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Abstract

In our present work we present some of the most popular data fusion
algorithms that have inspired us to build an innovative Distributed De-
nial of Service (DDoS) Detection Engine. Our approach is based on the
mathematical ground of Dempster-Shafer’s Theory of Evidence (D-S).
Using a set of simple heuristics to feed our D-S inference engine we attempt
to detect flooding attacks in a set of experiments, that were conducted in
real network topologies (in the National Technical University of Athens
campus) using well known DDoS tools, like Stacheldraht.
The use of D-S model to express beliefs in some hypotheses, the ability
to add the notion of uncertainty in the system and the quantitative mea-
surement of the belief and plausibility of our detection results are some
of the main advantages that this theory adds to an Intrusion detection
framework and especially in comparison to a Bayesian estimator approach.
Finally, we discuss several implementation and deployment issues in the
context of security management and DDoS mitigating techniques.

1 Introduction

Although Distributed Denial of Service attacks have been in the focus of the
internet research community during the last years, they still remain an open
problem. The recent DDoS attack against the ”AlJazeera” news network [16]
or against the 13 root name servers [11] are only some of the attacks that have
reached the mass media and highlight their usage in electronic warfare. As the
Internet is going to evolve and become an inseparable part of our everyday life,
regardless if it’s in terms of education, information acquisition, communication,
e-commerce or recreational activities, the ability of a single individual to deny
our access to network resources is perilous.
Several DDoS prevention techniques (like Ingress [8] and RPF filtering [5]) have
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been proposed in the literature and implemented by router vendors but they
were not able to mitigate the problem. Most of the state of the art detection
algorithms assume that the detection infrastructure is located near a saturated
link in the vicinity of the victim, where the detection is ”easy”. In these cases
local detection and response is ineffective as the available bandwidth has already
been consumed in the upstream path. To couple with this problem ”IP trace-
back” [18] and ”IP Pushback” [12] aim to move the countermeasures near the
sources of the attack. They assume though some sort of large scale cooperation.
Another possible scenario, that has received much less attention, is occurring
when the server under attack belongs to a customer hosted in a well connected
ISP that performs DDoS detection on a link with low utilization. In this case
the attack might stay undetected by the ISP. This case has great practical im-
portance in the security management of ISP’s, as its preferable to perform DDoS
detection at few points of the over provisioned backbone and not necessarily on
small, congested customer links. Additionally it is economically questionable to
expect customers to pay for a dedicated DDoS detection service. In our current
research effort we try to detect attempted DDoS attacks on high bandwidth
links that can sustain the flooded packets without severe congestion. Through-
out this article we will refer with the term DDoS attack to packet flooding
attacks and not to logical DoS attacks that exploit certain OS or application
vulnerabilities regardless if the attackers are trully distributed in the network
topology.
Based on an exploration of the field of multi-sensor data fusion, we will present
the use of Dempster-Shafer’s ”Theory of Evidence” as a framework for devel-
oping a DDoS detection engine. Our system’s architecture consists of a set of
distributed, autonomous but collaborating sensors which share their beliefs of
the network’s true state, ie whether its under an attack or not. We view the
network as a system with stochastic behavior without assuming any underlying
functional model. The attempt to infer the unknown system state is based on
knowledge reported by sensors, that may have acquired their evidences based
on totally different criteria. Possible sources of information could be signature-
based IDS, DDoS detection programs, SNMP-based network monitoring sys-
tems, active measurements or network accounting systems like CISCO’s Netflow
[4]. Our detection principle tries to combine the reports of various network sen-
sors and differs from many of the existing detection techniques that are focused
on a single metric.
This paper is structured as follows: we will begin with a brief introduction of
data fusion systems and commonly used algorithms (section 2). A more detailed
presentation of the ”Theory of Evidence” and its mathematical foundations will
follow and particularly in contrast to the traditional data-fusion approach of
”Bayesian Inference”(section 3). In section 4, we analyze the architecture of
our detection engine prototype. Before we conclude, we present the preliminary
results of our experiments in detecting DDoS attacks in real operational network
in the NTUA campus network(section 5.1) and discuss the main advantages of
our approach.
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2 Introduction to Data Fusion

The process of collecting information from multiple and possibly heterogeneous
sources and combine it in order to get a more descriptive, intuitive and mean-
ingful result is done continuously by the human brain. The same process is
needed for several systems in many different realms of science. The most com-
mon examples where such systems have been developed and widely used, are
military systems for threat assessment and weather forecast systems. Generally,
data fusion is a process performed on multisource data towards detection, as-
sociation, correlation, estimation and combination of several data streams into
one with a higher level of abstraction and greater meaningfulness.
The relevance of ’data fusion’ with the main problem that current state of the
art distributed intrusion detection systems face is obvious and has already been
mentioned in [2]. Our innovation consists in the use of a typical data fusion
algorithm to develop a DDoS detection engine that can combine the knowledge
gathered by independent sensors and many different detection approaches in a
powerful way and under a clear mathematical framework.

2.1 Data Fusion Architectures

There are many different architectures of data fusion systems and as these sys-
tems consist of several individual functional blocks we have many different com-
binations. Instead of providing a lengthy description of the different architec-
tures we will just logically group and summarize the main functionalities of the
different processing stages occurring in most data fusion systems ( Figure 1)

Sensor
Detection &

Preprocessing
Data

alignment
Data

Association

Classification &
Identification

State Estimation

Situation
Assessment

...

Figure 1: Typical data fusion system architecture

• Data Collection : Various sensors monitor, detect and report the environ-
mental state

• Data Alignment & Association: Multisensor data may exhibit differences
in time, space or measurement units that have to be aligned

• State Estimation: Based on a model of the system behavior and the knowl-
edge acquired by the sensors a data fusion algorithm estimates the state
of the system.

• Attribute classification & Identification: In this phase we identify the
different targets and events that are being monitored.

• Situation Assessment: It’s the highest level of information fusion where
based on the states of the various targets and their identities (inputs from
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the previous 2 processing phases) we determine the overall status of the
system (”monitored world”).

From an algorithmic point of view many of these processing steps use the
same mathematical methods. These ’Data fusion algorithms’ come from many
different scientific areas and even a brief introduction to them would be very
lengthy. Instead, we will just list in the next section a very brief description of
some widely used methods by presenting the taxonomy that was proposed by
Hall [10]. Our presentation and comments are especially targeted to the field of
Intrusion Detection Systems.

2.2 Data Fusion Algorithms

2.2.1 Physical models

To begin, we can distinguish physical models which are based on the accurate
modeling of the observed target and matching the measured data to the model.
One of the most important representatives of these methods is the Kallman fil-
ter. It will provide the solution (state estimate) that minimizes the mean square
error between the true state of the system and the estimate of state. It requires
the knowledge of the state transition matrix and that the measurements are
”corrupted” by white zero mean noise with known covariance matrix. As the
network behavior hasn’t been successfully modeled yet, the usability of such
methods is doubtful.

2.2.2 Parametric Classification

In the second category, parametric classification , the algorithms make a direct
mapping of parametric data to the classification space (for example the state of
the system). We will briefly comment on some of them:

• Bayesian Inference Method (will be discussed in section 3.1)

• Dempster-Shafer Theory of Evidence (will be discussed in section 3.2)

• Adaptive Neural Nets are a very interesting and generic method that
doesn’t assume a model for the observed system, but bases its output
in the successful training of its nodes (neurons) using training data. The
training could be supervised (by giving the correct classification on each
sample data set) or unsupervised. The different kinds of neural networks
differ in the number of nodes and layers as well as the processing func-
tion that is performed in each node (step, sigmoid). These methods have
been used in the context of IDS’s but require training data that will be
representative of the normal traffic data, which are very hard to gather or
generate.

• Voting Methods: Probably the simplest and most intuitive method is
voting. Each sensor’s data serves as a vote in a democracy where the fused
declaration is the declaration of the majority. This method is extremely
useful when a priori statistics are not known. Alternatives to the simple
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voting is a weighted voting system or the use of intermediate decisions on
a decision tree.

2.2.3 Cognitive algorithms

Members of the third category of cognitive based algorithms, try to simulate
the human brain inference process. Some of them are:

• Expert systems have been successfully used in many applications. These
systems consist of a knowledge base that represents the knowledge of some
”field expert” usually in a production rule form. This knowledge can
be facts, algorithms, heuristics etc. Expert systems have an inference
algorithm and a separate control module which is the rule interpreter. One
important advantage of these systems is that most of the times the system
doesn’t do an exhaustive search of the knowledge base, it presents only
one possible inference and can also show the logical production rules used
to show the path that has been followed. Most of the times the underlying
theory is ”First Order Logic”, that has the drawback that cannot model
the whole spectrum between belief and disbelief in a statement but uses
a plain true or false approach instead.

• Fuzzy set theory is the fundamental theory that supports fuzzy logic,
which is in turn used as an alternative to logical reasoning. In fuzzy logic,
a statement is not just true or false but is rather a proposition with an
associated value between 0 ,that represents a completely false proposition,
and 1 - completely true (this is the membership value to the truthfulness
set). The field of fuzzy logic is well defined and includes: combination
rules and syllogisms. The ”Theory of Evidence”, that our research was
based on, has in fact many common elements with Fuzzy logic.

We reviewed these candidate algorithms based on their applicability in the
area of Denial of Service Attacks detection and we concluded that a promis-
ing method that needed further investigation was ”Dempster-Shafer’s Theory
of Evidence”. The main reasons that leaded us towards the D-S approach were
that we don’t have a good model for the normal network state and that methods
that need training data, like neural networks, are excluded because representa-
tive data of a normal state (in terms of traffic or other attributes) is hard to
obtain and time consuming to construct. Additionally there is a clear need to
utilize information from multiple heterogeneous sources with different sensitiv-
ity, reliability and false alarm rates; for example anomaly detection heuristics
that go beyond signature based methods. Expert knowledge, acquired by net-
work administrators, should be able to be incorporated into the system but our
detection decisions should not totally rely on it or require the development of
complex sets of rules that will describe network behavior. We could argue that
these algorithms could be very useful in terms of the individual sensors detection
functionality but we prefer a more flexible modeling approach for data fusion.
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3 The mathematical foundations of a D-S De-

tection engine

Our brief presentation of the ”Theory of Evidence” will serve only as an in-
troduction to the basic mathematical notations and concepts and will attempt
to set the background for our application: the development of a DDoS detec-
tion engine. To complement our presentation and highlight the descriptive and
modeling power of the theory, we will first present the Bayesian method for
estimation that is a traditional modeling approach and has been used for DoS
detection in [15]. To ease the reader we will note here, that in our application
field, the observed system is the network and the measurements of the deployed
sensors serve as evidence.

3.1 Bayesian inference

Let the possible states of a system be θ1, θ2, ..., θN ∈ Θ and that these states
are mutually exclusive and complete (exhaustive). The Probability P (θ1) is an
expression of the belief that the system is in state θ1 in absence of any other
knowledge. Once we obtain more knowledge in form of an evidence E then the
appropriate expression to associate with the proposition θ1 is the conditional
probability P (θ1|E) also called ”posterior probability”. Based on the definition
of conditional probabilities we have:

P (θ1|E) =
P (θ1, E)

P (E)
(1)

Bayes theorem dictates :

P (θ1|E) =
P (E|θ1)P (θ1)∑N
i=1 P (E|θi)P (θi)

(2)

If we have multiple evidences E1, ..., EM and assume statistical independence
between them, then we can combine them similarly. By using this formula we
can combine evidence to infer the state of the observed system. We have to note
that this method needs the knowledge of the ”a priori” probability distribution
of the states: P (θ1), P (θ2), ..., P (θN ). In addition it does not provide any infor-
mation about the quality of the result of our calculations, in terms of our trust
in our evidence or the existence of conflicting evidence.

3.2 Theory of Evidence

Dempster-Shafer’s Theory of Evidence can be considered an extension of Bayesian
inference. There are many different ways to interpret the basic mathematical
formulations of the theory that was introduced by Shafer in 1976 [19]. It can be
viewed either from a probabilistic or an axiomatic point of view and all these
approaches are concisely surveyed in [14]. Besides the different theoretical ap-
proaches and interpretations, all of them boil down to the same mathematical
formulas regardless of the application. Theory of Evidence has been analyzed in
the fields of statistical inference, diagnostics, risk analysis and decision analysis.
Our approach and notations resemble mostly the field of ”Diagnostics” [20].
Let us have a set of possible states of a system θ1, θ2, ..., θN ∈ Θ ,which are
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mutually exclusive and complete (exhaustive), which means that the system is
certainly in one and only one of these states. The set Θ is often called the
frame of discernment. We will call hypotheses Hi subsets of Θ, in other words
elements of the powerset 2Θ.
Our goal is to infer the true system state without having an explicit model of
the system, just based on some observations E1, ..., EM . These evidences can be
considered as hints (with some uncertainty) towards some system states. Based
on one evidence Ej we assign a probability that it supports a certain hypothesis
Hj . A basic probability assignment (bpa) is a mass function m which assigns be-
liefs in a hypothesis or as Shafer stated ”the measure of belief that is committed
exactly to H” [19].

m : 2Θ → [0, 1] (3)

This membership function m has to satisfy the following conditions:

m(∅) = 0 and m(H) ≥ 0, ∀H ⊆ Θ

∑

H⊆Θ

m(H) = 1 (4)

Any hypothesis H such that m(H) > 0 is called a focal set and the set of all
focal sets is the core.
At this point we have to underline the flexibility and advantages of this theory
in contrast to the Bayesian approach, where we can only assign probabilities
of single elements of Θ and not on elements of the powerset of the possible
states. This theory gives us the opportunity to model uncertainty and the fact
that some observations can distinguish between some system states, while they
might not be able to provide any hints about others. For example, we might
know that our evidence E1 points to hypothesis H1 = {θ1, θ2} with a high prob-
ability but on the same time it provides no information (complete ignorance)
whether the system is in θ1 or θ2.
Furthermore it is crucial that the ”Theory of Evidence” calculates the proba-
bility that the evidence supports a hypothesis rather than calculating the prob-
ability of the hypothesis itself (like the traditional probabilistic approach).

We define a belief function Bel, describing the belief in a hypothesis H , as:

Bel(H) =
∑

B⊆H

m(B) (5)

This definition says intuitively that a portion of belief committed to a hy-
pothesis B must also be committed to any other hypothesis that it implies, ie
to any H ⊇ B.H A Belief function has the following properties:

Bel(∅) = 0 and Bel(Θ) = 1

The Plausibility of H is defined as

Pl(H) =
∑

B∩H �=∅
m(B) (6)
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and can be correlated to the doubt in the hypothesis H:

Pl(H) = 1 − Doubt(H) = 1 − Bel(Hc) (7)

where Hc is the complement of H.
Intuitively, this relation means that the less doubt we have in a hypothesis H
the more plausible it is. Generally we can characterize Bel(H) as a quantitative
measure of all our supportive evidence and Pl(H) as a measure of how compatible
our evidence is with H in terms of doubt. The true belief in H lies in the interval
[Bel(H),Pl(H)]. Our degree of ignorance is represented by the difference Bel(H)-
Pl(H).
The second important element of Dempster-Shafer theory is that it provides a
rule to combine independent evidences E1, E2 into a single more informative
hint m12 = m1 ⊕ m2.

m12(H) =
∑

B∩C=H m1(B)m2(C)∑
B∩C �=∅ m1(B)m2(C)

(8)

Based on this formula we can combine our observations to infer the system
state based on the values of belief and plausibility functions. In the same way
we can incorporate new evidence and update our beliefs as we acquire new
knowledge through observations.

Theory of Evidence makes the distinction between uncertainty and igno-
rance, so its a very useful way to reason with uncertainty based on incomplete
and possibly contradictory information extracted from a stochastic environment.
It does not need ”a priori” knowledge or probability distributions on the possible
system states like the Bayesian approach and as such it is mostly useful when
we don’t have a model of our system. In comparison with other inference pro-
cesses, like first order logic which assumes complete and consistent knowledge
and exhibits monotonicity 1 or probability theory which requires knowledge in
terms of probability distributions and exhibits non-monotonicity 2 , Theory of
Evidence has a definite advantage in a vague and unknown environment. The
main disadvantage of Dempster-Shafer’s theory is the assumption that the evi-
dence are statistically independent from each other, since sources of information
are often linked with some sort of dependence.

4 A D-S Detection engine prototype

As we have already mentioned, we used Dempster-Shafer Theory of Evidence
to build a prototype for a novel DDoS detection engine that might aid network
administrators to monitor their network more efficiently and with small set
up cost. Network engineers know empirically, that there are often signs of
flooding attacks but these signs are not always accurate or definite indications.
They are mere hints and there is a clear need to intergrate them into a single
higher level indication. In the same time these hints mostly stem from network
monitoring or custom measurement systems and are very simple in nature. The
reason behind this fact, is that ”Measuring the Internet” is still a hard research

1if a fact is believed it cannot be refuted, so our knowledge always increases
2P (A|E1E2) not determined by P (A|E1)

8



problem and the tools have to cope with constantly increasing wire speeds and
limited processing and storage resources. In our research, we have implemented
a system that fuses the knowledge collected from the reports of various sensors,
in order to infer the state of the monitored network. The system’s architecture
is depicted in figure 2.

libpcap
formatted data D-S

Assign bpa'smeasurements with
snort preprocessor

plugin

SNMP polling
or Netflow
collector

Router
MIB or
Netflow

data

pass through
D-S inference

engine

Assign bpa's

make an
assessment for
current state of

the system
based on

[Bel,Pl] intervals

Figure 2: System architecture

As in any data fusion system, our DDoS detection system’s performance
depends from the selection of its sensors. The most obvious source of knowledge
acquisition is passive network monitoring, that can be performed in different
ways ranging from passive sniffing with optical couplers to switch based port
mirroring. Other sensor types might make active measurements like ping probes.
Additional information can also be gathered from the Management Information
Bases (MIB) that routers maintain or Netflow accounting systems that provide
flow level information about network traffic. Generally speaking, some of the
constraints in the selection of our sensors was that they had to be simple, efficient
and easy to set up. The sensors that we have implemented so far can be classified
in two different types:

• A preprocessor plugin for Snort (the popular open source IDS [3]) that pro-
duces traffic statistics based on captured packet data (libpcap format).The
statistics kept were chosen to be simple so that its efficient and feasible
to run at high wire-speeds. We collect data of the incoming and outgoing
TCP,TCP SYN, TCP FIN, UDP,ICMP packet rates and their correspond-
ing share of the link utilization.

• A SNMP data collector and analyzer that stores the acquired data in round
robin databases (using the RRDtool [17]). Some examples of variables
that we measure are bytes/sec, packets/sec, active flow number (based on
Netflow [4]) and flow learn failures.

All sensors have their own ’intelligence’ based on expert knowledge. In other
words they have build-in functionality, so that after the right configuration and
fine-tuning they are able to express beliefs about the network state. The main
detection principles that were used in the configuration of the sensors are:

• Symmetry of TCP flows. Due to the nature of the TCP protocol we
expect a loose symmetry on the incoming versus outgoing packet rates.
This symmetry has already been used as a DDoS detection principle in
D-WARD [13] and MULTOPS [9].

• ICMP and UDP attacks are mainly bandwidth consumption attacks and
as these traffic types generally utilize small amounts of bandwidth, sudden
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changes in the transferred ICMP or UDP bytes/sec are good indications
of attacks.

• The effect of spoofing in the number of active flows seen by a router. A
flow is defined as a unique set of the following 5 characteristics <protocol,
src IP, src port, dst IP dst port> and thus in the presence of a spoofed
attack the number of active flows should rise suddenly. Besides this effect,
it has been proven that the number of learning failures of a flow accounting
algorithm was able to identify spoofed flooding attempts. The reason is
that although the number of flows exhibits a high fluctuation in the face
of normal traffic the flows are created and removed from the routers cache
in a reasonable time interval. When a flooding attack occurs the amount
of ’transports that are not completed’ (for example with TCP FIN or
RST) is high, so the entries are not removed gracefully but are filling up
the cache and causing flow learning failures. More information about this
mechanism is provided in [4].

Based on these principles we build algorithms that generate ’basic probabil-
ity assignments’ (bpa’s) that match measured values to beliefs about the true
system state.

In our first simplified implementation we define the following network states
that are based on a flooding attack categorization of the DDoS tools that are
currently in use: Θ ={NORMAL, TCP SYN ATTACK, UDP BWDTH AT-
TACK,ICMP BWDTH ATTACK}. SYN attacks are targeted towards specific
services mainly aiming at OS resource consumption and the rest of the attacks
base their success on the sheer volume of the generated traffic, thus bandwidth
consumption. We have to note here, that this set of network states (Frame of
Discernment in ’Theory of Evidence’ terminology) must be the same throughout
the system, from the sensors to the fusion node.

Lets illustrate the sensors functionality (transforming measurements to bpa’s)
with an example. Assume that a sensor measures a ’suspiciously high’ value of
the following metric x = incoming UDP bytes/sec

outgoing UDP bytes/sec . The sensor must state then its
increased belief in the UDP-attack state. To be more specific, a sensor defines
a m-value for 3 possible sets:

• It assigns a value that expresses its support for a set of states H that the
sensor can recognize or is sensitive to, ie m(H) ∈ [0, 1]

• It assigns a value to the set ¬H , to express the refuting evidence of the
hypothesis H, ie m(¬H) ∈ [0, 1].

• It assigns a value to the set Θ to express the ignorance of the sensor and
the possibility that it might be erroneous (false report).m(Θ) ∈ [0, 1].

It follows from the equation (4) that m(H)+m(¬H)+m(Θ) = 1. A general
guideline to help us define the individual m-values based on a measured value x
is shown in figure 3. The intuition behind this ’rule of thumb’ is that although
going over and under certain thresholds can lead us towards a quite certain
decision, in the interval between these low and high threshold values our beliefs
should be treated with an increased uncertainty.
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0

m(H)

m(¬H)=1-m(H)-m(Θ)

m(Θ)

x

Figure 3: A generic guideline or ’rule of thumb’ to define bpa’s

The sensors periodically measure, calculate the corresponding bpa’s and tranfer
the collected knowledge to the fusion node based on a communication protocol
that has as its main information a bpa or an m-function definition in the form:

< Timestamp >: m < sensorid > (< hypothesisset >) =< value >

This information can be easily expressed in XML and carried over an extension
of the standard IDS communication protocol IDMEF [6].
We will include here a short example. Assume that one of our sensors measured
at consecutive sampling periods:
Timestamp incoming UDP bytes/sec outgoing UDP bytes/sec
1053520284 180051 1327200
1053520285 3574611 1299368

If we assume that our heuristic is the incoming UDP bytes/sec vs outgoing
UDP bytes/sec ratio and a network engineer has configured the sensor based on
its network behavior (this metric is used here just as an example but neverthe-
less in our expirements it was shown to be stable in time), these measurements
will be transformed into the following bpa :
Timestamp BPA
1053520284 m1(UDP)=0.000000 m1(NORMAL)=1.000000
1053520285 m1(UDP)=0.792353 m1(NORMAL)=0.207647

The knowledge that is being collected by the various sensors will be then trans-
fered in this form to the DS inference engine. The periodic sensor’s reports
update the current knowledge-base (belief pool) of the fusion node that runs
with the sampling period of the fastest sensor (time allignment). The fusion
node that implements Dempster’s rule of combination was programmed in C
and calculates the belief intervals for each member of the Frame of Discernment.
The belief intervals that are visually represented with automatically generated
graphs, quantify the validity of our results. The interpretation of the results
is left to the human operator and from all the possible hypothesis sets, special
attention must be paid in the sets: NORMAL ,¬NORMAL, and the individ-
ual attack states. ’Theory of Evidence’ suggests the following interpretation of
uncertainty intervals:
[Bel(H),Pl(H)] Interpretation
[0, 1] Total ignorance
[x, x] where x ∈ [0, 1] A definite probability of x
[x, y] where x ≤ y ∈ [0, 1] Probability of x lies between x and y (uncertainty)
[0, 0] Hypothesis is false
[1, 1] Hypothesis is true
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Figure 4: The topology of the experiment setup

A sample output (text format) of our D-S fusion engine if we combine the
reports of our sensors, in the context of the same example, follows:

time TCP-SYN UDP ICMP NORMAL
1053520284 [0.000,0.000] [0.000,0.000] [0.000,0.000] [1.000,1.000]
1053520285 [0.000,0.000] [0.792,0.792] [0.000,0.000] [0.208,0.208]

5 Prototype Evaluation

5.1 Initial Expirement Results

To test and evaluate our D-S detection engine prototype we have performed a
series of experiments in the university campus of the National Technical Uni-
versity of Athens (NTUA). In the scenario that we investigated the network
that was monitored is single hosted and with an upstream link where traffic is
aggregated but stays in low utilization levels. The experiments were conducted
over several days during business hours and with background traffic generated
from the more than 4000 hosts of the campus. Our university keeps a sustained
rate of 200Mbps with its ISP with peaks higher than 300Mbps.
In our experiment scenario the victim is hosted inside the campus with a 10Mbps
link whereas the attacker/s were outside the campus coming directly from
our ISP (GRNET). The attacker was connected to a Fast Ethernet interface
(100Mbps) to simulate the aggregation of traffic from several attacking hosts -
zombies. Our attacker was running the well known DDoS tool ’Stacheldraht’
[7] and was able to perform a series of flooding attacks with spoofed IP’s 3 like
SYN-floods, UDP and ICMP attacks. The network topology of our experiment
setup is shown in figure 4.
The information sources that our sensors were build upon was a packet sniffer
on the Gigabit Ethernet uplink of the university backbone and the MIB entries
from the backbone router that were polled by our SNMP sensor. The router is a
CISCO 6500 with Netflow enabled, so that we have access to flow level statistics.

In our initial experiments we used both sensor types that we described earlier
and were able to detect all 3 types of attacks successfully. In our setup, mea-
suring the false positive or false negative alarms is hard and would be highly
variable with the sensor’s threshold adjustment. Nevertheless our experience

3spoofing was performed by selecting source addresses from the attackers real subnet in
order to bypass any e-gress or RPF filtering
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indicates that we are able to maintain a low false positive alarm rate with rea-
sonable effort from the part of the network administrator.

We will present here some representative expirement results that highlight
that even if one sensor fails to detect an outgoing attack, combined knowledge
gathered from other sensors that may work indicates clearly the increased belief
on an attack state. In this expirement a UDP attack flooded the victim with
a 34Mbps packet stream. As we see in figure 6 the active flows metric failed
to identify the attack because the spoofing mechanism was choosing source and
destination ports from a limited range. Nevertheless the incoming/outgoing
UDP bytes/sec metric successfully identified an anomaly (figure 5).
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Figure 5: Real output from Snort-plugin that
shows that in/out UDP and ICMP bytes/sec
are good heuristics for UDP attacks.
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Figure 6: Real output from SNMP collec-
tor that shows that the ’Flow learn failure’
heuristics partially detected the attack but
the ’Number of active flows’ metric failed.

These sensor measurements were then translated and expressed as bpa’s that
are shown in figures 7 and 8.
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Figure 7: The basic probability assignment
that corresponds to figure 5
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Figure 8: The basic probability assignment
that corresponds to figure 6

The fusion node that combined the reported beliefs generated the higher
level network state representation that we can see in figure 9. With this picture
as input, the human operator could easily identify a potential UDP attack and
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start an in dept exploration that will begin with an evaluation of the invidual
sensor reports.
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Figure 9: The output of the fusion node that combined the beliefs of figures 8
and 7

5.2 Discussion

The evaluation of the proposed algorithms and architecture can be the topic
of a lengthy discussion. Implementing and incorporating these ideas into the
security management infrastructure of an operational network may be a task of
significant difficulty, but at the same time it may offer several advantages like
those summarized below.

• We don’t need to assume anything about the probability of the system
being on a certain state, ie how often attacks occur. We just express
beliefs that a monitored event supports a state.

• We can use the representation of ignorance to incorporate the false alarm
rate or the predicted accuracy of a sensor to lower the false alarm rate of
the fused reports.

• We can utilize many data sources, based on different detection algorithms.
This way we can leverage on promising detection algorithms that have
already been proposed.

• Based on the generic representation of knowledge in terms of basic proba-
bility assignments we can incorporate knowledge from traditional network
monitoring infrastructure like service disruption alerts.

• The mathematical notation of membership function definition can be used
to found the basis of a communication protocol for IDS collaboration as
it allows fusion of data from diverse sensors.

• We can activate detection algorithms on demand, to refine our beliefs in
the light of new evidence.

One common drawback of knowledge-based systems is that they can be as good
as the sources from which they acquire their knowledge. Utilizing expert knowl-
edge of network administrators might not be enough. One of the strengths of our

14



approach is that we are able to incorporate any successful detection algorithm
that has been proposed in the literature by simply adding a layer of abstrac-
tion in terms of basic bpa’s, such a candidate algorithm is MULTOPS [9]. The
most important fact is, that reports from other scientific fields like, traffic in-
cident detection [1] or equipment condition monitoring [20] indicate that using
Dempster-Shafer to combine results of different detection algorithms increases
the detection rate. One other point that can be considered as a weakness of the
proposed modeling framework is its inability to detect multiple simultaneous
attacks, as we assume a mutually exclusive set of system states 4.

6 Conclusion

This paper proposes the use of Dempster-Shafer’s Theory of Evidence as the
underlying data fusion model for creating a DDoS detection engine. The mod-
eling strength of the mathematical notation as well as the ability to take into
account knowledge gathered from totally heterogeneous information sources are
only some of the advantages. To demonstrate our idea we have developed a pro-
totype that consists of a Snort preprocessor-plugin and a SNMP data collector
that provide the necessary input that through heuristics feed the D-S inference
engine. This simple but powerful data fusion paradigm can potentially include
many of the proposed DDoS detection algorithms with their own strengths and
weaknesses and could provide new solutions to the DDoS mitigation problem.
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