
A Product Line Architecture for Component Model Domains*

Wei Zhao1

Abstract
The UniFrame project proposes an innovative
approach to representing knowledge of distributed
and heterogeneous software components and a
comprehensive architecture to seamlessly integrate
them for Distributed Computing Systems (DCS) of
any business domain. This proposal involves: 1) The
creation of a meta-model for components and
associated hierarchical setup for indicating the
contracts and constraints of the components; 2) An
automatic generation of glue and wrappers, based on
the facts and principles in meta-model and
knowledge base, for achieving interoperability; 3)
Guidelines for specifying and verifying the quality
of components and component complexes; 4) A
formal mechanism for precisely describing the
meta-model; 5) A methodology for component-
based software design; 6) Validating this framework
by creating proof-of-concept prototypes. The work
of this paper contributes to the second point: the
generative automation of middleware2 for building
the interoperability.

Keywords: UniFrame, Unified Meta-Model
(UMM), Internet Component Broker (ICB), Product
line architecture, Generative Programming (GP),
Two-Level Grammar (TLG), middleware,
glue/wrapper, Quality of Service (QoS)

1. Introduction.

“Product lines promise to become the

dominating production software paradigm of the
new century” [SEI02]. The goal of a product line is
to provide a framework, under which the
components can be interchangeable parts; to apply
the software reuse systematically and strategically;
to realize high productivity. During the production
process of software of any business domain, we will
encounter components coming from different

* This research is supported by the U. S. Office of Naval
Research under the award number N00014-01-1-0746.
1 Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, AL
35294-1170, U.S.A., zhaow@cis.uab.edu.
2 In this paper, middleware has the same meaning as
glue/wrapper.

component models, so realizing the interoperability
among the heterogeneous component models is the
first imperative task of achieving the final business
product development.

Our research is to automate the glue and
wrapper code generation required to compose the
components adhering to different component
models. Our methodology of pursuing the
interoperability of different models is established on
the idea of Generative Programming (GP) [Cza00].
GP is the key technique to automate the assembly of
Commercial Off-The-Shelf (COTS) components to
realize a large gain of productivity in the ultimate
component market. GP focuses on software families
rather than one-of-a-kind systems. Given a product
order specification, highly customized end products
can be generated automatically from components
based on the Generative Domain Model (GDM), a
model of specifying a family of systems, namely,
that particular domain.

In the component technology world, “domain”
has three layers of classifications: 1) Business
differentiated domain, the meaning of “domain” is
associated with different kinds of businesses, e.g.
medical care, banking management, etc; 2)
Functionality differentiated domains, based on the
functionality of different parts of the software, e.g.
some software is specific for database access, while
some might be designated for GUI based user
interaction, or some others provide pure algorithms
or numerical code libraries; and 3) Technology-
differentiated domains, which vary according to the
various component models and technologies, e.g.
some components are developed in the CORBA
model while some others are in RMI or Microsoft
.Net. The first definition stands at the highest level,
and the third definition is the most artificial and
technology driven. The most important thing we can
gain from this classification is that the management
and arrangement of future businesses will be
organized accordingly: 1) In any business domain,
there will be some organizations designated as
domain specific Internet Component Developer (ds-
ICD), as to the Model Driven Architecture (MDA)
[OMG01] direction from Object Management
Group (OMG) community, ds-ICDs are responsible
for translation from platform specific models

(PSMs) to executable implementations [Bur02]; 2)
In any business domain, a domain specific Internet
Component Exchange and Assembly (ds-ICEA)
center resides at a well-known location (e.g. URL)
where the users can order the product and the ds-
ICDs can advertise their components, and this
system assembler is the one who owns the big
domain specific Knowledge-base (ds-KB) for its
application domain and specialized at developing
business domain model from a logic perspective; 3)
There will be a group of organizations working as
the Internet Component Broker (ICB), who develop
and maintain the ds-KB for component models and
technologies and are responsible for developing the
necessary technology parameters for the mapping
from platform independent models (PIMs) to PSMs;
4) Driven by the demand of high quality and
reliability of COTS system, it is expected that there
must be some “official” organizations for certifying
and insuring the QoS provided by the individual
components, their associated service price and the
predicted QoS of the system after composition, e.g.
some insurance company can be extended to have
this role, and we might need to have an International
Component QoS Authorization (ICQoSA).

 Toward this ideal and promising world, the
UniFrame project spans several dimensional
organizations mentioned above. This paper
concentrates on the third definition of the “domain”.
We act as an ICB for building the infrastructure for
interoperability among various component model
domains in DCS. To facilitate our work, we
simulate the role of ds-ICEA and ds-ICD for the
Banking Account Management domain.

The rest of the paper is organized as the follows.
Section 2 discusses the overall picture of the system
architecture. Two Level Grammar (TLG) as the
formalism in our framework is briefly mentioned in
section 3. Three essential activities for product line
architecture for component model domains (order
requirements, configuration knowledge and feature
modeling representation, and production plan) are
described in section 4, 5 and 6 respectively. The
paper concludes with section 7.

2. System Architecture.

In the UniFrame project, we propose a unified

meta-component model (UMM) to formally and
uniformly represent the computational, cooperative,
economic and deployment knowledge and

requirements of the distributed and heterogeneous
components, and a Unified Approach (UA) for
integrating them [Raj01a]. UMM computational
aspects include the lexical, syntactic and semantic
meaning of the components. The lexical meaning is
the business domain specific naming of functions
and QoS domain specific parameters; the syntactic
contract is comprised of the component literal
functionality interfaces; what the functionality and
service this component provides and what
algorithms used tell the semantic view of the
component. COTS components are required
cooperate with each other, and the UMM
cooperative aspect takes care of the interrelationship
among the components such as expected
collaborators. Economic aspect includes the QoS
provided by this component, associated price and
trading policies, and so on. Some Deployment
issues such as operating system platforms, underline
network quality, component model and technologies
used, etc. constitute the deployment aspect of the
UMM. UMM is formally represented by TLG
classes. The lexical, syntactic, and semantic
knowledge are encapsulated in the Interface class,
and QoS is presented by a QoS Class, the features
of the component model is shown in the Model
class, etc. (an example is given in section 5). A
creation of a software solution for a DCS using UA
consists of two levels: a) the component level –
developers create components, test and validate the
appropriate functional and non-functional (QoS)
features, register their UMM on the corresponding
ds-ICEA and deploy the components on the
network, and b) the system level -- a collection of
components, each with a specific functionality and
QoS, are obtained from the network, and an
automatic generation of a software solution for a
particular problem domain is achieved.

In the implementation level of UA, there are
three major things need to be thoroughly
understood: UniFrame Resource Discovery Service
(URDS) [Sir02], ICB and ds-KB. For any business
domain, there is an organizational group including
one or more ds-ICEA and ds-ICD. The URDS is the
infrastructure of a ds-ICEA for automated discovery
and selection of components that meet the necessary
functionality and QoS requirements. As the
consequence of natural federation of domains and
sub-domains of business definition, the natural
hierarchical structure of URDS and component
composition can be envisioned. From the registered

component UMM, the URDS will get a reference
for individual component active registries [Sir02]
(e.g. RMI registry, CORBA trading/naming
service), and thus get the references for actual
components inside each ds-ICD. The ICB is run by
some organizations serving all the business domains
for building the interoperability for their business
components. ICB will be called from ds-ICEA
centers along with their request for middleware
facility. A ds-KB is run by this ds-ICEA to provide
domain specific knowledge to all the business
related company in its domain. The user interface is
provided by ds-ICEA. From the client’s prospect,
the infrastructure of ds-ICEA is a generative library,
because ds-ICEA can cache any available better
solutions (in the sense of better algorithms and
better QoS) provided by ds-ICD, which means the
final product can dynamically evolve without
changing the client provided the new solution meets
the configuration knowledge and requirements
specifications; at the same time, as long as the ds-
ICDs provide the same functionality and QoS
specified in UMM, the developer can freely change
and enhance the private component implementation.
The overall picture of UniFrame is shown in Figure
1.

Figure 1. UniFrame Architecture

ICB is another dimensional instance of product
line architecture and is the main theme of the rest of
the paper. Middleware code generations for
composing the components adhering to difference
component models are built on a ds-KB within ICB
organizations for various component models and
UMM specification delivered from ds-ICEA. ICB is
analogous to Object Request Broker (ORB), as
opposed to provide the capability to generate the
glue and wrapper necessary for objects written in
different programming language to communicate

transparently, the ICB provides the capability to
generate the glue and wrappers necessary for
components implemented in diverse component
models to collaborate across the Internet, [Raj01a]
thus presents a collaboration vision one level above
ORB.

During component assembly, QoS is an
important concern that is to ensure the generated
product meets required and predictable quality. The
QoS requirements are expressed by selecting an
appropriate set of parameters from a catalog of QoS
parameters [Bra02]. QoS parameters are divided
into two categories: a) static and b) dynamic. Static
QoS parameters (e.g. security, parallelism
constraints) are provided by the component
developer and can be recognized and compared by
URDS during component discovery and assembly
and can be directly processed by TLG during the
code generation. The QoS value of the final system
is obtained by applying composition rules on static
QoS parameters of individual components. [Sun02]
Dynamic QoS parameters (e.g., response time)
result in the instrumentation of generated target
code based on event grammars [Aug97], which at
run time produce the corresponding QoS dynamic
metrics, to be measured and validated.

Algorithm 1: System QoS verification during

the production process.
Input: a set of components to be assembled

with their respective QoS parameters.
Output: The final system with optimal QoS

parameters.

Figure 2. System QoS verification algor

empty System ge

User provided

System QoS

Test

Dynamic
QoS

Static
QoS

Input

Candid

output

Banking
domain

ICB

ds-
ICEA

Brokering request

URDS

ds-ICD
Not meet
discard
users
ithm

nerated

ate set

After the completion of product generation, the
user can come up with a set of test cases, or default
test skeletons will be generated from the system
automatically based on the QoS parameters selected
by the user. If the implementation doesn’t meet the
desired QoS criteria, it is discarded. After that,
another composition is chosen from the component
collection. This process is repeated until an optimal
(with respect to the QoS) implementation is found,
or until the collection is exhausted. In the latter case,
the process may request additional components or it
may attempt to refine the query by adding more
information about the desired solution from the
problem domain. The QoS verification process is
denoted in Figure 2. If the system assembly
succeeds, a new set of UMM specifications will be
generated as well so that the new product together
with the new UMM will be registered with ds-ICEA
for subsequent system generations.

3. Two-Level Grammar (TLG).

Two-Level Grammar [Bry02], an executable

formal specification language, is chosen for internal
order requirement, UMM representations, and
glue/wrapper code generation. The term “two-level”
comes from the fact that a set of domains may be
defined using a context-free grammar, which may
then be used as arguments in predicate functions
defined using another context-free grammar,
producing Turing equivalence [Sin67]. From the
object-oriented point of view, the set of domains are
a set of instance variables and the predicate
functions are the methods that manipulates on the
instance variables. TLG is a formal notation based
upon natural language and the functional, logic, and
object-oriented programming paradigms. TLG
provides enough formalism for configuration rules,
generation rules and domain modeling. The natural
language-like characteristic of TLG makes the
translation from natural language order
requirements to TLG formal specification feasible
and smoother. The generation rules expressed in
TLG achieve the automated glue/wrapper code
generation.

4. Order Requirements Specification.

The clients of UniFrame could be application

system programmers or potentially be end
customers. The interface between ds-ICEA and the

users can be a web-based HTML form in order to
facilitate the automatic ordering process. On this
form, the user can specify their desired systems
using Domain Specific Languages (DSL): what the
problem domain and sub-domain are, what services
are desired, what functionalities are needed, how
good the quality of the service they expect, etc. The
user can check the QoS parameters catalog provided
and standardized by ds-ICEA (web-based). The
query is processed using the ds-KB, such as key
concepts, conventions and jargons, and use natural
language processing to translate the query to TLG.
The generated TLG order requirements will contain
a QoS class and a functionality Interface class used
to indicate the services the user expects. The
application ds-KB forms part of our generative
libraries and the GDM for the new system to be
produced. In the sense of implementation, the query
DSL is the restricted natural language (restricted by
well-structured web form) refined by domain
specific terms. The well-formed DSL is further a
facility of the natural language processing and
formalism translation, and thus benefits the
matching between queries and the component
UMMs.

 The clients could only specify the minimum set
of features of the system they want. If the
specification is not sufficient to make a match, the
system will provide the default setting, default
dependencies and will reasonably eliminate illegal
combinations. Highly customized products can be
obtained by the detailed preferences such as the
implementation algorithms, set of QoS parameters,
or even the user’s packages may be added as the
part of the solution of the end system.

5. Configuration Knowledge Representation

and Feature Modeling of Model Domain.

The critical part of the product line architecture

for ICB is the UMM specification delivered by ds-
ICEA when a brokering request is initiated. UMM is
first registered at the ds-ICEA by the ds-ICD. Same
as the online order system, the UMM registration is
also a natural language based HTML form with the
same kind of formalization translation
aforementioned. UMM embeds the component
configuration knowledge, feature modeling of its
application, functionality and technology domains,
and the generation rules for middleware needed in
component assembly. After the formalization

translation, UMM will be represented by 4 TLG
classes comprising the computational, cooperative,
economic, and deployment aspects of components:
component root class, interface class, component
model feature knowledge class and component
deployment housekeeping class (details are still
under development). The domain feature listing
along with its respective ds-KB forms the GDM for
that particular domain. In ds-KBs, application
domain knowledge is from the expertise of domain
experts, and domain feature modeling knowledge
for technology model domains is from the
component model vendors. Domain feature listing
in UMM for model domains will mostly be name-
value pairs used to identify the entry and entry value
in the model ds-KB. In Figure 3, the model domain
ds-KB together with the specifications embedded in
UMM form the GDM for ICB organization (denoted
as the big cube in the middle). From this GDM an
instance of glue/wrapper configuration can be
generated automatically. With the facility of the ds-
KB, the application developer (one kind of client of
ds-ICEA) can possibly be freed from the component
technology completely, and the ds-ICD can make
the major concentration on the business
functionality development and get away from the
detailed interoperability and protocol mapping. We
discovered that the infrastructure of the same
technology domain shares the basic structure; if
these common properties can be generated from the
ICB as opposed to being developed by the
programmer, a large amount of effort of studying
new technologies and doing house-keeping
programming can be saved.

Figure 3. Product line architecture for ICB

We will use a Bank Account Management

example as a brief illustration of feature modeling of
model domains. Suppose, based on an order
requirements for constructing a bank account

management system from the user somewhere on
the Internet, URDS has found three components:
RmiAccountClient, RmiAccountServer,
CorbaAccountServer. The first two adhere to the
Java-RMI model and the third one is developed with
CORBA technology. The UMM specifications
associated with the components indicate that the two
server components have the same functionality but
CorbaAccountServer has better service guarantees
and combined QoS for the final product meets that
specified in the order query, thus the final system
should be assembled from the RMI client and the
CORBA server.

For instance, the set of UMM formal
specifications generated from online UMM
registration wizards for the CorbaAccountServer
could possibly be as follows (to be completed).

/*class CorbaAccountServer is the root class for this
component where you can start to explore various aspect
of this component by instantiating their respect class. We
ignore the cooperative aspect in this paper. Detailed
syntax for TLG can be found in [Bry02]. TLG keywords
are in bold face, code fragments are underlined. */

class CorbaAccountServer.
 Interface :: Interface.
 Model :: Model.
 QoS :: QoS.
 HouseKeeping :: HouseKeeping.

 ServerClass := CorbaAccountServer.
 ServerObject := corbaAccountServer.
end class.

class Interface.
 Balance :: Float.
 Void deposit Float. CorbaAccount

Server
RMIAccount
Client Float withdraw Float throws someExceptions.

 Float displayBalance Void.
end class.

class Model.
 ModelName :: String.
 ProductName :: String.
 OrbPackage :: String.
 TradingServicePackage :: String.
 HolderPackage :: String.

 ModelName := corba.
 ProductName := orb2.
 OrbPackage := org.omg.CORBA.ORB.
 TradingServicePackage:=com.twoab.orb2.Trading.

UMM specification
for
RMIAccountClient

UMM specification
for
CorbaAccountServe

ds-KB

HolderPackage:=com.twoab.orb2.TraderPackage.Offers
Holder.
end class.

/* We will not explain QoS in this paper, details of QoS
specification may be found in [Bra02]. */

class QoS.
….
end class.

class HouseKeeping.
 PackageNames :: {String}*.
 Imports :: {String}*.
 PolicyFiles :: {Files}*.
 CompileOptions :: {String}*.

 PackageNames := orb2.Banking .
 Imports :=.
 PolicyFiles := java.policy.
 CompileOptions := javac -classpath
%ORB2%\lib\orb2.jar; %ORB2%\lib\orb2tdr.jar
end class.

6. Production Plan for Middleware
Generation.

The production plan describes how concrete

systems will be produced from the common
architecture and the components [SEI02]. Our
production plan of glue/wrapper code generation
reflects the idea of GP. As mentioned, most of the
domain features are already in the ds-KB of ICB, so
is the configuration knowledge for composing these
variable features. Optionally, component developers
can explicitly specify their configuration knowledge
and generation rules when they are asked to fill out
the UMM registration wizard, but ideally, we are
trying to unburden them by just requiring name and
value pairs. The configuration knowledge and
feature modeling are represented as TLG classes,
and generation rules are shown as TLG functions. A
TLG interpreter we are building right now is going
to achieve the automatic middleware generation by
computing the generation rule functions, because the
return value we can get from those functions are
regular programming language code fragments.

 There could potentially be multiple
configurations and combinations for components.
But in practice, the ways in which the glue/wrapper
code can be generated are very limited. Currently,
we are working on one particular configuration for

heterogeneous components belonging to the
client/server category. We will continue the example
stated in section 5. To compose an RMI client and
CORBA server, we will have the following
glue/wrapper code generated: a proxy client for a
CORBA server component and a proxy server for a
RMI client component (denoted in Figure 3 as two
exploding stars, and their algorithmic notations are
in Figures 4 and 5), and a bridge driver to glue two
proxies (shown in Figure 3 as a well matched jigsaw
puzzle plate, the algorithm is stated in Figure 6).
Then, the proxy server redirects the service request
coming from the RMI client to the proxy client;
likewise, the proxy client redirects the redirected
request to the CORBA server that ultimately
provides the service. The two proxies are model
specific access points, and they are the only entries
we can get into the autonomous technology-based
components. Proxies provide a common message-
forwarding interface between two component
models, therefore taking care of request-service
mapping, data type mapping, parameters passing,
etc. The bridge driver evokes and establishes the
common context between two proxies and thus
manages the session of the two components while
the connected components are talking to each other.
Upon the success of generation of the configuration
for the system, this new system consisting of an
RMI client and a CORBA server is assembled.

Generation rules expressed in TLG will be of the
following form (it is under development). In order to
make text readable, we separate the comments from
the code with referencing numbers.

class Generator. ---1
 ProxyClient :: Corba, Client
 ProxyServer :: Rmi, Server -----------------------2
 Mapper :: InterfaceMapper. ----------------------3

 ServerClass : CorbaAccountServer.SeverClass.
 ServerObject : CorbaAccountServer.ServerObject.
 ClientProxyObject. --------------------------------4
 Mapper map from RMIAccountClient to
 CorbaAccountServer. -------------------------5

 generate ProxyClient for CorbaAccountServer:
 return --6
 CorbaAccountServer.HouseKeeping.PackageNames
 <;>
 CorbaAccountServer.HouseKeeping.Imports <;>
 <public class> ProxyClient <{>
 <private> ServerClass ServerObject <=null ;> ;

ProxyClient.setupCode. -------------------------7
Mapper get map from ProxyClient to
CorbaAccountServer with ServerObject. ------8

 generate ProxyServer for RmiAccountClient: -- 9
 ….
 generate BridgeDriver for ProxyClient and----10
 ProxyServer:
 ….
end class

 1. Generators are specific, namely, for different
component model pairs we will have different generator
specifications. But this generator should be reused for the
glue and wrapper code generation for all the components
of the same component model pair.

 2. Classes Corba and Client are predefined and are
stored in the ds-KB. Those two classes act as feature
models for CORBA technology domain and client domain
for client-server architecture. All the classes in the
knowledge base are predefined with respect to the
generator.

 3. InterfaceMapper should be predefined in the system
to resolve the operation mapping between two
components, i.e. service redirection. The definition of
InterfaceMapper is not shown here.

 4. ServerObject and ClientProxyObject are very
important because they are used to relay the service from
the RMI client to the CORBA server. The value can be
obtained from the UMM of these components.

 5. Syntactic mapping from service requester to service
provider. Assume after this operation, we can get map
domain and map range directly from Mapper variable.

 6. This is the function which generates ProxyClient.
Code fragements within <> are copied to the output
directly. This function signature is specialized in the
interpreter as build-in operator for code generation.

 7. Most of the setup code has already been defined in
classes Corba and Client in the ds-KB. There will be
many options to change them, but not shown here.
ProxyClient will automatically have those predefined
features because it is defined on the product domain of
both Corba and Client.

 8. This method will get the operation mapping between
ProxyClient and CorbaAccountServer as can been seen in
Figure 4. This mapping will use the same operation
signature for ProxyClient as the CorbaAccountServer
because they are within the same technology model box.

package CorbaAccountServer;
some imports;

class ProxyClient {
 private CorbaAccountServer corbaAccountServer=null;
 public void init() {
 initialize the ORB;
 invoke the trading service via the ORB;
 get corabaAccountServer object using trader; }

// The service requests are forwarded to the
corbaAccountServer.
 public void deposit(float amount){
 corbaAccountServer.deposit(amount); }
 public float withdraw(float amount) {
 return corbaAccountServer.withdraw (amount); }
 public float displayBalance() {

return corbaAccountServer.displayBalance(); }
}

Figure. 4 ProxyClient.java

package RMIAccountClient;
import CorbaAccountServer package;
other imports;

class ProxyServer {
 private ProxyClient =new ProxyClient ();
 public void init() {
 register this proxy server object to the RMI registry;
 and some housekeeping handling; }

//The service requests are forwarded to the proxy
client.
public void deposit(float amount){
 proxyClient.deposit(amount); }

amount); }

return proxyClient.displayBalance(); }

 public float withdraw(float amount) {
 return proxyClient.withdraw(
 public float displayBalance() {

}

Figure. 5 ProxyServer.java

 package Bridge;

import CorbaAccountServer package;
import RMIAccountClient package;
other imports;

class BridgeDriver {
 main {
 ProxyServre proxyServer=new ProxyServer();
 ProxyServer.init();
 ProxyClient proxyClient=new ProxyClient();
 ProxyClient.init();
 Exception handling; } }

Figure .6 BridgeDriver.java

 9.The hand-made ProxyServer is shown in Figure 5.
In the future, it will be generated by this method. When
we generate the code for ProxyServer, the Mapper will
need to solve the name mapping, parameter passing, data
type mapping, etc. between operations of original RMI
client and CORBA server, so that the ProxyServer in a
“black-box” of RMI can correctly deliver the service to
the proper operation in ProxyClient in a “black-box” of
CORBA. In Figure 5, we use the same signature for
simplicity.

 10. The code for bridgeDriver is shown in Figure 6.

7. Conclusion and future work.

Our product line architecture for ICB raises

issues of software reuse. 1) Our approach of
building interoperability among all the component
models should be the same as long as the
components are developed in client-server
paradigm, so many considerations about the
architecture could be reused across all the
component models; 2) Our glue/wrapper code
generator for a component model pair is generic for
all the components developed in these models given
the ds-KB for this model and UMM for this
concrete component; 3) For different application
domains, there are components developed in the
same models, so the assets of ICBs such as ds-KBs
can be reused across application domains.

Regarding our future work, more substantial
work needed to build a complete set of ds-KBs for
our experimental model domains: CORBA and
RMI, which requires further and deeper
investigation on the internal structure of these two
technologies.

The task of building an interpreter for TLG is
the essential contribution of achieving automatic
code generation.

The construction of two GUI-based control
panels for ICB and simulated Banking Account ds-
ICEA are under way. The control panels are
connected to the database and file system. From the
control panel of the ICB, the middleware assembler
can manage the ds-KB of component model
domains, display UMM information of the
components under current integration process, and
watch the animated conversation between the
components after assembly by embedding animation
trigger code into the glue/wrapper files. From the
control panel for Banking ds-ICEA, the business
system assembler can view client’s requirements,

explore feature modeling of the Banking domain,
manipulate the federation of compositional
components by editing their icons and graphic
relationship, maintain registered UMM description
of the business components, communicate with the
ICB via Java Message Service (JMS), and do QoS
composition and verification for the final system,
request the URDS of the domain for component
searching.

Our current techniques for service interface
mapping between two components, and matching
between order requests and UMM specification of
components are based on lexical and syntactical
analysis on the operation signatures, especially on
the operation names. We do the domain analysis,
natural language processing, and naming convention
processing to get best effort on mapping. In order to
get high precision on the mapping and thus get high
confidence of the final product, further effort on
semantic analysis is in demand.

8. References.

[Aug97] M. Auguston, A. Gates, M. Lujan, “Defining a

Program Behavior Model for Dynamic Analyzers,”
Proc. SEKE '97, 9th Int. Conf. Software Eng.
Knowledge Eng., 1997, pp. 257-262.

[Bra02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M.
 Auguston, B. R. Bryant, C. C. Burt, “A Quality of
 Service Catalog for Software Components,” Proc.
 Southeastern Software Engineering Conf., 2002.
[Bry02] B. R. Bryant, B.-S. Lee, “Two–Level Grammar as an

Object-Oriented Requirements Specification
Language,” Proc. 35th Hawaii Int. Conf. System
Sciences, 2002.

[Bur02] C. C. Burt, B. R. Bryant, R. R. Raje, A. M. Olson, M.
Auguston, “Quality of Service Issues Related to
Transforming Platform Independent Models to
Platform Specific Models,” to appear in Proc. EDOC
2002, 6th IEEE Int. Enterprise Distributed Object
Computing Conf.

[Cza00] Czarnecki, K., Eisenecker, U. W. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[OMG01] Object Management Group. Model Driven
Architecture: A Technical Perspective. Technical
Report. Document # ormsc/2001-07-01. Framingham,
MA: Object Management Group. July 2001.

[Raj01a] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
C. C. Burt, “A Unified Approach for the Integration
of Distributed Heterogeneous Software Components,”
Proc. 2001 Monterey Workshop Engineering
Automation for Software Intensive System Integration,
2001, pp. 109-119.

 [SEI02] Software Engineering Institute, A framework for
software product line practice –version 3.0, 2002,

 http://www.sei.cmu.edu/plp/framework.html

http://www.sei.cmu.edu/plp/framework.html

[Sin67] M. Sintzoff. “Existence of van Wijingaarden’s Syntax
for Every Recursively Enumerable Set,” Ann. Soc.
Sci. Bruxelles 2 (1967), 115-118.

[Sir02] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,
M. Auguston, C. C. Burt, “An Architecture for the
UniFrame Resource Discovery Service.” to appear in
Proc. SEM 2002, 3rd Int. Workshop Software
Engineering and Middleware, 2002.

[Sun02] C. Sun, R. R. Raje, A. M. Olson, B. R. Bryant, M.
Auguston, C. C. Burt, Z. Huang, “Composition and
Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems,” to appear in
Proc. Fifth IEEE Int. Conf. Algorithms and
Architectures for Parallel Processing, 2002.

	A Product Line Architecture for Component Model Domains*
	Abstract

