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Modeling the Size of Wars: From Billiard Balls to Sandpiles 
LARS-ERIK CEDERMAN Harvard University 

TR ichardson's finding that the severity of interstate wars is power law distributed belongs to the most 
striking empirical regularities in world politics. This is a regularity in search of a theory. Drawing 
on the principles of self-organized criticality, I propose an agent-based model of war and state 

formation that exhibits power-law regularities. The computational findings arsuggest that the scale-free 
behavior depends on a process of technological change that leads to contextually dependent, stochastic 
decisions to wage war. 

Since Richardson's (1948, 1960) pioneering statis- 
tical work, we know that casualty levels of wars 
are power law distributed. Power laws tell us that 

the size of an event is inversely proportional to its 
frequency. Among earthquakes, for example, there are 
many with few casualties, fewer large ones, and very few 
huge disasters. Among wars, doubling the severity in 
terms of casualties leads to a decrease in frequency by 
a constant factor regardless of the size in question. This 
remarkable finding is among the most accurate and ro- 
bust to be found in world politics. 

This pattern has important consequences for both 
theory and policy. With respect to the latter, regulari- 
ties of this type help us predict the size distribution of 
future wars and could therefore assist force-planning 
(Axelrod 1979). Focusing on war-size distributions also 
shifts attention from an exclusive reliance on micro- 
based arguments to a more comprehensive view of 
the international system. Given the decline of systems- 
level theorizing in international relations, this is a 
helpful corrective. As I show below, the implications 
of the power-law regularity challenge conventional 
equilibrium-based arguments, which currently domi- 
nate the field. 

Despite the importance of Richardson's law, scholars 
of international relations have paid little attention to 
it. Some recent confirmatory studies exist, but to my 
knowledge, few, if any, attempts have been made to un- 
cover the underlying mechanisms. Drawing on recent 
advances in nonequilibrium physics, I argue that con- 
cepts such as "scaling" and "self-organized criticality" 
go a long way toward providing an explanation. Relying 
on the explanatory strategy utilized by physicists, I re- 
generate the regularity with the help of an agent-based 
model, called GeoSim, that traces transitions between 
equilibria. The formal framework itself belongs to a 
well-known family of models pioneered by Bremer and 
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Mihalka (1977) that has not previously been used for 
this purpose. Thus, my goal is to modify existing theo- 
retical tools to confront a well-known empirical puzzle. 

RICHARDSON'S PUZZLE 
In 1948, the English physicist and meteorologist Lewis 
F Richardson published a landmark paper entitled 
"Variation of the Frequency of Fatal Quarrels with 
Magnitude" (Richardson 1948). Richardson divided 
domestic and international cases of violence between 
1820 and 1945 into logarithmic categories ,t = 3, 4, 5, 6, 
and 7 corresponding to casualties measured in pow- 
ers of 10. Based on his own updated compilation of 
conflict statistics, Richardson (1960) recorded 188, 63, 
24, five, and two events that matched each category, 
respectively, the latter two being the two world wars. 
His calculations revealed that the frequency of each size 
category follows a simple multiplicative law: for each 
10-fold increase in severity, the frequency decreased by 
somewhat less than a factor of three. 

To investigate whether these findings hold up in the 
light of more recent quantitative evidence, I use data 
from the Correlates of War (COW) Project (Geller and 
Singer 1998) while restricting the focus to interstate 
wars. Instead of relying on direct frequency counts for 
each order of magnitude as did Richardson, my calcu- 
lations center on the cumulative relative frequencies 
of war sizes N(S > s), where S is the random variable 
of war sizes. This quantity can be used as an estimate of 
the probability P(S > s) that there are wars of greater 
severity than s. Thus, whereas for small wars the likeli- 
hood of larger conflicts occurring has to be close to one, 
this probability approaches zero for very large events 
because it is very unlikely that there will be any larger 
calamities. 

In formal terms, it can be postulated that the cumu- 
lative probability scales as a power law: 

P(S > s)= CsD, 

where C is a positive constant and D is a negative 
number.1 Using double logarithmic scales, Figure 1 
plots the cumulative frequency P(S > s) as a function 
of the severity s of interstate wars between 1820 and 

1 Power laws are also referred to as "l/f" laws since they describe 
events with a frequency that is inversely proportional to their size 
(Bak 1996, 21-24; Jensen 1998, 5). This is a special case with D= -1. 
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FIGURE 1. Cumulative Frequency Distribution of Severity of Interstale Wars, 1820-1997 
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Source: COW data. 

1997. If a power law operates, the fit should be linear: 

logP(S > s) = logC + D logs, 

with the intercept logC and the slope coefficient D. 
As can be readily seen in Figure 1, the linear fit is 

strikingly good (R2 = 0.985), confirming that the dis- 
tribution follows a power law. The data points in the 
lower right-hand corner represent the world wars. The 
vast majority of all other wars reach considerably lower 
levels of severity, though without straying very far from 
the estimated line. The slope estimate (-0.41) implies 
that a 10-fold increase in war severity decreases the 
probability of war by a factor of 2.6 (=1/10-? 41). 

This regularity appears to be robust. It can be shown 
that these findings generalize beyond the two last cen- 
turies covered by the COW data. Similar calculations 
applied to Levy's (1983) compilation of European great 
power wars from 1495 to 1965 yield a similarly straight 
line in a log-log diagram with an R2 of 0.99, though 
with a steeper slope (-0.57 instead of -0.41).2 

2 The slope was estimated from severity 10,000 and above because 
Levy's (1983) exclusion of small-power wars would lead to under- 
sampling for low levels of severity. Preliminary analysis together with 
Victoria Tin-bor Hui has yielded promising results for Ancient China, 
659-221 BC, despite very incomplete casualty figures (for data, see 
Hui 2000). In this case, the slope becomes even steeper. 

Given these strong results, it may seem surprising 
that so few scholars have attempted to account for 
what seems to be an important empirical law. In fact, 
the situation is not very different from the economists' 
failure to explain the power law governing the distribu- 
tion of city sizes, also known as Zipf's law. Using urban 
population data from many countries, researchers have 
established that the rank of city size typically correlates 
astonishingly well with city size.3 In an innovative book 
on geography and economics, Krugman (1995, 44) ad- 
mits that "at this point we have to say that the rank-size 
rule is a major embarrassment for economic theory: 
one of the strongest statistical relationships we know, 
lacking any clear basis in theory." 

Richardson's law remains an equally acute embar- 
rassment. Although the law has been known for a 
long time, the vast majority of researchers have paid 
scant attention to it. For example, Geller and Singer 
(1998) make no mention of it in their comprehensive 
survey of quantitative peace research dating back sev- 
eral decades (see also Midlarsky 1989 and Vasquez 
1993). Those scholars who have focused explicitly on 
the relationship between war severity and frequency 
have observed an inverse correlation but have typically 

3 Since rank is closely linked to the cumulative density function, this 
relationship is equivalent to the power laws reported in Figure 1. 
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not framed their findings in terms of power laws (e.g., 
Gilpin 1981, 216; Levy and Morgan 1984). To my 
knowledge there are extremely few studies that address 
Richardson's law directly.4 

Given the discrepancy between the strong empirical 
findings and the almost-complete absence of theoreti- 
cal foundations on which to rely to account for them, 
we are confronted with a classical puzzle. This scholarly 
lacuna becomes all the more puzzling because of the 
notorious scarcity of robust empirical laws in political 
science or international relations. Despite decades of 
concerted efforts to find regularities, why have so few 
scholars followed in the footsteps of Richardson, who, 
after all, is considered to be one of the pioneers of the 
systematic analysis of conflict? Postponing considera- 
tion of this question to the concluding section, I instead 
turn to a literature that appears to have more promise 
in accounting for the regularity. 

SCALING AND SELF-ORGANIZED 
CRITICALITY 

Natural scientists have been studying power laws in var- 
ious settings for more than a decade. Usually organized 
under the notion of self-organized criticality (SOC), the 
pioneering contributions of Per Bak and others have 
evolved into a burgeoning literature that covers topics 
as diverse as earthquakes, biological extinction events, 
epidemics, forest fires, traffic jams, city growth, market 
fluctuations, firm sizes, and, indeed, wars (for popu- 
lar introductions, see Bak 1996 and Buchanan 2000). 
Alternatively, physicists refer to the key properties of 
these systems under the heading of "scale invariance" 
(Stanley et al. 2000). 

Self-organized criticality is the umbrella term that 
connotes slowly driven threshold systems that exhibit 
a series of meta-stable equilibria interrupted by distur- 
bances with sizes scaling as power laws (Jensen 1998, 
126; Turcotte 1999, 1380). In this context, thresholds 
generate nonlinearities that allow tension to build up. 
As the name of the phenomenon indicates, there must 
be elements of both self-organization and criticality. 
Physicists have known for a long time that, if constantly 
fine-tuned, complex systems, such as magnets, some- 
times reach a critical state between order and chaos 
(Buchanan 2000, chap. 6; Jensen 1998, 2-3). What is 
unique about SOC systems, however, is that they do not 
have to be carefully tuned to stay at the critical point 
where they generate the scale-free output responsible 
for the power laws.5 

Using a sandpile as a master metaphor, Bak (1996, 
chap. 3) constructed a simple computer model that pro- 
duces this type of regularity (see Bak and Chen 1991 
and Bak, Tang, and Wiesenfeld 1987). If grains of sand 

4 Among the exceptions, we find Cioffi-Revilla and Midlarsky (n.d.), 
who suggest that the power-law regularity applies not only to inter- 
state warfare but also to civil wars (see also Weiss 1963 and Wesley 
1962). 
5 Yet it is not required that SOC holds for any parameter values. 
As least to some extent, the question of sensitivity depends on the 
particular domain at hand (Jensen 1998, 128). 

trickle down slowly on the pile, power law-distributed 
avalanches will be triggered from time to time. This 
example illustrates the abstract idea of SOC: A steady, 
linear input generates tensions inside a system that in 
turn lead to nonlinear and delayed output ranging from 
small events to huge ones. 

Whereas macro-level distributions emerge as stable 
features of scale-free systems, at the micro level, such 
systems exhibit a strong degree of path dependence 
(Arthur 1994; Pierson 2000). To use the sandpile as 
an illustration, it matters exactly where and when the 
grains land. This means that point prediction often 
turns out to be futile, as exemplified by earthquakes. 
This does not mean, however, that no regularities exist. 
In particular, it is important to distinguish complex self- 
organized systems of the SOC kind from mere chaos, 
which also generates unpredictable behavior (Axelrod 
and Cohen 1999, xv; Bak 1996, 29-31; Buchanan 2000, 
14-15). 

All this is interesting, but do these insights really 
generalize to interstate warfare? Though useful as a 
diagnostic, the mere presence of power laws does not 
guarantee that the underlying process is characterized 
by SOC. Like any other class of explanations, such 
accounts ultimately hinge on the theoretical and em- 
pirical plausibility of the relevant causal mechanisms. 
This is precisely the weakness afflicting the few at- 
tempts that have so far been made to explain why wars 
are power law distributed. Recently, Turcotte (1999, 
1418-1420) has observed that Richardson's result re- 
sembles a model of forest fires (see also Roberts and 
Turcotte 1998). Computational models of such phe- 
nomena are known to produce slope coefficients not 
unlike the one in Figure 1. If forest fires start when 
lightning ignites sparks that spread from tree to tree, 
Turcotte (1999, 1419) suggests, " a war must begin in a 
manner similar to the ignition of a forest. One country 
may invade another country, or a prominent politician 
may be assassinated. The war will then spread over the 
contiguous region of metastable countries" (see also 
Buchanan 2000, 189). 

Though suggestive, this analogy cannot serve as 
an explanation in its own right, because at the level 
of mechanisms, there are simply too many differ- 
ences between forests and state systems. Nevertheless, 
Turcotte's conjecture points in the right direction. The 
key to any explanation of war sizes depends on how 
wars spread, and we therefore need to explore what is 
known or suspected about this topic. 

EXPLAINING THE SCOPE OF WARFARE 

Accounting for the size of wars is equivalent to explain- 
ing how conflicts spread. Rather than treating large 
wars, such as the world wars, as qualitatively distinct 
events requiring separate explanations (e.g., Midlarsky 
1990), it is preferable to advance a unified theory that 
explains all wars regardless of their size (e.g., Kim and 
Morrow 1992). Apart from the inherent desirability of 
more general explanations, the stress on SOC encour- 
ages us to search for scale-invariant explanations. 
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Although most of the literature focuses on the causes 
of war, some researchers have attempted to account 
for how wars expand in time and space (Siverson and 
Starr 1991). Most of these efforts center on diffusion 
through borders and alliances. Territorial contiguity 
is perhaps the most obvious factor enabling conflict 
to spread (Vasquez 1993, 237-40). Evidence indicates 
that states exposed to "warring border nations" are 
more likely to engage in conflict than those that are 
not so exposed (Siverson and Starr 1991, chap. 3). 
Geopolitical adjacency in itself says little about how 
warfare expands, however. The main logic pertains 
to how geopolitical instability changes strategic calcu- 
lations by altering contextual conditions: "An ongo- 
ing war, no matter what its initial cause, is likely to 
change the existing political world of those contiguous 
to the belligerents, creating new opportunities, as well 
as threats" (Vasquez 1993, 239; see also Wesley 1962). 
Henceforth, I will refer to this mechanism as context 
activation. 

The consensus among researchers is that alignment 
also serves as a primary conduit of conflict by entan- 
gling states in conflictual clusters (see Vasquez 1993, 
234-37). In fact, the impact of "warring alliance part- 
ners" appears to be stronger than that of warring border 
nations (Siverson and Starr 1991). Despite the obvi- 
ous importance of alliances, however, I consider only 
contiguity. Because of its simplicity, the alliance-free 
scenario serves as a useful baseline for further inves- 
tigations. Drawing on Vasquez' reference to strategic 
context, I assume that military victory resulting in con- 
quest changes the balance-of-power calculations of the 
affected states. The conqueror typically grows stronger 
while the weaker side loses power. This opens up new 
opportunities for conquest, sometimes prompting a 
chain reaction that will stop only when deterrence or 
infrastructural constraints dampen the process (e.g., 
Gilpin 1981; Liberman 1996). 

What could turn the balance of power into such a pe- 
riod of instability? The list of sources of change is long, 
but I highlight one crucial class of mechanisms relating 
to environmental factors. Gilpin (1981, chap. 2) asserts 
that change tends to be driven by innovations in terms 
of technology and infrastructure. Such cases of techno- 
logical change may facilitate both resource extraction 
and power projection. In Gilpin's words, "technolo- 
gical improvements in transportation may greatly en- 
hance the distance and area over which a state can 
exercise effective military power and political influ- 
ence" (57). 

As Gilpin (1981,60) points out, technological change 
often gives a particular state an advantage that can 
translate into territorial expansion. Even so, "interna- 
tional political history reveals that in many instances 
a relative advantage in military technique has been 
short-lived. The permanence of military advantage is 
a function both of the scale and complexity of the in- 
novation on which it is based and of the prerequisites 
for its adoption by other societies." Under the pres- 
sure of geopolitical competition, new military or logis- 
tical techniques typically travel quickly from country to 
country until the entire system has adopted the more 

effective solution. It is especially in such a window of 
opportunity that conquest takes place. 

Going back to the sandpile metaphor, it is instruc- 
tive to liken the process of technological change to 
the stream of sand falling on the pile. As innova- 
tions continue to be introduced, there is a trend to- 
ward formation of larger political entities thanks to 
the economies of scale. Context activation, in turn, 
provokes "avalanches" as contingent chains of war de- 
cisions. If the SOC conjecture is correct, the wars erupt- 
ing as a consequence of this geopolitical process should 
conform with a power law. 

MODELING GEOPOLITICS: GEOSIM 

How can we move from models of sandpiles and forest 
fires to more explicit formalizations of war diffusion? 
Because the power law in Figure 1 stretches over two 
centuries, it is necessary to factor in Braudel's longue 
duree of history. But such a perspective raises the 
explanatory bar considerably, because this requires a 
view of states as territorial entities with dynamically 
fluctuating borders rather than as fixed billiard balls 
(Cederman 1997, 2002; Cederman and Daase 2003). 
Levy's data, focusing on great power wars in Europe, 
for example, coincide with massive rewriting of the 
geopolitical map of Europe. In early modern Europe, 
there were as many as 500 independent geopolitical 
units in Europe, a number that decreased to some 20 
by the end of Levy's sample period (Tilly 1975, 24; cf. 
also Cusack and Stoll 1990, chap. 1). 

It therefore seems hopeless to trace macro patterns 
of warfare without problematizing the very boundaries 
of states. Fortunately, a family of models exists that 
does precisely that. Bremer and Mihalka (1977) in- 
troduced an imaginative framework of this type fea- 
turing conquest in a hexagonal grid, later extended 
and further explored by Cusack and Stoll (1990). 
Building on the same principles, the current model, 
which was originally coded in Pascal (Cederman 1997) 
and is here implemented in the Java-based toolkit 
Repast (see http://repast.sourceforge.net), differs in 
several respects from its predecessors (see also Ceder- 
man 2001a). These models are all agent-based. Agent- 
based modeling is a computational methodology that 
allows scientists to create, analyze, and experiment 
with, artificial worlds populated by agents that inter- 
act in non-trivial ways and that constitute their own 
environment (see Axelrod 1997; Epstein and Axtell 
1996). 

Most importantly, due to its sequential activation of 
actors interacting in pairs that hardwires the activation 
regime, Bremer and Mihalka's framework is not well 
suited for studying the scope of conflicts. In contrast, 
the quasi-parallel execution of the model presented 
here allows conflict to spread and diffuse, potentially 
over long periods of time. Moreover, in the Bremer- 
Mihalka configuration, combat outcomes concern 
entire countries at a time, whereas in the present for- 
malization, they affect single provinces at the local 
level (see Cederman 1997, 82-83). Without this more 

138 

Modeling the Size of Wars February 2003 



American Political Science Review Vol. 97, No. 1 

FIGURE 2. Technological Change Modeled as a Shift of Loss-of-Strength Gradients 
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fine-grained rendering of conflicts, it is difficult to mea- 
sure the size of wars accurately. 

The standard initial configuration consists of a 
50 x 50 square lattice populated by about 200 compos- 
ite, state-like agents interacting locally. Because of the 
boundary-transforming influence of conquest, interac- 
tions among states take place in a dynamic network 
rather than directly in the lattice. In each time period, 
the actors allocate resources to each of their fronts and 
then choose whether or not to fight with their territorial 
neighbors. Half of each state's resources is allocated 
evenly to its fronts and the remaining half goes to a pool 
of fungible resources distributed in proportion to the 
neighbors' power. This scheme assures that military ac- 
tion on one front dilutes the remaining resources avail- 
able for mobilization, and this dilution in turn creates a 
strong strategic interdependence that ultimately affects 
other states' decision-making. The Appendix describes 
this and all the other computational rules in greater 
detail. 

For the time being, let us assume that all states use 
the same "grim-trigger" strategy in their relations. Nor- 
mally, they reciprocate their neighbors' actions. Should 
one of the adjacent actors attack them, they respond in 
kind without relenting until the battle is won by ei- 
ther side or ends with a draw. Unprovoked attacks can 
happen as soon as a state finds itself in a sufficiently 
superior situation vis-a-vis a neighbor. Set at a ratio 
of three to one, a probabilistic threshold defines the 
decision criterion for such attacks. 

Context activation is implemented as an increased 
alertness to geopolitical changes in case of conflict in a 
state's immediate neighborhood. Due to the difficulties 
of planning an attack, actors challenge the status quo 
with a probability per period as low as 0.01. If fighting 
involves neighboring states, however, the contextual 
activation mechanism prompts the state to enter alert 
status, during which unprovoked attacks are attempted 
in every period. This mechanism of contextual activa- 
tion captures the shift from general to immediate de- 
terrence in crises (Huth 1988, chap. 2).6 

When the local capability balance tips decisively in 
favor of the stronger party, conquest results, imply- 
ing that the victor absorbs the targeted unit. This is 
how composite actors form. If the target was already 
a part of another multiprovince state, the latter loses 
its province. Successful campaigns against the capital 
of composite actors lead to their complete collapse.7 

Territorial expansion has important consequences 
for the states' overall resource levels. After conquest, 
the capitals of conquered territories are able to "tax" 
the incorporated provinces. As shown in Figure 2, the 

6 As a way to capture strategic consistency, states retain the focus 
on the same target state for several moves. Once it is time for a new 
campaign, the mechanism selects a neighbor randomly. 
7 Because the main rationale of the paper is to study geopolitical 
consolidation processes, the current model excludes the possibility of 
secession (although this option has been implemented in an extension 
of the model; see Cederman 2002). 
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FIGURE 3. The Sample System in Time Period 500 

extraction rate depends on the loss-of-strength gradi- 
ent, which approaches one for the capital province but 
falls quickly as the distance from the center increases 
(Boulding 1963; Gilpin 1981, 115; cf. Cederman 1997, 
129). Far away, the rate flattens out around 10% 
(again, see Appendix for details). This function also 
governs power projection for deterrence and combat. 
Given this formalization of logistical constraints, tech- 
nological change is modeled by shifting the threshold 
to the right, a process that allows the capital to extract 
more resources and project them farther away from 
the center. In the simulating runs reported in this 
paper, the transformation follows a linear process in 
time. 

Together these rules have four consequences. First, 
the number of states decreases as the power-seeking 
states absorb their victims. Second, as a consequence 
of conquest, the surviving actors increase in territorial 
size. Third, decentralized competition creates emergent 
boundaries around the composite actors. Fourth, once 
both sides of a border reach a point at which no one is 
ready to launch an attack, a local equilibrium material- 
izes. If all borders are characterized by such balances, a 
global equilibrium emerges. Yet such an equilibrium is 
likely to be temporary because decision-making always 
involves an element of chance, and, in addition, tech- 
nological change affects the geopolitical environment 
of the states. 

AN ILLUSTRATIVE RUN 

The experimental design features two main phases. In 
the initial stage until time period 500, the initial 200 
states are allowed to compete without technological 
change. Figure 3 shows a sample system at this point. 
The lines indicate the states' territorial borders; the 
dots, their capitals. Because of some cases of state 
collapse, the number of states has actually gone up 
to 205. 

After the initial phase, technological change is trig- 
gered and increases linearly for the rest of the simu- 
lation until time period 10,500. At the same time, the 
war counting mechanism is invoked. The task of op- 
erationalizing war size involves two problems. First, 
spatiotemporal conflict clusters have to be identified 
as wars. Once they have been identified, their severity 
needs to be measured. Empirical studies usually opera- 
tionalize severity as the cumulative number of combat 
casualties among military personnel (Geller and Singer 
1998; Levy 1983). To capture this dimension, the al- 
gorithm accumulates the total battle damage incurred 
by all parties to a conflict cluster. The battle damage 
amounts to 10% of the resources allocated to any par- 
ticular front (see Appendix). 

The question of identification implies a more 
difficult computational problem. In real historical 
cases, subject matter experts bring their intuition to 
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FIGURE 4. Technological Change and Warfare in the Sample System at Time Step 3,326 

bear in determining the boundaries of conflict clusters. 
Although determining what constitutes a "case" is not 
always straightforward (Ragin and Becker 1992), wars 
tend to be reasonably well delimited (but see Levy 
1983, chap. 3). In an agent-based model, in contrast, this 
task poses considerable problems because of the lack of 
historical intuition. The model therefore includes a spa- 
tiotemp.oral cluster-finding algorithm that distinguishes 
between active and inactive states. Active states are 
those that are currently fighting or fought in the last 20 
time periods. The latter rule introduces a "war shadow" 
that blurs the measurement so that brief lulls in combat 
do not obscure the larger picture. A cluster in a specific 
period is defined as any group of adjacent fighting states 
as long as conflictual interaction binds them together. 
This allows for the merger of separate conflicts into 
larger wars. The temporal connection is made by letting 
states that are still fighting in subsequent periods retain 
their cluster identification. Once no more active state 
belongs to the conflict cluster, it is defined as a 
completed war and its accumulated conflict count is 
reported. 

Figure 4 illustrates the sample system at time pe- 
riod 3,326. The three highlighted areas correspond to 
conflict clusters that remained local. Whereas most con- 
flicts involve two or three actors, some engulf large parts 
of the system. 

The technological diffusion process starts as soon as 
the initial period is over, as indicated by the states with 

capitals marked as rings rather than filled squares in 
Figure 4. These states have experienced at least one 
shift of their loss-of-strength gradient. This process has 
dramatic consequences over the course of the simu- 
lation. Figure 5 depicts the final configuration of the 
sample run in time period 10,500. At this stage, only 
35 states remain in the system, some of which have 
increased their territory considerably. Smaller states 
manage to survive because, as a rule, they have fewer 
fronts to defend and are in some cases partly protected 
by the boundary of the grid. 

Having explored the qualitative behavior of the 
model, I can address the question of whether the model 
is capable of generating robust power laws. 

REPLICATIONS 

Let us start by exploring the output of the illustrative 
run. Based on the same type of calculations as in the 
empirical case, Figure 6 plots the cumulative frequency 
against corresponding war sizes. It is clear that the 
model is capable of producing power laws with an im- 
pressive linear fit. In fact, the R2 of 0.991 surpasses the 
fit of the empirical distribution reported in Figure 1.8 

Equally importantly, the size range extends over more 

8 This analysis excludes war events that fall below 2.5 on the loga- 
rithmic scale, because the clustering mechanism puts a lower bound 
on the wars that can be detected. 
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FIGURE 5. The Final State of the Sample Run at Time 10,500 

FIGURE 6. Simulated Cumulative Frequency Distribution in the Representative Sample Run 
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TABLE 1. Replication Results Based on 15 Runs of Each System 
Slope Coefficient D R2 

Range N Wars 
Min. Median Max. Min. Median Max. (Median) (Median) 

Main results 
1. Base runs -0.64 -0.55 -0.49 0.975 0.991 0.996 4.2 204 
2. Smaller shocksa -0.71 -0.62 -0.56 0.968 0.980 0.993 3.7 267 
3. No shocks -1.43 -1.32 -1.17 0.878 0.941 0.975 1.4 132 
4. No context activation -1.52 -1.34 -1.20 0.835 0.882 0.934 1.6 696 

Sensitivity analysis 
5. warShadow=10 -0.69 -0.60 -0.53 0.966 0.990 0.996 4.2 325 
6. warShadow =40 -0.60 -0.50 -0.45 0.970 0.989 0.997 4.2 148 
7. supThresh=2.5a -0.62 -0.53 -0.46 0.965 0.984 0.991 4.3 210 
8. propMobile=0.9 -0.65 -0.58 -0.53 0.954 0.987 0.992 4.3 250 
9. distOffset=0.2 -0.72 -0.52 -0.43 0.908 0.990 0.995 4.4 211 

10. distSlope=5 -0.60 -0.53 -0.46 0.974 0.986 0.991 4.3 217 
11. nx x ny=75 x 75 -0.67 -0.59 -0.54 0.987 0.993 0.996 4.6 502 

Note: See Table A1 for explanations of the parameter names. 
a Based on runs with shockSize= 10 instead of 20. 

than four orders of magnitude, paralleling the wide re- including the initial configuration. Each replication 
gion of linearity evidenced in the historical data. More- lasted from time zero all the way to time period 
over, with a slope of -0.64, the inclination also comes 10,500. As reported in line 1 in Table 1, regression ana- 
close to the empirical levels. lysis of these series yields R2 values ranging from 0.975 

The choice of the sample system is not accidental. In to 0.996, with a median of 0.991, corresponding to the 
fact, it represents a larger set of systematic replications sample run. The table also reveals that although the 
with respect to linear fit. More precisely, the illustrative linear fit and the size range of this run are typical, its 
run corresponds to the median R2 value of a pool of slope is far below the median of -0.55. As a com- 
15 artificial histories, which were generated by vary- plement, Figures 7 and 8 summarize the replication 
ing the random seed that governs all stochastic events, findings graphically. The former histogram confirms 

FIGURE 7. Distribution of Linear Fits R2 for the 15 Base Runs 
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FIGURE 8. Distribution of Slope Coefficients D for the 15 Base Runs 
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that the linear fit of all the runs falls around the median 
at 0.991. The slope distribution, shown in Figure 8, is 
somewhat more scattered, but it is not hard to discern a 
smoother distribution describing the general behavior 
of the system. 

These findings are encouraging. Yet establishing the 
presence of power laws in a small set of runs is not 
the same thing as highlighting their causes. Therefore, 
I now turn to a set of experiments that will help identify 
the underlying causes of the regularities. 

WHAT DRIVES THE RESULTS? 

The previous section showed findings based on one 
specific set of parameters. Table Al (Appendix) re- 
minds us that there are many knobs to turn. Indeed, 
the calibration process is rather difficult. Given that 
war has been a rare event in the Westphalian system, 
the trick is to construct a system that "simmers" without 
"boiling over" into perennial warfare. Here I describe 
a series of experiments that suggest that technological 
change and contextual activation, rather than other 
factors, are responsible for the production of power 
laws. 

The easiest way to establish the result relating tech- 
nological change is to study a set of counterfactual runs 
with fewer, or no, such transformations. Reflecting a 
loss-of-strength gradient shifted 10 steps instead of 20, 
the runs corresponding to line 2 in Table 1 indicate that 

the linearity becomes somewhat less impressive, with 
a median R2 of 0.980 and a less expansive size range of 
3.7. Furthermore, the median slope becomes as steep 
as -0.62. Once the process of technological change 
is entirely absent, the scaling behavior disappears 
altogether, as indicated in line 3. With a representative 
R2 of 0.941 and a range of 1.4, the linear fit falls well 
short of what could be expected from even imperfect 
power laws. Experiments with systems lacking contex- 
tual activation show that power-law behavior is unlikely 
without this mechanism. In these runs, the linearity 
drops to levels even lower than without technological 
change (see Table 1, line 4). 

These experiments confirm that technological 
change and contextual decisionmaking play crucial 
roles in generating progressively larger conflicts. How- 
ever, the findings say little about the general ro- 
bustness of the scale-free output. It is thus appro- 
priate to investigate the consequences of varying other 
dimensions of the model. Keeping all other settings 
identical to the base runs except for the dimension un- 
der scrutiny, lines 5 through 11 in Table 1 reveal that the 
power laws generated in the base runs are not artifacts 
of a unique parameter combination. Within bounds, 
these regularities do not seem to be very sensitive to 
changes in the "war shadow" of the war-counting mech- 
anism (lines 5 and 6), the states' "trigger happiness" 
(line 7), the fungibility of resource allocation (line 8), 
the shape of the distance gradient (lines 9 and 10), or 
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the size of the grid (line 11). The last section in the Ap- 
pendix provides more precise information about these 
experiments. 

Obviously, the point of the sensitivity analysis is not 
that the power laws hinge exclusively on technologi- 
cal change and the contextual activation mechanism. 
It is not hard to make the scale-free output vanish by 
choosing extreme values on any of the dimensions re- 
lating to lines 5 to 11 in Table 1, or other parameters 
for that matter. Because finding this intermediate range 
of geopolitical consolidation requires considerable pa- 
rameter adjustment in the current model, the pure case 
of parameter insensitivity characterizing SOC cannot 
be said to have been fully satisfied. Yet the qualitative 
behavior appears to remain for a reasonably large range 
of values and dimensions. Ultimately, extensive empiri- 
cal calibration of the these parameters and mechanisms 
will be required to reach an even firmer conclusion 
about the causes of Richardson's law. 

In general terms, it is clear that scaling behavior de- 
pends on both a logistical "brake" slowing down the 
states' conquering behavior and an "acceleration ef- 
fect," in this case represented by the contextual acti- 
vation mechanism. What self-correcting mechanisms 
could render the scale-free behavior even less sensi- 
tive to parameter variations? It should be noted that I 
have made a number of simplifying assumptions, which 
might render the computational power laws less robust 
than they are in the real world. First, attention must 
turn to alliances since, as noted above, they have been 
singled out in the theoretical and empirical literature on 
war diffusion. More generally, interaction has been re- 
stricted to contiguous neighbors. Relaxing that assump- 
tion would allow great powers to extend their reach 
far beyond the neighboring areas. Such a mechanism 
would help explain how large conflicts spread. 

At the structural level, it would be necessary to con- 
sider secession and civil wars (see Cederman 2002). 
These constrains could slow down positive-feedback 
cycles of imperial expansion through implosion. The 
exclusive focus on local, contiguous combat assumes 
away far-reaching interventions by great powers both 
on land and at sea. Moreover, nationalism affects not 
only the extractive capacity but also the boundaries of 
states through national unification and secession. 

CONCLUSION 

Despite the complications introduced by parameter 
sensitivity, the GeoSim model in its present "stripped" 
form has fulfilled its primary purpose of generating 
power laws similar to those observed in empirical data. 
The current framework may well be the first model of 
international politics that does precisely that. In addi- 
tion, technological change and contextually activated 
decision-making go a long way toward explaining why 
power laws emerge in geopolitical systems. Without 
these mechanisms, it becomes very hard to generate 
scale-free war-size distributions. These findings take 
us one step closer to resolving Richardson's original 
puzzle, first stated more than half a century ago. The 

computational reconstruction of this regularity should 
strengthen confidence in the conjecture that interstate 
warfare actually follows the principles of self-organized 
criticality. However, stronger confidence does not equal 
conclusive corroboration, which requires considerably 
more accurate portrayal of the causal mechanisms gen- 
erating the phenomenon in the first place. 

If we nevertheless assume that the SOC conjecture 
holds, important consequences for theory-building fol- 
low. By using the method of exclusion, we have to ask 
what theories are capable of generating regularities of 
this type.9 Most obviously, the logic of SOC casts doubt 
on static equilibrium theories as blueprints for systemic 
theorizing. If wars emanate from disequilibrium pro- 
cesses, then these theories' narrow focus on equilib- 
rium is misguided. It is not hard to find the main reason 
for this ontological closure: Micro economic theory has 
served as a dominant source of inspiration for theory 
builders, and this influence has grown stronger with the 
surge of rational choice research (Thompson 2000, 26). 

At the level of general theorizing, Waltz (1979) epit- 
omizes this transfer of analogies by stressing the preva- 
lence of negative feedback and rationality in history. 
Yet if SOC is a correct guide to interstate phenomena 
such as war, it seems less likely that static frameworks 
such as that suggested by Waltz are the right place 
to start in future attempts to build systems theory. In 
fact, his sweeping anarchy thesis remains too vague 
to be particularly helpful in explaining particular wars 
or any aggregate pattern of warfare for that matter 
(Vasquez 1993). 

This reasoning does not render realist analysis of 
warfare obsolete, but it does tell us that such theorizing 
needs to rest on explicitly spatiotemporal foundations. 
In fact, Gilpin's (1981) analytical sketch of war and 
change may offer a more fruitful point of departure 
than does Waltz's. Partly anticipating the SOC perspec- 
tive, Gilpin (1981) advances a dialectical theory that 
interprets wars as releases of built-up tensions in the 
international system: "As a consequence of the chang- 
ing interest of individual states, and especially because 
of the differential growth in power among states, the 
international system moves from a condition of equi- 
librium to one of disequilibrium" (14). Once the ten- 
sion has been accumulated, it will sooner or later be 
released, usually in a violent way: "Although resolution 
of a crisis through peaceful adjustment of the systemic 
disequilibrium is possible, the principal mechanism of 
change throughout history has been war, or what we 
shall call hegemonic war" (15). Yet, rather than adopt- 
ing an exclusively revolutionary approach to warfare, 
Gilpin realizes that most adjustments produce much 
smaller conflicts. By adopting an explicit nonequilib- 
rium focus, Gilpin provides a more helpful analytical 
starting point for dynamic systems theorizing than does 
Waltz (see also Organski and Kugler 1980). 

Viewed as a source of theoretical inspiration, then, 
the sandpiles of nonequilibrium physics may prove 

9 For a similar critique of conventional theorizing, see Robert Axtell 
(2000), who proposes a simple model to account for power law- 
distributed firm sizes in the economy. 
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more useful as master analogies than either the bil- 
liard balls of classical physics or the "butterfly effect" of 
chaos theory. Earthquakes, forest fires, biological evo- 
lution, and other historically formed complex systems 
serve as better metaphors for the broad picture of world 
history than "ahistorical" pool tables or intractable tur- 
bulence. It may not be a coincidence that scholars trying 
to make sense of historical disruptions have been prone 
to use seismic analogies. According to Gaddis's (1992, 
22) analysis of the end of the Cold War, "[W]e know 
that a series of geopolitical earthquakes have taken 
place, but it is not yet clear how these upheavals have 
rearranged the landscape that lies before us." 

Following in the footsteps of contemporary natural 
science, computational modeling enables theory in po- 
litical science and international relations to move from 
such intriguing, yet very loose, analogies to detailed in- 
vestigations of how causal mechanisms interact in time 
and space. System effects, though well understood by 
qualitative theorists (e.g., Jervis 1997), have not been 
integrated into a comprehensive theory. Most impor- 
tantly, careful modeling may help us avoid the pitfalls of 
the simplistic analogizing that has so often haunted the- 
ory. For example, a seismic analogy supported by sta- 
tistical parallels between wars and earthquake magni- 
tudes could tempt realist "pessimists" to conclude that 
wars are as unavoidable as geological events. Yet such a 
conclusion does not follow from SOC at all, for demo- 
cratic security communities can emerge. Whereas some 
areas of the world are prone to frequent outbreaks of 
interstate violence, in others, catastrophic events are 
virtually unthinkable. But unlike continental plates, 
the Pacific regions are socially constructed features of 
the international system. As conjectured by Kant, the 
emergence of democratic security communities over 
the last two centuries shows that the "laws" of geopol- 
itics can be transcended (Cederman 2001a, 2001b). 

If SOC provides an accurate guide to world politics, 
it can be concluded that disaster avoidance through the 
"taming" of Realpolitik by promoting defensive mech- 
anisms or by avoiding "bandwagoning behavior" may 
be as futile as hoping that the "new economy" will pre- 
vent stock market crashes from ever happening. In the 
long run, we may be willing to pay the price of market 
upheavals to benefit from the wealth-generating effect 
of decentralized markets. In contrast, it is less obvious 
that the world can afford to run the risk of catastrophic 
geopolitical events, such as nuclear wars. The only safe 
way of managing security affairs is to transform the bal- 
ance of power into a situation of trust, which is exactly 
what happened between France and Germany during 
the last half-century. Nuclear calamities would further 
vindicate Richardson's law, but few people would re- 
main to appreciate the advances of social science should 
the ostensibly "impossible" turn out to be just another 
huge low-probability event. 

APPENDIX: DETAILED SPECIFICATION OF 
THE GEOSIM MODEL 

The model is based on a dynamic network of relations among 
states in a square lattice. Primitive actors reside in each cell 

of the grid and can be thought of as the basic units of the 
framework. Although they can never be destroyed, they can 
lose their sovereignty as other actors come to dominate them 
hierarchically. In such a case, the result is a composite actor 
constituted by a capital and provinces. 

All sovereign actors, whether primitive or composite, keep 
track of their geopolitical context with the help of a portfolio 
holding all of their current relationships. These can be of three 
types: 

* Territorial relations point to the four territorial neighbors 
of each primitive actor (north, south, west, and east). 

* Interstate relations refer to all sovereign neighbors with 
which an actor interacts. 

* Hierarchical relations specify the hierarchical link between 
provinces and capitals. 

Whereas all strategic interaction is located at the interstate 
level, territorial relations become important as soon as struc- 
tural change happens. Combat takes place locally and results 
in hierarchical changes that are described below. The order 
of execution is quasi-parallel. To achieve this effect, the list of 
actors is scrambled each time structural change occurs. The 
actors keep a memory of one step and thus in principle make 
up a Markov process. 

Triggered by a model-setup stage, the main simulation loop 
contains five phases that are presented in the following. In the 
first phase, the actors' resource levels are calculated. In the 
second phase, the states allocate resources to their fronts, 
followed by a decision procedure, during which they decide 
on whether to cooperate or defect in their neighbor relations. 
The interaction phase determines the winner of each battle, 
if any. Finally, the structural-change procedure carries out 
conquest and other border-changing transformations. 

This Appendix refers to the parameter settings of the base 
runs reported in line 1 in Table 1. Table Al provides an 
overview of all system parameters, with alternative experi- 
mental settings in parentheses. The last section of the Ap- 
pendix, which is devoted to the sensitivity analysis reported 
in rows 5 through 11 in Table 1, details these settings. 

Model Setup 
At the beginning of each simulation, a square grid with dimen- 
sions nx = ny = 50 is created and populated with a preset num- 
ber of composite actors: initPolarity=200. The algo- 
rithm lets these 200 randomly located actors be the founders 
of their own composite states, the territory of which is re- 
cursively grown to fill out the intermediate space until no 
primitive actors remain sovereign. 

Resource Updating 
As the first step in the actual simulation loop, the resource 
levels are updated. The simple "metabolism" of the system 
depends directly on the size of the territory controlled by each 
capital. It is assumed that all sites in the grid are worth one re- 
source unit. A sovereign actor i begins the simulation loop by 
extracting resources from all of its provinces. It accumulates a 
share of these resources determined by a distance-dependent 
logistical function dist (see Figure 2): 

dist(d,t) =distOffset+(l-distOffset)/ 

{l+(d/distThresh(t))^(-distSlope)}, 

where distOffset=0.1 sets the flat extraction rate for 
long distances, and distSlope=3 the slope of the curve 
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TABLE A1. System Parameters 
Parameter Description Valuesa 
nx, ny Dimensions of the grid 50 x 50 (75 x 75) 
initPolarity Initial number of states 200 (450) 
initPeriod Length of initial period 500 
duration Duration of simulation after initial period 10,000 
resChange Fraction of new resources per time period 0.01 
propMobile Share of mobile resources to be allocated as opposed to fixed ones 0.5 (0.9) 
pDropCampaign Probability of shifting to other target state after battle 0.2 
pAttack Probability of entering alerted status 0.01 
pDeactivate Probability of leaving alerted status 0.1 
supThresh Logistic threshold for unprovoked attacks 3.0 (2.5) 
supSlope Slope of logistic curve for unprovoked attacks 20 
victThresh Logistic threshold for battle victory 3.0 (2.5) 
victSlope Slope of logistic curve for battle victory 20 
propDamage Share of damage inflicted on opponent 0.1 
distOffset Offset level for distance function 0.1 (0.2) 
distThresh Logistic threshold for distance function at time 0 2 
distSlope Slope of distance function 3 (5) 
pShock Probability of technological change 0.0001 
shockSize Final size of technological shocks at time 10,500 20 (0, 10) 
warShadow Period until next separate war can be identified 20 (10, 40) 
aThe first values correspond to the base runs, and the parenthesized values to the other runs used in the sensitivity analysis (see 
Table 1). 

(higher numbers imply a steeper slope). Technological 
change governs the initial location of the threshold 
distThresh(t), which is a function of time t. To simu- 
late technological development, the threshold of the distance 
function dist (d, t) is gradually shifted outward starting as 
a linear function of the simulation time, where 

distThresh(t) =distThresh+ (t-initPeriod) 
* shockSize/duration 

and distThresh=2, initPeriod=500, and duration= 
10,000, the overall duration of the simulation run after 
the end of the initial period. The added displacement 
shockSize =20 determines the final location of the thresh- 
old. This shift represents the state of the art of technological 
change with which each state catches up with a probability 
pShock= 0.0001 per time period. This probability is contex- 
tually independent of the strategic environment. 

In addition, the battle damage is cumulated for all exter- 
nal fronts (see the interaction module below). Finally, the 
resources res(i,t) of actor i in time period t can be 
computed by factoring in the new resources (i.e., the nondis- 
counted resources of the capital together with the sum of 
all tax revenue plus the total battle damage) multiplied by a 
fraction resChange=0.01. This small amount assures that 
the resource changes take some time to filter through to the 
overall resource level of the state: 

tax=O 
for all provinces j of state i do 

tax=tax+f(dist(i,j),t). 

totalDamage = 0 
for all external fronts j do 

totalDamage=totalDamage+damage(j, i). 

res(i,t)=(1-resChange)*res(i,t-l)+ 
resChange*(l+tax-totalDamage). 

Resource Allocation 

Before the states can make any behavioral decisions, re- 
sources must be allocated to each front. Whereas unitary 

states possess up to four fronts, composite ones can have 
many more relations. Resource allocation proceeds according 
to a hybrid logic. A preset share of each actor's resources is 
considered to be fixed and has to be evenly spread to all 
external fronts. Yet this scheme lacks realism because it un- 
derestimates the strength of large actors, at least to the ex- 
tent that they are capable of shifting their resources around 
to wherever they are needed. The remaining part of the re- 
sources, propMobi 1 e = 0.5, is therefore mobilized in propor- 
tion to the opponent's local strength and the previous activity 
on the respective front. Fungible resources are proportion- 
ally allocated to fronts that are active (i.e., where combat 
occurs), but also for deterrent purposes in anticipation of 
a new attack. Allocation is executed under the assumption 
that only one new attack might happen (see Cederman 1997, 
117-21). 

For example, a state with 50 mobile units could use them 
in the following way assuming that the five neighboring 
states could allocate 10, 15, 20, 25, and 30, respectively. If 
the previous period featured warfare with the second and 
fourth of these neighbors, these two fronts would be allocated 
15/(15 + 25) x 50 = 18.75 and 25/(15 + 25) x 50 = 31.25. Un- 
der the assumption that one more war could start, the 
first, third, and fifth states would be allocated, respectively, 
10/(15 + 25 + 10) x 50 = 10, 20/(15 + 25 + 10) x 50 = 20, and 
30/(15 + 25 + 10) x 50 = 30. 

Formally, resource allocation for state i starts with the 
computation of the fixed resources for each relationship j. A 
preset proportion of the total resources res is evenly spread 
out across the n fronts: 

fixedRes(i, j)=(1-propMobile)*res/n. 

The remaining part, mobileRes=propMobile*res, is al- 
located in proportion to the activity and the strength of the 
opponents. To do this, it is necessary to calculate all resources 
that were targeted against actor i: 

enemyRes (i) =E{j }{res (j, i)}. 
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The algorithm of actor i's allocation can thus be summarized: 

for all relations j do 
in case enemyRes (i) =O,then [actor not under 
attack] 

res (i,j )= fixedRes(i,j ) + mobileRes; 
in case i and j were fighting in the last 
period then 

res(i,j)=fixedRes(i,j)+res(j,i)/ 
enemyRes(i)*mobileRes; 

in case i and j were not fighting in the last 
period then 

res(i,j)=fixedRes(i,j)+res(j,i)/ 
(enemyRes(i) +res(j , i)) 
* mobileRes. 

Decisions 
Once each sovereign actor has allocated resources to its exter- 
nal fronts, it is ready to make decisions about future actions. 
This is done by recording the front-dependent decisions in 
the corresponding relational list. As with resource alloca- 
tion, this happens in parallel through double-buffering and 
randomized order of execution. The contextual activation 
mechanism ensures that the actors can be in either an ac- 
tive or an inactive mode depending on the combat activity of 
their neighbors. Normally, the states are not on alert, which 
means that they attempt to launch unprovoked attacks with a 
low probability, pAt tack = 0.01. If they or their neighboring 
states become involved in combat, however, they automati- 
cally enter the alerted mode, in which unprovoked attacks are 
contemplated in every round. Once there is no more action 
in the neighborhood, an alerted state reenters the inactive 
mode with probability pDeactivate =0.1 per time step. 

All states start by playing unforgiving "grim trigger" with 
all their neighbors. If the state decides to try an unprovoked 
attack, a randomly chosen potential victim j' is selected. In 
addition, a battle-campaign mechanism stipulates that the 
aggressor retains the current target state as long as there are 
provinces to conquer unless the campaign is aborted with 
probability pDropCampaign= 0.2. This rule guarantees that 
the states' target selection does not become too scattered. 

The actual decision to attack depends on a probabilistic cri- 
terion p ( i, j ) that defines a threshold function that depends 
on the power balance in i's favor (see below). If an attack 
is approved, the aggressor chooses a "battle path" consisting 
of an agent and a target province. The target province is any 
primitive actor inside j' (including the capital) that borders 
on i. The agent province is a province inside state i (including 
the capital) that borders on the target. In summary, the deci- 
sion algorithm of a state i can be expressed in pseudo-code. 

Decision Rule of State i. 

for all external fronts j do 
if i orj playedD in the previous period 
then 

act(i,j)=D; 
else 

act(i,j)=C [grim trigger]. 

if there isno action on any front and with 

pAttack or if in alerted status or campaign 
then 

if ongoing campaign against then 
j'= campaign; 

else 
j'= random neighbor j'; 

with p(i,j') do 

change to act(i,j')=D[launch attack 
against j'], 

randomly select target(i,j') and 
agent (i, j'), 

campaign= '. 

The precise criterion for attacks p (i, j') remains to 
be specified. The model relies on a stochastic function of 
logistic type in which the local power balance plays the main 
role: 

bal(i,j') = dist(d,. )* 
res(i, ') /{dist (d',. )*res(j',i)}, 

where dist (d, . ) is the time-dependent distance function 
described above and d and d' are the respective distance from 
the capitals of i and j to the battle site (here the tempo- 
ral parameter is suppressed to simplify the exposition). This 
discounting introduces distance dependence with respect to 
power projection. Hence, the probability can be computed 
as 

p(i, j')=l/{l+(bal (i, j')/supTresh)^(-supSlope)}, 

where supTresh = 3.0 is a system parameter specifying the 
threshold that has to be transgressed for the probability of an 
attack to reach 0.5, and supSlope a tunable parameter that 
determines the slope of the logistic curve, which is set to 20 
for the runs reported in this paper. 

Interaction 
After the decision phase, the system executes all actions and 
determines the consequences in terms of the local power bal- 
ance. The outcome of combat is determined probabilistically. 
If the updated local resource balance bal (i, j') tips far 
enough in favor of either side, that side wins the battle. In 
the initial phase, the logistical probability function q (i, j') 
has the same shape as the decision criterion with the same 
threshold set at victThresh=3 and with an identical slope, 
victSlope=20: 

q(i,j') = /{l+(bal(i,j')/victTresh)^ 
(-victSlope)). 

This formula applies to attacking states. In accordance 
with the strategic rule-of-thumb that stipulates that an at- 
tacker needs to be about three times more powerful than 
a defender to prevail, the threshold of the latter is set to 
1/victThresh= 1/3. 

Each time step in a battle can generate one of three out- 
comes: It may remain undecided, or one or both sides could 
claim victory. In the first case, combat continues in the next 
round due to the grim-trigger strategy in the decision phase. 
If the defending state prevails, all action is discontinued. If 
the aggressor wins, it can advance a territorial claim, which is 
processed in the structural change phase. 

The interaction phase also generates battle damage, which 
is factored into the overall resources of the state (see above). 
If state j attacks i, the costs incurred by j amount to 
propDamage=10% of j's locally allocated resources, or 
0.1 * res ( j, i ) . The total size of a war is the cumulative sum 
of all such damage belonging to the same conflict cluster. 

Structural Change 
Structural change is defined as any change in the actors' 
boundaries. This version of the framework features conquest 
as the only structural transformation, but extensions include 
both secession and voluntary unification (see Cederman 
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2002). Combat happens locally rather than at the country 
level (cf. Cusack and Stoll 1990). Thus structural change 
affects only one primitive unit at a time. The underlying 
assumption governing structural change enforces states' 
territorial contiguity in all situations. As soon as the supply 
lines are cut between a capital and its province, the latter be- 
comes independent. Claims are processed in random order, 
with executed conquests locking the involved units to avoid 
territorial anomalies. 

The units affected by any specific structural claim are de- 
fined by the target (i, j ) province. If it is 

* a unitary actor, then the actor is absorbed into the con- 
quering state. 

* the capital province of a composite state, then the in- 
vaded state collapses and all its provinces become sove- 
reign. 

* a province of a composite state, then the province is ab- 
sorbed. If, as a consequence of this change, any of the 
invaded states' other provinces become unreachable from 
the capital, these provinces regain sovereignty. 

Sensitivity Analysis 
This section contains a brief description of the sensitivity ana- 
lysis (see Table 1). I start by testing whether the granularity of 
the cluster-finding algorithm makes a difference. Lines 5 and 
6 in Table 1 correspond to runs with the warShadow of the 
war-counting mechanism set to 10 and 40 steps, respectively, 
as opposed to the 20 steps used in the base runs. The linear 
fit does not change significantly in response to these tests, but 
the slope of the regression line in log-log space varies some- 
what with the size of the smallest war that can be detected. 
As would be expected, the finer the granularity, the steeper 
the line: As opposed to a median slope of -0.55 in the base 
system, the coefficients become -0.60 and -0.50 with war 
shadows of 10 and 40, respectively. 

Does the location of the decision-making threshold for 
unprovoked attacks influence the output? Line 7 in Ta- 
ble 1 reflects a series of runs in a system with the threshold 
supThresh and victTresh set to 2.5 rather than to 3. To 
prevent these runs from degenerating into one big conflict 
cluster, I chose a lower level of technological change of 10, 
but otherwise the settings were identical to those in the base 
runs. Again, fairly impressive power laws emerge, in these 
cases with a median R2 of 0.984. The continued sensitivity 
analysis reported in line 8 increases the resource fungibility 
propMobile from 0.5 to 0.9 in the routine for resource allo- 
cation. As indicated in Table 1, this change does little to alter 
the scaling behavior of the model. 

Another set of tests pertains to distance dependence. 
Robustness checks with a higher level of long-distance 
offset, distOffset = 0.2 (line 9), and a steeper slope, 
distSlope = 5 (line 10), produce outcomes similar to those 
in the base model. Finally, the findings reported in line 11 
indicate that the size of the grid does not appear to affect the 
process significantly. In fact, with an expanded 75 x 75 grid 
and initPolarity = 450, the scaling behavior reaches an 
even higher level of accuracy, with a median R2 of 0.993 and 
a wider median range of 4.6. The slopes become somewhat 
steeper in these larger systems. 
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