as
a mere percentage, a value representing the ratio of false in-
dications in the total alarms. Another aspect of a system’s
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false alarm rate that has been neglected but has great prac-
tical importance is its absolute value in human time scale.
This means that it has to be a relatively small number in
a period of several hours or days to be of any use and get
analyzed and evaluated by a human expert. This way, if
the total alarm rate (true positives + false positives) is a
small number, we could capture some context information
that may help us to do a post-mortem analysis. By ana-
lyzing the collected data, for example packet captures, we
could manually guess whether the triggered alarm was false
or not, estimating this way our system’s false alarm rate in
real, operational conditions.

Using this methodology we ran our detection engine en-
hanced by an automatic alarm-triggered monitoring process
for a period of 28 days. We kept the sensors configuration
fixed and at the fusion node we considered as an alarm a
belief of an attack state with a value greater than 0.7. The
results were promising as all our attacks were detected suc-
cessfully and we had an average of 2.3 distinct alarms per
day (Fig.11). The detailed analysis of the captured traces
showed clearly that in all cases an anomaly had triggered
our detection heuristics. But besides obvious packet floods
generated by common file-sharing applications, the rest of
the alarms were highly suspicious and although we could not
argue that they were definitely DoS attacks, they could be
filtered without major concerns. These results are promis-
ing for the development of automatic reaction mechanisms.

Another important concern about the effectiveness of our
implementation is the performance of our passive monitor-
ing sensor that was based on Snort. The main disadvan-
tage of the packet capturing approach for traffic monitoring
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Figure 11: Distinct alarms during 28 days of opera-
tion

is the poor performance at high bit rates. Special atten-
tion had to be paid on the performance of our Snort plugin
which imposed constraints on the choice of our heuristics.
All the heuristics that were implemented by our Snort plu-
gin proved to be realistic as we had negligible packet drops
at 250Mbps line speed without special hardware or NIC
drivers. It’s important to note that in [13] we have clear
indications that such simple setups can scale up to Giga-
bit speeds. Additionally our analysis showed that we can
keep data in our RR databases in many timescales rang-
ing from 1 second to several minutes without any change
in our packet drop percent(< 0, 1%). Finally our data fu-
sion engine didn’t encounter any performance penalty even
without the use of any optimization techniques for the im-
plementation of Dempster’s rule of Combination due to the
small dimension of Θ.

6. DISCUSSION
The evaluation of the proposed algorithms and architec-

ture can be the topic of a lengthy discussion. Implementing
and incorporating these ideas into the security infrastruc-
ture of an operational network may be a task of significant
difficulty, but at the same time it may offer several advan-
tages like those summarized below.

• Our modeling approach allows each sensor to contribute
information at its own level of detail by expressing be-
liefs on a set of possible system states even without
being able to asses its single elements. This fact en-
ables us to use sensors like CPU utilization of routers
that are not specific to a certain attack type.

• We don’t need to assume anything about the proba-
bility of the system being on a certain state, i.e. how
often attacks occur. We just express beliefs that a
monitored event supports a state. Such statistics are
site dependant and would be very hard to obtain.

• We can use the representation of ignorance to incor-
porate the false alarm rate or the predicted accuracy
of a sensor to lower the false alarm rate of the fused
reports. Based on the idea that a sensor performs his-
torically in similar ways in similar situations we can
use the historically-estimated correctness rate as the
reference of how much should we trust the current es-
timation of a sensor.[31]

• We can utilize multiple data sources to increase our
confidence in our estimation.

• Based on the generic representation of knowledge in
terms of basic probability assignments we can incorpo-
rate knowledge from sensors based on different detec-
tion algorithms or even traditional network monitoring
infrastructure like service disruption alerts. This way
we can leverage on promising detection algorithms that
have already been proposed. We use DS not only be-
cause classical Bayesian method is hard to apply due to
the lack of a proved probability distribution model or
insufficient mathematical analysis but exactly in order
to be able to incorporate heterogeneous, expert knowl-
edge into the system.

• We can activate detection algorithms on demand, to
refine our beliefs. This applies especially to sensors
with high processing costs that can provide new evi-
dence on request, when it’s really needed.

• The mathematical notation of membership function
definition can be used to found the basis of a com-
munication protocol for IDS collaboration as it allows
fusion of data from diverse sensors. As collaborating
IDS’s are being explored, IETF has developed the ”In-
trusion Detection Exchange Protocol” [15] to help the
exchange of information between different IDS’s and
encourage the analysis of information from different
sources. The main open issue is the way that all the
exchanged data is going to be combined and Theory
of Evidence can provide the underlying data fusion
framework.

One common drawback of knowledge-based systems is that
they can be as good as the sources from which they acquire
their knowledge. Utilizing expert knowledge of network ad-
ministrators might not be enough. One of the strengths of
our approach is that we are able to incorporate any success-
ful detection algorithm that has been proposed in the litera-
ture by simply adding a layer of abstraction in terms of ba-
sic bpa’s. The heuristics we used in our simplified prototype
will be replaced with more sophisticated ones in the future.
The most important fact is, that reports from other scientific
fields like traffic incident detection [1] or equipment condi-
tion monitoring [30] indicate that using Dempster-Shafer to
combine results of different detection algorithms increases
the detection rate and simultaneously lowers the false alarm
rate. One other point that can be considered as a weak-
ness of the proposed modeling framework is its inability to
detect multiple simultaneous attacks, as we assume a mu-
tually exclusive set of system states. On the other hand we
can expand the set Θ to resolve this problem.



7. CONCLUSION
We propose the use of Dempster-Shafer’s Theory of Ev-

idence as the underlying data fusion model for creating a
DDoS detection engine. The modeling strength of the math-
ematical notation as well as the ability to take into account
knowledge gathered from totally heterogeneous information
sources are only some of the advantages. To demonstrate
our idea we have developed a prototype that consists of a
Snort preprocessor-plug in and a SNMP data collector that
provide the necessary input that through heuristics feed the
D-S inference engine and we evaluated our implementation
trough a set of experiments in an academic research net-
work. This simple but powerful data fusion paradigm can
potentially include many of the proposed DDoS detection al-
gorithms with their own strengths and weaknesses and could
provide new solutions to the DDoS mitigation problem. It’s
a fact, that only if we have reliable detection mechanisms,
automatic response could be a viable solution.
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