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The relation between Datalog programs and homomorphism problems and, between Dat-
alog programs and bounded treewidth structures has been recognized for some time and
given much attention recently. Additionally, the essential role of persistent variables (of
program expansions) in solving several relevant problems has also started to be observed.
It turns out that to understand the contribution of these persistent variables to the diffi-
culty of some expressibility problems, we need to understand the interrelationship among
different notions of persistency numbers some of which we introduce and/or formalize in
the present work.

This paper is a first foundational study of the various persistency numbers and their
interrelationships. To prove the relations among these persistency numbers we had to
develop some non trivial technical tools that promise to help in proving other interesting
results too. More precisely, we define the adorned dependency graph of a program, a useful
tool for visualizing sets of persistent variables, and we define automata that recognize
persistent sets in expansions.

We start by elaborating on finer definitions of expansions and queries, which capture
aspects of homomorphism problems on bounded treewidth structures. The main results
of this paper are: a) a program transformation technique, based on automata-theoretic
tools, which manipulates persistent variables (leading, in certain cases, to programs of
fewer persistent variables), b) a categorization of the different roles of persistent variables;
this is done by defining four notions of persistency numbers which capture the propagation
of persistent variables from a syntactical level to a semantical one, ¢) decidability results
concerning the syntactical notions of persistency numbers that we have defined and d)
exhibition of new classes of programs for which boundedness is undecidable.
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1. INTRODUCTION

Datalog programs have been investigated extensively in the last two decades and
several authors have observed that in order to derive stronger results a more thor-
ough and fine investigation of their structure is needed [CGKV88; AC89; Af97].
Specifically it has been observed that query evaluation and optimization techniques,
expressive power and decidability of certain properties may depend on the arity of
recursive predicates and moreover on the number of occurrences of persistent vari-
ables (variables that appear in the head and in recursive predicates in the body of
arule). To mention a specific case, the boundedness problem is proven undecidable
in the general case [GMSV87] whereas when the arity of the recursive predicates is
equal to one it becomes decidable [CGKV88]. It is known that there exists a hierar-
chy of Datalog programs w.r.t. their arity [AC89; Gro94]; programs of larger arity
are stricly more expressive. There exists also such a hierarchy w.r.t. their “per-
sistency number” [Af97]; the definition of this number involves semantical notions
and not only syntactic [Af97]. The concept of persistencies is implicit in [CGKV88;
Var88] and a syntactical definition of persistency equal to zero is given in [C89].
Studying the persistencies leads us to a better understanding of the role that the
syntactic parameters of Datalog programs play in the undecidability of bounded-
ness; indeed the results we obtain here explicate a possible trade-off between the
number of recursive rules and the number of persistencies. Another important is-
sue related to the study of persistencies is the following: it is well-known that a
Datalog program of size n, with IDB predicates of arity at most k, can be evaluated
in time O(nk); a substantial improvement to this upper bound seems unlikely, on
complexity-theoretic grounds; on the other hand, proving a corresponding lower
bound in the general case would be a major breakthrough, as it would imply sep-
aration of complexity classes [GSS01; PY97]. It therefore makes sense to look for
lower bounds in restricted models of computation (see for instance [C02]). We ex-
pect our study of the persistency number will be relevant here, as the natural way
to write Datalog programs requiring Q(nk) time seems to require high persistency
number ([Af97] has some typical examples).

In order to give some motivation of our research, we consider the following ex-
amples:

1) Let m; be the following program:
rl: T(,y) « E(x,y)
ry: T(x,y) + T(z,%), By, z), E(y, 2)-
Clearly m; has one persistent variable, namely x in the second rule. It is easy to
see, though, that this persistent variable disappears after unfolding the second rule.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2004.



Datalog prograns and their persistency nubers - 3

Therefore, we can use this observation to construct an equivalent program with no
persistent variables. The program 72 that follows is such a program:
i+ T(z,y) + E(z,y)
ry : T(z,y) + E(z,2), E(y, ), E(y, 2)
r3: T(z,y) < T(2',2), E(z,2), E(z,2'), E(y, z), E(y, ).

2) Now, we consider another example which illustrates a different situation. Con-
sider the following program 7 which computes the transitive closure.
ri: T(z,y) « Bz,y)
rs: T(z,y) + E(z,2),T(z,y).
It has also one persistent variable, but this time it is not so easy to get rid of. But,
still, there exists an equivalent program with no persistent variables, the following
program 7': v} : T(z,y) + E(z,y)
vy T(z,y) « Blz,2), B(z,y).
Tili : T(.Z‘, y) « E(.Z’, Zl)a T(zla 22)7 E(z27 y)

3) The third example depicts an intermediate situation. Consider the program
7'" which also computes the transitive closure:
T1: T(Ill',y) A E(‘T:y)
ra: T(z,y) ¢ E(z,2),T(z,y).
ry s T(z,y) « E(z,2), E(2,9).
Té : T(.TL‘, y) « E(.TL‘, z1)7 T(zla z2)7 E(ZZJ y)
It has also one persistent variable but, unlike program 7 in example 2, it can be
“transformed” into an equivalent program with no persistent variables by simply
deleting rule rg.

The first example shows that a persistent variable in the syntax of the program
may not propagate after unfolding the rules a few times. This leads to an equivalent
program with no persistent variables in the syntax. We say that program m; of
example 1 has syntactic persistency number equal to 1 and weak persistency number
equal to 0; informally, the weak persistency number of a program is defined by
considering all its expansions and finding the maximum number of variables that
propagate ad infinitum simultaneously. For program 72 both numbers are equal to
0. In section 4, we give an algorithm which on input a program of weak persistency
number m yields in the output an equivalent program of syntactic persistency
number m. We prove that finding the weak persistency number of a given program
is decidable.

In the second example, program 7 has both syntactic and weak persistency num-
ber equal to 1. However, there exists an equivalent program, namely «’, with both
syntactic and weak persistency number equal to 0. We say that program = has
persistency number-modulo equivalence equal to 0.

In the third example, program 7" contains some of the ingredients that allow
one to transform a program into an equivalent one; we define formally which are
those ingredients by considering expansions of the program and their “usefulness”.
A Datalog program can be equivalently thought of as the logical disjunction of its
expansions. Now, the set of expansions of program 7' contains as subsets both
the set of expansions of program 7 and the set of expansions of program 7’. As 7
and 7' are equivalent programs, it is natural that some of the expansions of 7" are
not “useful” in that 7" can be equivalently thought of as the logical disjunction
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of only a proper subset of its expansions. We call this subset a useful family of
expansions and define the persistency number of a program with respect to such
a subset. Informally, the persistency number of a program is defined by viewing
a useful family of expansions and finding the maximum number of variables that
propagate ad infinitum simultaneously. To formalize, we need to define persistency
numbers for a set of bounded tree-width structures. In this case, we say that
program 7" has syntactic and weak persistency number 1 and persistency number
0, whereas program 7 in example 2 has also persistency number equal to 1. We
conjecture that there is no general algorithm that computes the persistency number
of a program.

We give also an algorithm which on input a program of persistency number
m and the number of unfoldings after which no more than m variables persist
simultaneously, yields in the output an equivalent program of syntactic persistency
number m. It remains an open problem whether we can compute a number of
unfoldings such as the one needed in the input; if we can, then there will exist an
algorithm to derive an equivalent program of syntactic persistency number m if it
is given that the input program is of persistency number m.

To formalize we had to develop new technical tools. Specifically, we first defined
an enhanced notion of dependency graph, the adorned dependency graph (namely
the known dependency graph with more information on the labels of the edges).
We define the several notions of persistency number on this graph.

Given a Datalog query (), we define the syntactic, weak and persistency number
of the query as the minimum, over all programs expressing the query, of their
syntactic, weak and persistency number respectively. Thus, the following theorem
summarizes the results in this paper:

Theorem Given a Datalog query @, the following three statements are equiva-
lent:
1. Query @ has syntactic persistency number equal to m.
2. Query @ has weak persistency number equal to m.
3. Query @ has persistency number equal to m.

The structure of the paper is the following. In section 2 we recall some basic
preliminaries about Datalog and formalize expansions as bounded tree-width hy-
pergraphs with persistencies. In section 3 we introduce the notion of useful families
of expansions and characterize boundedness in terms of this notion. In section 4
we give definitions of different notions of persistency numbers and study the rela-
tionship between the two syntactical notions (namely the syntactical persistency
number and the weak persistency number). In sections 5 and 6 we elaborate new
tools (section 5) and automata-theoretic techniques (section 6) for dealing with
persistencies and, using these tools and techniques, we study, in section 7, the in-
terrelationship between the syntactical and the semantical notions of persistency
numbers. In section 8 we give the decidability of the weak persistency number and
we exhibit new classes of programs for which boundedness is undecidable.
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2. PRELIMINARIES: DATALOG PROGRAMS, EXPANSIONS AS BOUNDED TREE-
WIDTH HYPERGRAPHS WITH PERSISTENCIES

A database over domain D is a finite relational structure D = (D, ry,...,r,), where
D is a finite set and each r; is a relation over D. The sequence (ai,...,a,) of
arities of the r;’s is the type of the database. The database D = (D,ry,...,7,) has
signature (Ry,..., R,) where for i = 1,...,n R; is a predicate symbol of arity a;,
naming relation ;.

A Datalog program is a collection of rules of the form ty + t1,...,t, where ¢
is the head, and ¢1,...,t, form the body of the rule. Each ¢; is an expression of
the form R(z1,...,Z), where the z;’s are variables and R is a predicate symbol
(we say predicate for short): R is either an extensional database (EDB) predicate
naming one of the database relations, or an intensional database (IDB) predicate
which is defined by the program; IDB predicates are exactly the ones appearing in
the heads of rules. If R is an EDB (resp. IDB) predicate, then R(x1,...,%,) is an
EDB (resp. IDB) atom. The set of EDB predicates is the signature of the input
database. A recursive rule is a rule with at least one IDB predicate in its body;
otherwise it is an 4nitialization rule. We denote by maz(arity), the maximum
arity of the IDB predicates of program 7. The dependency graph of a program 7
is a directed graph with vertices the IDB predicates of m such that there exists an
(unlabelled) edge from P to P’ whenever 7 has a rule with head predicate P and
with an IDB atom of predicate P’ in its body. Given a Datalog program = and a
goal predicate P we may, starting with an atom over P, unwind the recursive rules
of 7 to some finite depth, to obtain a P-expansion (or simply expansion) of .

Before giving the formal definition of expansions, we first need to define the
notion of skeleton trees associated to a program. As we will see later, this notion
- which expresses the unfolding of rules - is central in the tree-decomposition of
expansions viewed as hypergraphs.

Definition 2.1. (Skeleton Tree) A tree T is a skeleton tree associated to pro-

gram 7 if T satisfies the following: 1) its nodes are labeled with rules of 7 and 2) if
a node N with label r has exactly n sons Ni,..., N,, with respective labels r1,...,rp,
then rule r has exactly n occurrences P;(Z1),...,Pn (%) of IDB atoms in its body
and, for every i = 1,...,n, P; is the head predicate of rule r;.
The root has depth 0 and a node N has depth n + 1 if its father has depth n. The
mazimal depth (or simply depth) of the tree is the maximal depth of its nodes. The
minimal IDB (resp. EDB) depth of the skeleton tree is the minimal depth of its
leaves that are labeled with recursive (resp. initialization) rules. The size of the
tree is its number of nodes.

We now introduce a new formal definition of both expansions and partial expan-
sions as 3-tuples of the form (P(Z),D,T): the first component is called the head
part, the second component the database part and the third component the tail part
(the tail part of expansions is always equal to the empty set). With each (partial)
expansion e of m we associate a particular skeleton tree of w, called the skeleton
tree of e. (Partial) expansions and their skeleton trees are defined inductively. We
will use the following notation:

Notation We denote a recursive rule r by r : P(Z) + D,Z where D (resp. Z)
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is the set of EDB (resp. IDB) atoms of body(r); we denote an initialization rule r
by r : P(Z) « D. Conversely we say that the partial expansion e = (P(%),D,7)
defines the recursive rule r : P(Z) < D, Z, and that the expansion e = (P(Z), D, ()
defines the initialization rule r : P(Z) + D. This will allow us to see (partial)
expansions as rules and rules as (partial) expansions.

Definition 2.2. We give a simultaneously inductive definition of (partial) ex-
pansions and their skeleton trees (expansions are a special case of partial
expansions).

Base case. If r : P(%) «+ D,Z is an instance of a recursive rule of program 7 then
the 3-tuple e : (P(%),D,Z) is a partial P-expansion of 7; if r : P(Z) «+ D is an in-
stance of an initialization rule of 7 then the 3-tuple e : (P(£), D, 0) is a P-expansion
of m; we say that e is a (partial) 1-expansion. The skeleton tree of e is the tree
reduced to a single node labeled with rule r.

Inductive step (a. construction of expansions). Let eg = (P (&), D,Z) be a partial P-
expansion of 7 where Z = {Q1 (1), ---, @n(¥n)}, [eo Will grow by adding 1-expansions
to Z] and let €1 : (Q1(%1),D1,0), ...;en : (Qn(¥n), Dn,0) be l-expansions of m such
that, for i,j = 1,...,n, Var(e;) N Var(e;) C Var(y;) U Var(j;) [i-e. the common
variables of e; and e; are distinguished variables| and Var(e;) N Var(eo) = Var(¥;)
[i.e. every non distinguished variable of e; is a fresh variable]; if for ¢ = 0,...,n
e; has skeleton tree 7; then e = (P(£),D|JD1 U ... UD,, D) is a P-expansion of 7
of skeleton tree 7 obtained by adding to Ty n leaves Ti,...,7, such that, for every
i =1,...,n, the rule that labels the father of 7; contains @Q;(#;) in its body. We say
that e is a 1-unfolding of e via Z with ey,...,e,.

Inductive step (b. construction of partial expansions). Let eg = (P(&),D,Z; U
7> U T3) be a partial P-expansion of m where 7y = {Q1(#1), s Qm(¥m)}, o =
{Qm+1(Um+1)s --» Qn(¥n)} [e0 Will grow by adding 1-expansions to Z; and partial
1-expansions to Z, while 73 remains unchanged], Z; and Z, cannot be both empty
and 7, and 73 cannot be both empty; let for i = 1,....,m, e; : (Qi(7:),D;,0) be a
1-expansion of 7 and let for j = m + 1,...,n, €; : (Q;(¥;),D;,Z;) be a partial 1-
expansion of 7 such that, for 4,5 = 1,...,n, Var(e;) N Var(e;) C Var(y;) UVar(y;)
and Var(e;) N Var(ey) = Var(y;); if for ¢ = 0,...,n e; has skeleton tree 7; then
e = (P@),DUD1U..UDy,Zpt1 U ...UT, UT;) is a partial P-expansion of 7
of skeleton tree 7 obtained by adding to 7o n leaves Ti,...,7, such that, for every
i =1,...,n, the rule that labels the father of 7; contains @Q;(%;) in its body. We say
that e is a 1-unfolding of eg via 73 U Zy with eq,...,ep.

The depth (resp. the minimal IDB depth, the minimal EDB depth, the size) of
an expansion or partial expansion is the depth (resp. the minimal IDB depth, the
minimal EDB depth, the size) of its skeleton tree. Therefore, if €' has size s and e
is a 1-unfolding of e’ with n bubbles ej,...,e,, then e has size s + n. Notice that a
(partial) expansion has size 1 if and only if it is a (partial) 1-expansion.

It is straightforward to recover from our definition 2.2 the folklore definition of
an expansion as a first-order formula over 3, A and precisely as a conjunction of
extensional atoms with a set of distinguished variables and with the remaining
variables being existentially quantified: the head part P(Z) gives the distinguished
variables Z and tells us that it is a P-expansion; it suffices then to write the database
part D as a conjunction of extensional atoms and to take the existential closure of
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this conjunction over all variables not belonging to &.
Moreover if, in a (partial) expansion e, we replace every variable x with a constant
ag, we can view e as a hypergraph.

Definition 2.3. Let e be a (partial) expansion (P(%),D,Z); we view e as the
hypergraph H = (V, HE) with set of vertices V and set of hyperedges HE defined as
follows: for every variable x of e there exists in V a vertex with label the constant a,;
for every EDB atom E(x!,...,2") in D there exists in HE a hyperedge (a1, ..., azn)
with label Ej; the set {a, |  occurs in P(Z)UZ} is the set of distinguished constants
of the hypergraph H.

Recall from definition 2.2 that a (partial) expansion e is either a (partial) 1-
expansion or it has size s > 1 and it is the 1-unfolding of some partial expansion eg
of size s—n (obtained by unfolding eg with 1-expansions and/or partial 1-expansions
e1,..-,€n); if e is a (partial) expansion of size s > 1 and if we view ¢;, for i = 0,...,n,
as the hypergraph H; = (V;, HE;), then we view e as the hypergraph H = (V, HE)
such that V =VoUViU...\UVn and HE = HEGUHE U ... UHE . Thus the op-
eration that takes place when expansions compose - via unfolding - to create a new
expansion is the union of the corresponding hypergraphs.

We saw that a Datalog expansion has both a hypergraph structure and a tree-like
structure. The tree-like structure comes dramatically into the picture when we need
to investigate the properties of expansions related to expressibility and computabil-
ity questions; luckily it coincides exactly with a notion from graph theory, namely
the tree-decomposition of a hypergraph and the bounded tree-width hypergraphs
defined below [C90; GroM99; GLS01].

Definition 2.4. Let H = (V,HE) be a hypergraph (with set of vertices V and set
of hyperedges HE). A tree-decomposition of H is a pair (T, f), where T is a tree
(with set of nodes N) and f : N = P(V) maps every node i of T to a set f(i) -
called bubble - of vertices of H such that
M)V =U{f@) [ie N},

(2) every hyperedge of H has its vertices in some set f (i),
(3)if v e f(i) N f(4), then v € f(k) for every k belonging to the unique path in T
linking ¢ to j.

Definition 2.5. The width of a tree-decomposition (7, f) of a hypergraph # is
the maximal cardinality of its bubbles minus one, i.e. maz{|f(i)| | i € N} —1. The
tree-width of ‘H is the minimum width of a tree-decomposition of H. A family F
of hypergraphs is of bounded tree-width if there exists a constant & such that, for

every hypergraph H € F, there is a tree-decomposition of H of tree-width at most
k.

We will talk of a hypergraph H = (V,HE) of bounded tree-width if this hyper-
graph is known to belong to a family of hypergraphs of bounded tree-width.

Using our definition 2.2 of (partial) expansions we prove formally the following
proposition which is implicit from [K'V98].

PROPOSITION 2.6. 1. The skeleton trees associated to a program w provide nat-
ural tree-decompositions of the (partial) expansions of 7.
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2. The family of expansions and partial expansions of a program =« is a family of
hypergraphs of bounded tree-width.

ProoFr. 1. We prove that if e is a (partial) expansion and 7 is the associ-
ated skeleton tree of e, then there exists a function f such that (7, f) is a tree-
decomposition of the expansion e viewed as a hypergraph. The function f - which
maps every node of T to a set of vertices of e viewed as a hypergraph - will be
defined in the proof.

The proof is done by induction on the size s of (partial) expansions.

s = 1. Let e be a (partial) l-expansion (P(Z),D,Z) viewed as the hypergraph
H = (V,HE) and let T be the associated skeleton tree of e with set of nodes the
singleton N. Let f : N = P(V) be the function that maps the unique node i of
N to the set V of all vertices of H. It is straightforward to see that the pair (7, f)
is a tree-decomposition, of bounded tree-width, of the expansion e viewed as the
hypergraph H.

Inductive step: Let e be a (partial) expansion of size s > 1, obtained as the 1-
unfolding of a partial expansion ey of size s — n, with 1-expansions and/or par-
tial l-expansions ej,...,e,. For ¢ = 0,...,n, let e; be viewed as the hypergraph
H; = (V;, HE;), let T; be the skeleton tree of e; with set of nodes N; and let
fi : Ni = P(V;) be a function such that (7;, f;) is a tree-decomposition of bounded
tree-width, of the expansion e; ( (7o, fo) is the tree-decomposition of eg by induction
hypothesis while (71, f1),---,(Tn, fn) are the natural tree-decompositions of ey,...,e,
which are (partial) 1-expansions). Let e be viewed as the hypergraph H = (V, HE)
such that V =VoUWViU...U Vs and HE = HEQUHE LU ... UHE, and let T be
the skeleton tree associated to e (with set of nodes A). We define the function
f: N = P(V) such that, for i = 0,...,n, the restriction of f to N; is f;. It is not
hard to verify that f satisfies conditions 1,2 and 3 of definition 2.4, which proves
that (T, f) is a tree-decomposition, of bounded tree-width, of the expansion e.
We now give the complete proof of the fact that f satisfies condition 3.: let b;
(labeled with rule r;), b (labeled with rule ) and b; (labeled with rule r;) be three
bubbles of 7 such that only b; is a leaf and b is the father of b; and let a, be
a vertex of H. Notice that (i) vertex a, belongs to f(b;) N f(b;) if and only if
variable ¢ appears both in r; and r; and (ii) vertex a, belongs to f(b;) N f(b) if
and only if variable = appears both in 7; and r. If = appears both in 7; and r;
then it follows from the structure of skeleton trees that x must necessarily appear
in rule r; therefore, if vertex a, belongs to f(b;) N f(b;) then vertex a, belongs to
FB)INF(b) = fo(b;)N fo(b); since (7o, fo) is a tree-decomposition, fy satisfies condi-
tion 3 of definition 2.4 i.e. a, belongs to fo(by) for every bubble by, belonging to the
unique path pg in 7 linking b; to b; but path pg is a path of 7 and fo(bx) = f(bg),
therefore a, belongs to f(by) for every bubble by belonging to the unique path pg
in 7 linking b; to b. Therefore, if vertex a, belongs to f(b;) N f(b;) then a, belongs
to f(bx) for every bubble by belonging to the unique path po in 7 linking b; to b;.
2. The assertion 2. of the proposition follows from the assertion 1. , according to
definition 2.5. Indeed the size of the bubbles of any skeleton tree of 7 is bounded
by the maximum size of any rule of the program (therefore the bound is a function
of the program). [

We come now to the central notion of persistent set of an expansion; this notion
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comes from the structure of expansions as hypergraphs as explained in the following
definition.

Definition 2.7. Let ‘H be a hypergraph and (7, f) be a tree-decomposition of
H. For every subtree L of 7 with [ > 1 bubbles by, bs,..., by such that A =
b1 NbaN...Nb; # 0, the set A CV is called persistent set of length I; the cardinality
of A is called size of A. The elements of a persistent set are called persistencies. If
H has a persistent set A of size n and length [, we say that H has n persistencies
of length [. If the subtree L is reduced to a branch b with [ bubbles by, bs,..., i
(where b; is the father of b;;1) then the corresponding persistent set of length [ is
called linear persistent set on branch (b1, ba,..., by).

In order to properly reason with persistencies in program expansions, we have to
work with normal Datalog programs which are programs containing in their rules
(and in their expansions consequently) only IDB atoms of the form Q(¢) where the
argument ¥ is a vector of distinct variables. When a program and/or its partial
expansions contain atoms having repetitions in their argument, we transform such
atoms into new ones which have no repetitions in their arguments; the transforma-
tion is canonical as explained in the following definition.

Definition 2.8. 1. The atom Q(7) is a bad atom if there are repetitions of vari-
ables in 7. The transform of Q(%) is the unique atom Q%) where Z is the vector of

distinct variables of ¢ ordered according to their order of appearance and ['is the
sequence of the positions of the first occurrence of every component of §; ['is called
label.

2. Let D be a domain, let @ be a vector of elements of D containing repetitions of

-

elements; Q(@) is a bad atom and the transform of Q(@) is the unique atom Q{b)
defined as in 1, where b contains no repetitions of elements of D.

3. Let Q(%) be a bad atom with transform Q{Z) and let 7 be a relation on D
consisting of tuples @ such that Q(&) is an instance of Q(%); we call transform of
r the relation r' consisting of the transforms of the tuples of 7 (i.e. consisting of
tuples b such that Q;(l_;) is an instance of Q(Z)); r is called the inverse-transform
of r'.

Ezample 2.9. Consider the bad atom Q(z,y,,2): its variables are ordered x <
y < z according to their order of appearance; in Q(z,y, , z), the first component x
first occurs at position 1, the second one y first occurs at position 2, the third one x
first occurs at position 1 and the fourth one z first occurs at position 4; therefore the
transform of Q(z,y, x, z) is the atom Q1 ,2,1,4(x,y, z) with label (1,2,1,4). From the
transform Q1,2,1,4(,y, 2) of the bad atom Q(z,y, z, z) we can retrieve Q(z,y, z, 2).
Consider now the instance Q(a, b, a, ¢) of Q(z,y, z, 2); the transform of Q(a, b, a, ¢) is
the tuple Q12,1 4(a,b,c). Let 7 = {(a, b, a,c), (b,d,b,e)} be a relation corresponding
to instances of the bad atom Q(z,y,z, z); the transform of r is the relation 7' =
{(a,b,c),(b,d,e)} corresponding to instances of the transform Qi 21 4(z,y,2) of

Q(x5y7m7 Z)' D'

In the present paper we will assume that all Datalog programs are normal ones;
this implies no loss of generality since every program 7 can be transformed into a
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normal program 7’ such that 7 and 7’ are semantically equivalent; this is explained
in the following proposition.

PROPOSITION 2.10. Ewvery non normal Datalog program w can be transformed
into a normal program w' such that every IDB predicate of @' is of the form either
P or Py where P is some IDB predicate of m and | is a label.

There ezists a one-to-one correspondence f between the set £, of expansions of ™
and the set E; of expansions of ', satisfying the following: .

1) for every P-expansion e of w, either f(e) = e or there is some label | such that
f(e) is a P~expansion of 7'; conversely, for every Pp-expansion €' of 7', €' = f(e)
for some P-expansion e of .

2) The expansions e and f(e) have the same distinguished variables and the same
database part; the distinguished variables in f(e) appear in the same order as in e
but without repetitions.

It follows from 1) and 2) that for every IDB predicate P of m, the set of P-
expansions of 7 defines the same query ! as the union, over all labels l_: of the
Prexpansions of 7 and of the P-expansions of 7. More precisely, if @ is the query
defined by 7 and predicate P and r = Q(D), and if Q} (resp. Q') is the query
defined by 7' and P; (resp. P) and r; = QD) (resp. r' = Q'(D)) then r is the
union of the relation 7' and of the inverse-transforms of the relations ry, for all
labels [ that appear in the new program 7.

PRrOOF. We recall the following: (a) rule (resp. atom) 7’ is an instance of rule
(resp. atom) r if there exists a substitution 6 such that ' = r8; r' is a most general
instance of r with a certain property if, for every instance r"’ of r such that " has
the same property as r', there is a substitution 6, such that r" = r'6,., (c) atom
A is a common instance of atoms B and C if there are substitutions §; and 65 such
that B6, = Cf, = A; atom A is a most general common instance of atoms B and
C if, for any common instance D of B and C, there is a substitution p such that
D = Afp, (b) two atoms P(Z) and P(y) are called variants of each other if they
are instances of each other.

We introduce two program transformations, transformation A and transforma-
tion B, both applicable to programs which are not normal. Transformation A, when
applied to a program m and to a nonempty set BadAtoms of bad atoms (we suppose
that BadAtoms contains atoms that are not variants of each other), transforms m
into a new program 7’ constructed as follows: for every bad IDB atom Q () occur-
ring in BadAtoms and for every rule r of 7 defining @), construct - whenever it is
possible - a new rule 7' which is the most general instance of rule r satisfying the
following: head(r') is the most general common instance of head(r) and Q(¥): we
call such a rule 7', good rule derived from rule r and atom Q(%). If 7 is a program
containing bad atoms then, by iterating the application of transformation A to ,
one produces all instances of rules of 7, used in any expansion of w, and all bad
atoms that appear in partial expansions of 7. Transformation B, when applied to
a program 7, produces a new program 7'’ which is normal, by replacing in every
rule of 7, every bad atom with its transform; rules of 7 without bad atoms remain

1For a formal definition of the notion of query, see definition 3.5.
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unchanged in the new program 7. We give now the normalization algorithm that
produces from a program 7 which is not normal, a new program 7’ which is normal
and is semantically equivalent to 7.

Normalization algorithm

Begin

OldProgram = )

Program := w *input
program*

BadAtoms := {Bad atoms in 7}

While BadAtoms # 0 do

begin

OldProgram := OldProgram|J Program

Program := program produced by transformation A applied to 7 and BadAtoms

BadAtoms := {Bad atoms in Program having no variant occurring in OldProgram}
end
Program :=0ldProgram | J Program
Output:= program produced by transformation B applied to Program  *output
program*
End

The Normalization algorithm, on input program « produces output program =’.
Let us call 7" the intermediate program produced when we definitely quit the
while loop (i.e. when we cannot apply transformation A anymore). Notice that
the output program 7’ is obtained in the last step of the algorithm by applying
the transformation B to the intermediate program 7. It is not hard to verify that
transformation B preserves semantical equivalence; therefore the two programs 7'/
and 7' are semantically equivalent, since they satisfy the following: (1) if P(Z) is not
a bad atom then (P(&), D, () is an expansion of 7' if and only if it is an expansion
of 7' and (2) if P(Z) is a bad atom with transform PXi) then (P(%),D,0) is an
expansion of 7' if and only if (P{#@), D, 0) is an expansion of .

Consequently, in order to show that the input program =« is semantically equiva-
lent to the output program 7' it is sufficient to show that 7 is semantically equivalent
to the intermediate program 7" produced when we definitely quit the while loop.
Termination The iteration of the while loop terminates since all possible bad
atoms are instances of atoms of the input program n and these instances only use
the set of variables of 7, so their total number is finite.

Correctness It is not hard to see that (1) before entering the while loop, the
expansions of Program are expansions of the input program 7 and that (2) after
entering the while loop, the expansions of Program are still expansions of 7. This
loop invariant shows us that the expansions of 7" (produced when we definitely
quit the while loop) are expansions of 7.

Completeness It is not hard to prove - by induction on the depth of expansions
(using the definition of transformation A) - that every expansion of 7 is an expansion
of 7. This shows that the expansions of 7 are expansions of 7". O

To illustrate the idea of the above transformations, we give the following example.

Exzample 2.11. The following program 7 is not normal because of the set Bad Atoms,
= {P(.'L',y,l'), Q(y’yau)ap(zayay)a Q(zayay)} of bad atoms that occur in it.
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1 :P(xayax) « Q(y,y,U),E(x,m,y)
T2 :P(%Z/az) FP(Zay;y)aE(%Z,U)
r3: Q(xayaz) <~ Q(Z;y,y);E(Ua%y)

T4 Q(ma Y, Z) «— E(.CL', Y, Z)
We first apply transformation A to program w and to the set BadAtoms; of bad
atoms.
We do not have to create a good rule derived from r; and P(z,y, ) since it is rule
ry itself.
We create a good rule rly, derived from ry and P(x,y,z):
7',2 : P('T? y7 w) (_ P(”"’ y7 y)7 E(;E? :L', u)
We create a good rule i derived from r; and P(z,y,y) and a good rule ry derived
from ry and P(z,y,y):
ry : P(z,z,2) + Q(z,z,u), E(z,z, )
ry : P(z,y,y)  P(y,y,9), E(z,y,u)
We create a good rule r§ derived from rs and Q(y,y,w) and a good rule rj derived
from r4 and Q(y,y,u):
Té : Q(mJ m? z) (_ Q(z7 m? m)? E(u7 x7 x)
ry: Q(z,x, 2) + E(x,x,2)
We create a good rule r§ derived from 73 and Q(z,y,y) and a good rule r} derived
from r4 and Q(z,v,y):
s Q(z,9,y) < QY,,9), E(u,2,y):
ri  Q(z,y,y) « E(z,y,y).
These new rules form a new program 7':

ri : P(z,z,z) « Q(z,z,u), E(z,z,x)
ry : P(x,y,7) < P(z,y,y), E(z,z,u)
ry : P(z,y,y) + P(y,y,y), E(z,y,u)
T:IS Q(CE’,SL’,Z) — Q(Z,CL',SL'),E(U,IL',-’E)
3 1 Q(z,y,y) + QW,v,9), E(u,2,y)
ry: Qx,x,2) < E(z,,2)

Ty - Q($7y7 y) «— E(.Z’,y, y)

Program 7' contains two new bad atoms P(y,y,y) and Q(y,y,y) that did not
occur in m; all other bad atoms of 7' have variants that occur in 7 so we don’t
need to treat them again. We now apply transformation A to 7 and to the new set
BadAtomss = {P(y,v,y),Q(y,y,y)} of bad atoms.

We don’t have to create a good rule derived from r; and P(y,y,y), since such a
rule, namely rule 71, still exists in 7'.

We create a good rule ry' derived from ry and P(y,y,y):

ry': P(z,z,z) « P(z,z,z), E(z,x,u):

We create a good rule r§’ derived from r3 and Q(y,y,y) and a good rule r}' derived
from r4 and Q(y,y,y):

Té” : Q($7 m’ 'Z.) <_ Q('CL-J 'CL-J m)’ E(u7 x7 'Z.)

) Q(z,z,z) + E(z,z,z).

These new rules form a new program 7" that does not contain any new bad atom
(the bad atoms that occur in 7" have variants in 7', thus they have been treated
already):
ry . P(z,z,z) + P(z,z,2), E(z,z,u)

ACM Transactions on Computational Logic, Vol. V, No. N, January 2004.



Datalog prograns and their persistency nunbers - 13

T:I;” : Q(SU,ZU,.CU) A Q(.’L’,.’U,SE),E(U,ZE,JE)
Y Qz,z,z) « E(x,z,1).

We now apply transformation B to the program 7« U «’ U 7. We obtain the
following normal program II (each rule R; of IT comes from a rule r; of =, @’ or ©"'):
Ry : P1,2,1($;y) — Q1,1,3(y7u)7E($7$7y)

Ry : Pi1a(2) < Qu3(2,u), E(z, 7, 2)
R2 : P(x,y,z) — P1,2,2(Z,y),E(ZL',Z,U)
Rl2 : P1,2’1(.'L',y) <~ P17272($,y),E(.'L',$,U)
Ry i Pioa(z,y) < Piia(y), E(z,y,u)
RI2" : P1,1’1(.’E) — P1,1’1(.’17),E(.’L',.'L',U)

R3 : Q(.Z',y,Z) — Q1,2,2(z7y)7E(u7$7y)
RI3 : Q1,1’3(.’17,Z) — Q1,2,2 Z,.CC),E(U,.’L',IE)
Ry : Qi22(%,y) < Q1,11(y), E(u,2,y)
Ry :Q111(2) + Q11,1(2), E(u,,x)
Ry : Q(xayaz) <~ E(x,y,z)

R} : Q113(z,2) « E(z,z, 2)

RZ : Q1,2’2($,y) — E($7y7y)

R} :Qi1.1(x) «+ E(z,z,2). O

3. USEFUL FAMILIES OF EXPANSIONS

In this section we introduce the important notion of useful set of expansions: given
a program m, we call useful any subset of the set of expansions of 7 which allows
to capture the semantics of the program i.e. the query that the program defines
(this is explained in the first subsection). We use the terminology useful family
of expansions or simply wuseful family. Trivially the set of all expansions of 7 is
a useful family of expansions; we are obviously interested in useful families that
are proper subsets of the set of all expansions of 7. We will exhibit program
properties such that each of these properties is inherently related to the existence
of some useful family with specific features. First such example is the relationship
between boundedness and the existence of a finite useful family (given in the second
subsection of this section). A second example of this kind will be given in the next
section, where we characterize the persistency number of a Datalog program in
terms of useful families.

3.1 Preliminaries of queries via expansions and homomorphisms

We recall some well-known definitions of the logical notion of satisfiability and its
equivalent formulation in terms of homomorphisms.

Definition 3.1. A distinguished database is a tuple D* = (D,ay,...,a,) where
D =(D,ry,...,r,) is a database and (a1, ...,a,) is a tuple of distinct elements of
the domain D of D.

Let 7 be a program; we say that the distinguished database D* = (D, ay, ..., a,) is
P-accepted by expansion e = (P(z1,...,%,),C,0) of 7 if there exists a valuation V
from the set of variables of e to the domain D of D such that (1) for i = 1,...,n,
V(z;) = a; and (2) e, viewed as a first-order formula, is satisfied in D under the
valuation V. We say that the distinguished database D* = (D,ay,...,ay) is P-
accepted by program 7 if there exists an expansion e = (P(z1,...,2,),C,0) of
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7 such that D* = (D,ay,...,a,) is P-accepted by e. We equivalently say that
expansion e (or program 7) P-accepts D*. When P is clear from context, we talk
about ”acceptance” instead of ” P-acceptance”.

Every expansion (P(z1,...,2,),D,0) can be seen as the distinguished database
((D,r1,..-,Tn), gy -uy Az, ) With domain D = {a, | z is a variable occurring in D}
where, for i = 1,...,n, d, € r; if and only if R;(¥) € D; we will use the same
notation D for both the database part of the expansion (which is a set of EDB
atoms) and for the database (D,r1,...,r,): therefore we will say that the expansion
e = (P(z1,-.-,7,),D,0) is viewed as the distinguished database (D, ay,, ---,as,, )-

Definition 3.2. Let D* = (D,71,...,7m),a1,...,an) and D'* = (D', 7}, ..., 7)),
al,...,al) be two distinguished databases such that r; has the same arity as r} for
i =1,...,m. A homomorphism from D* to D'*, is a total function h : D — D'
such that (1) h(a;) = a} for i = 1,..,n and (2) if (a1,...,am;) € 75, then
(h(a1),. .., h(am,;)) € 7k

The composition of two homomorphisms is a homomorphism.

PRroPOSITION 3.3. The distinguished database D* is P-accepted by the P-expansion
e = (P(z1,...,x4),C,0) of 7 if there exists a homomorphism h from e - viewed as
the distinguished database (C,ay,,...,a;,) - to D*.
The distinguished database D* is P-accepted by program = if there exists a P-
expansion e of w such that D* is P-accepted by e.

ProOOF. Immediate from definitions 3.1 and 3.2. O

Ezample 3.4. Consider the distinguished database (D, a, a) where D has domain
D = {a,b,c,d} and relation {(a,b), (b,c)}, let 7 be the following program:

T1 IT(SU,Z/) L E(x,z),T(z,y)
ro:T(z,y) : — E(x,2)

and let eg, e; and ey be the following T-expansions of 7 for the goal T'(z,y), written
in their folklore notation as existential first-order formulas: (1) eg = 32E(z, 2), (2)
e1 = IzFuE(z,2) AN E(z,u) and (3) e2 = 3232,FvE(x,2) A E(2,21) A E(21,v).

We formalize ey as the 3-tuple (T'(z,y),Co,?) and view it as the distinguished
database (Co, as,ay) where Cy is the database with domain Co = {a,,ay,a.} and
relation {(az,a;)}. The distinguished database (D, a, a) is T-accepted by expansion
eo via the homomorphism hg from Cy to D, such that ho(a;) = a, ho(ay) = a,
ho(az) =b.

We formalize e; as the 3-tuple (T'(x,y),C1,0) and view it as the distinguished
database (C1, as, ay) where Cy has domain C; = {a,,ay,a;,a,} and relation {(a,,a;)
(az,a4)}. The distinguished database (D, a,a) is T-accepted by expansion e; via
the homomorphism by from C; to D, such that hi(a;) = a, hi(ay) = a, hi(a.) = b,
hi(ay) = c.

Notice that the above homomorphisms hy and h; are related in the following
way: there exists a homomorphism A from Cy to C; such that hy o h = hyp; this
homomorphism h is the identity on Cy.

We formalize ey as the 3-tuple (T'(z,y),Ca,0) and view it as the distinguished
database (C2, ag,ay) where Cy has domain Cy = {a;,ay,a;,a.,,a,} and relation
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{(ag,az), (az,az,), (az,ay)}. Since there is no homomorphism from C; to D, we
conclude that the distinguished database (D, a,a) is not accepted by expansion es.
O

Definition 3.5. A query is a function @) from databases (of some fixed type) to
relations of fixed arity such that the image of a database with domain D is a relation
on D. A query has to be generic, i.e. invariant under renamings of the domain; this
means that, for every domain D’ such that there exists a one-to-one correspondance
i:D— D', QU(D)) = iQ(D)) .

1. A P-expansion ¢ = (P(x1,22,-..,%m),C,0) of program 7 defines a query Q5 p
as follows: for every database D, Q5 p(D) = {(d1,dz,...,dn): the distinguished
database (D,d;,...,d;,) is P-accepted by e, viewed as the distinguished database
(Ca Agyy - azm)}'

2. Let (m, P) be a pair consisting of a Datalog program 7 and an IDB predicate
P of arity m (P is the goal predicate of ). The pair (m, P) defines a query Q, p
as follows: for every database D, Qr p(D) = {(d1,ds,...,dn): there exists a P-
expansion e of 7 such that (di,dz, . ..,dm) € Q5 p(D)}; or equivalently Q. p(D) =
{(d1,da,...,dn): the distinguished database (D,dy, ...,d,,) is P-accepted by 7}.

Definition 3.5 shows that Datalog is a query language; moreover it relates the
query defined by a pair (7, P) with the set of P-expansions of the Datalog pro-
gram w. The other equivalent approach consists in viewing Datalog programs as
a declarative query language with the following semantics: let D be a database,
thought of as a collection of facts about the EDB predicates of a program 7. Let

fr’ p(D) be the collection of facts about an IDB predicate P that can be deduced
from D by at most k applications of the rules in 7 (this defines the bottom up
evaluation). If we consider P the goal predicate, then = expresses a query Qr,p,
where Qr pP(D) = Ui>o er’ p(D). The query Q. p is expressed as the infinitary
disjunction of the set of P-expansions of .

3.2 Useful families and their relation to boundedness

We now introduce our notion of useful family of expansions. The idea behind the
notion of useful family is the following: recall that the query @, p is expressed as
the infinitary disjunction of the set of P-expansions of 7. Any subset £ of the set
of P-expansions of 7 such that the query @ p is expressed as the disjunction d of
the P-expansions in & is called useful family of P-expansions; notice that if & is
finite the disjunction d is finitary. We give below a simple definition of the notion
of useful family of expansions.

Definition 3.6. Let m be a program and let £ be a set of P-expansions of 7. We
say that &£ is a P-useful family of expansions of 7 if every distinguished database
P-accepted by 7 is P-accepted by some €' € £. When P is clear from context, we
simply say ”useful family” instead of ” P-useful family”.

The following proposition gives an alternative definition of the notion of P-useful
family.

2Let ¢ be a one-to-one correspondance ¢ : D — D’, let r be a relation on D and let D =
(D,r1,...,7m) be a database. We denote by i(r) the relation on D’ = i(D) such that (b1, ...,bt) € 7
if and only if (i(b1),...,i(bt)) € i(r). We denote by (D) the database (i(D),i(r1),...,i(rm)).
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PROPOSITION 3.7. Let 7 be a program and let £ be a set of P-expansions of .
& is a P-useful family of expansions of w if and only if every P-expansion e of w
(viewed as distinguished database) is P-accepted by some e' € .

PROOF. (=) Suppose that £ is a P-useful family of expansions of 7. According

to definition 3.6, every P-expansion of 7 (viewed as distinguished database) is P-
accepted by some €’ € £.
(«<=) Suppose now that every P-expansion of 7 (viewed as distinguished database)
is P-accepted by some e’ € £. By definition 3.2 every distinguished database D* P-
accepted by m, is P-accepted by some P-expansion of 7 and it follows (by composing
the homomorphisms) that D* is P-accepted by some e’ € £. [

Definition 3.8. Let my and my be two Datalog programs and let P be any IDB
predicate, of arity p, occurring both in 7; and m2. Programs m; and ms are P-
equivalent if for every database D with domain D and for every p-tuple (a1, ..., ap) €
D?, (ai,...,ap) € Qn,,p(D) if and only if (ai,...,ap) € Qnr,,p(D). We also say that
(w1, P) and (w2, P) are equivalent or simply that 7, and 72 are equivalent.

PROPOSITION 3.9. Let w1 and wo be two programs and let P be an IDB predicate
occurring in both my and wo. The following statements are equivalent.
1. Programs my and wo are P-equivalent.
2. Pairs (w1, P) and (ms, P) define the same query.
3. Programs m; and ms P-accept the same distinguished databases.
4. BEvery P-expansion of program m; is P-accepted by wy and vice-versa.

Proor. 1) = 2) Follows immediately from definitions 3.8 and 3.5 (2).
2) = 3) Follows immediately from definitions 3.5 (2) and 3.2.
3) = 4) Follows from the fact that, since 3) holds, all P-expansions of 7; and all
P-expansions of my must be among the distinguished databases P-accepted by m;
and P-accepted by 5.
4) = 1) Since 4) holds, it follows - from definition 3.5 and by composing the
homomorphisms - that, for every database D with domain D and for every p-tuple
(@1,...,ap) € D? (a1,...,ap) € Qr,,p(D) if and only if (a1, ..., ap) € Qnr,,p(D), which
means, according to proposition 3.8, that programs 7; and w2 are P-equivalent.

A sufficient condition assuring that program 7 is P-equivalent to program 7’ is
when 7 and 7’ have the same set of P-expansions.

Definition 3.10. 1. We say that two programs are strongly P-equivalent if they
have the same set of P-expansions, where P is an IDB predicate occurring in both
m and 7'.

2. We say that two programs are strongly equivalent if they have the same set of
P-expansions, for every predicate P occurring in both 7 and «'.

PrOPOSITION 3.11. Let w and ©' be two programs. If m and ' are strongly
equivalent then they are P-equivalent for every IDB predicate P occurring both in
7w and ',

We now illustrate the notion of usefulness by giving a characterization of the
boundedness property of Datalog programs in terms of useful families.
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Definition 3.12. 1. A program 7 is recursive if there exists a cycle in the depen-
dency graph of 7.
2. A recursive program 7 is bounded w.r.t. its IDB predicate P if there exists an
integer K such that every distinguished database accepted by some P-expansion of
7 is accepted by some P-expansion of depth < K; this property is called predicate
boundedness.
3. A recursive program 7 is bounded if it is bounded w.r.t. all its IDB predicates;
this property is called program boundedness.

Obviously a non recursive program is bounded. Suppose now that program 7 is
recursive and that, in the dependency graph of 7, there is no path starting from P
and reaching some cycle; then obviously, 7 is bounded w.r.t. P. It has been proved
that (1) a program is bounded w.r.t. P if and only if it is P-equivalent to a non
recursive program and that (2) a program = is bounded w.r.t. all its IDB predicates
P if and only if, for each IDB predicate P in m, program 7 is P-equivalent to a
non recursive program. Notice that decidability of predicate boundedness implies
decidability of program boundedness; but the converse does not hold. Notice also
that the converse of proposition 3.11 does not hold: consider any recursive bounded
program 7 and a nonrecursive program 7’ which is equivalent to 7; 7 has an infinite
set of expansions while 7' has a finite set of expansions.

LEMMA 3.13. 1. A Datalog program m is bounded w.r.t. its IDB predicate P if
and only if m has a finite P-useful family of expansions.
2. A Datalog program = is bounded if and only if © has a finite P-useful family of
expansions, for every IDB predicate symbol P.

ProOF. 1. Recall that a program = is bounded w.r.t. its IDB predicate P if
there exists an integer K such that every distinguished database accepted by 7 is
accepted by some P-expansion of depth < K. The set of all P-expansions of w of
depth < K forms a P-useful family of expansions of 7; clearly this useful family is
finite.

2. Obvious. O

From the previous characterization of boundedness in terms of useful families
and from the undecidability of program boundedness and predicate boundedness
[GMSV87], we obtain the following undecidability facts:

ProprosITION 3.14. 1. There is no algorithm that takes an arbitrary recursive
program w and an arbitrary IDB predicate P as input and determines if m has a
finite P-useful family.

2. There is no algorithm to determine if a recursive program has a finite P-useful
family, for every P.

4. PERSISTENCY NUMBERS OF A DATALOG PROGRAM

In this section we introduce the persistency number, the weak persistency num-
ber and the syntactic persistency number of a Datalog program (written from the
strongest to the weakest notion). These numbers concern various ”levels” of pres-
ence of persistent variables: the weakest and more straightforward notion is that
of syntactic persistency number, which is defined from the syntactic form of the
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program rules (this notion appears first in [C89]); the new notion of weak persis-
tency number is syntactic too, but concerns the presence of persistent variables in
the set of all expansions of the program, while the notion of persistency number
(first defined in [Af97]) is more related to the program semantics. In section 7
we introduce a fourth - more semantical - notion, the persistency number-modulo
equivalence which is invariant up to program equivalence.

First we introduce the persistency numbers of a program 7 with respect to a given
IDB predicate symbol P of 7 (for short we call them P-persistency numbers).

Definition 4.1. Let w be a program and let P be an IDB predicate symbol of 7.
1. Program « has syntactic P-persistency number m if m is the maximum integer
among those integers n satisfying the following: there exists in 7 a rule p defining
predicate P such that n variables of head(p) occur in some IDB atom of body(p).
2. Program 7 has weak P-persistency number m if m is the minimum integer satis-
fying the following: there exists an integer k such that for every P-expansion e of 7w
having > m persistencies of length [ 3, it is true that [ < k. We call characteristic
integer of m w.r.t.-weak-P-persistency-number the minimum integer satisfying the
requirements of the integer k in the definition of the weak P-persistency number of
.
3. Program w has P-persistency number m if m is the minimum integer satisfying
the following: there exists an integer k such that for every database D, P-accepted
by 7, there exists a P-expansion e that accepts D such that if e has > m persis-
tencies of length [ then [ < k.

One of our long term objectives is to simplify the occurrences of persistent sets.
We have managed so far to accomplish this, in the case of persistent sets occurring
in the family of all program’s expansions but always with bounded length. This
bound is the characteristic integer.

We introduce in a similar way the various persistency numbers of a program 7,
defined independently of any specific IDB predicate of 7.

Definition 4.2. 1. Program w has syntactic persistency number m if m is the
maximum among those integers n satisfying the following: there exists an IDB
predicate P of w such that n is the syntactic P-persistency number of 7.

2. Program m has weak persistency number m if m is the maximum among those
integers n satisfying the following: there exists an IDB predicate P of n such
that n is the weak P-persistency number of 7. We call characteristic integer of
w.r.t.-weak-persistency-number the maximum among those integers [ satisfying the
following: there exists an IDB predicate P of m such that [ is the characteristic
integer of 7 w.r.t.-weak- P-persistency-number.

3. Program w has persistency number m if m is the maximum among those integers
n satisfying the following: there exists an IDB predicate P of @ such that n is the
P-persistency number of 7.

Observe that a non-recursive Datalog program has persistency number zero (with
respect to any of its IDB predicates).
We now introduce the notion for a family of hypergraphs to be of-m-persistencies.

3Recall definition 2.7.
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Definition 4.3. Let £ be a (possibly infinite) family of hypergraphs with a given
tree decomposition, for each member of the family. We say that £ is of-m-persistencies
if m is the minimum integer satisfying the following: there exists an integer k such
that for every element e € £ if e has > m persistencies of length [ then I < k. If £
is finite then £ is of-O-persistencies.

LEMMA 4.4. 1. Program © has weak P-persistency number m if and only if the
set EP of all P-expansions of 7 is a family of-m-persistencies.
2. Program w has weak persistency number m if and only if the set &, of all
expansions of w is a family of-m-persistencies.
3. Program w has P-persistency number m if and only if m is the minimum integer
such that © has a P-useful family of expansions of-m-persistencies.

Proor. The proof follows from definitions 3.6, 4.1, 4.2 and 4.3. [

Lemma 4.4 shows that the notion of family of expansions of-m-persistencies gives
a nice characterization of the weak persistency number and the persistency number
in terms of useful families; that characterization will be heavily used in the sequel
of the paper (especially in the proof of lemma 7.2). It is worthwhile noticing that,
according to lemma 4.4, the weak persistency number and the persistency number
of a program 7 are both related - in a similar way - to the existence of a family F
of expansions of m-persistencies for some well-chosen m: for the weak persistency
number F is the set of all expansions (i.e the trivial useful family) of 7, while
for the persistency number, F is a useful family of-m-persistencies for which m
is minimum; for instance, if # has no proper useful family of expansions then its
persistency number coincides with its weak persistency number. Therefore the
first impression is that the persistency number is a deeper notion than the weak
persistency number; in forthcoming sections our results on the interrelationship
between these two numbers and on the possibility to decide if each of them has a
given value (”their decidability problem” treated in section 8) will prove that the
first impression is correct.

We now give some preliminary results that relate the syntactic persistency num-
ber with the weak persistency number.

Definition 4.5. Let D be a set of EDB atoms, Z be a set of IDB atoms and
r: P(Z) + D,Z be a rule. We say that rule r is a witness of syntactic persistency
> m if there exists an IDB atom Q;(%;) € body(r) such that > m variables in ¢;
occur in Z. We say that rule r : P(Z) + D,Z is a witness of syntactic persistency
< m if r is not a witness of syntactic persistency > m. Every initialization rule is
considered as a witness of syntactic persistency < m, for every integer m.

PROPOSITION 4.6. 1. For every program w and every integer m, every erpansion
of w, viewed as a rule, is a witness of syntactic persistency < m.
2. For every program 7 and for every partial expansion e of 7, e has a persistent set
of size > m and of length > k if (a) e - viewed as a rule - is a witness of syntactic
persistency > m and (b) e has minimal IDB depth > k.
3. If program w has weak persistency number m and K is the characteristic integer
of ™ w.r.t.-weak-persistency-number then every partial expansion e of w of minimal
IDB depth > K, is - viewed as a rule - a witness of syntactic persistency < m.
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ProOOF. 1. immediate since every expansion defines an initialization rule.
2. obvious from definitions 4.5, 2.2 and 2.4 condition 3. Recall that the (partial)
expansion (P(Z),D,Z) can be viewed as the rule P(¥) «+ D,Z.
3. obvious from definition 4.2 and proposition 4.6 2. O

PROPOSITION 4.7. For every program w, we denote by mZ (resp. m¥ ) the syn-
tactic (resp. weak) persistency number of w. From every program w such that
mé > m¥, we can construct a program ' strongly equivalent * to mw such that
ms, =m¥.

K ™

PROOF. Let 7 be a program with weak persistency number equal to m¥ and with
characteristic integer w.r.t.-weak-persistency-number equal to Kjy; notice that we
can compute these two numbers (for the weak persistency number see subsection
8.1 and for the characteristic integer w.r.t.-weak-persistency-number see subsection
8.2). For any fixed K, K > Ky, we construct from 7 a new program 7' and show
that (1) m2, = m¥ and (2) «' is strongly equivalent to m; the set R, of rules of
7' is the disjoint union of two sets A and B: the set A contains exactly the rules
of m which are witnesses of syntactic persistency < m¥ (A contains at least the
initialization rules of ) and the set B contains exactly all expansions of 7 of depth
< K and all partial expansions of 7 having both depth and minimal IDB depth
equal to K; the elements of this set B are, according to proposition 4.6, witnesses
of syntactic persistency < m¥. Thus every rule of 7’ is a witness of syntactic
persistency < m¥, therefore 7’ has syntactic persistency number < m¥. Obviously
every expansion of 7' is an expansion of 7. We show now that every expansion of
is an expansion of /. We call fact(m) the fact that every expansion of 7 of depth
at most mK is an expansion of /. We have to show that fact(m) holds for every
m > 1.

Basis m = 1: fact(1) holds since by construction every expansion of 7 of depth at
most K is a rule of 7.

Inductive step: suppose that fact(m) holds; we show that fact(m + 1) holds. Let
e, viewed as the hypergraph (V,HE) be an expansion of 7 of skeleton tree 7 and
of depth k such that mK < k < (m + 1)K. Consider the partial expansion eg
with skeleton tree 7o such that 7 is obtained by erasing from T every node of
depth > K eg is a partial expansion having both depth and minimal IDB depth
equal to K, therefore ey is a rule of n'. Let ey be viewed as the hypergraph
Vo, HEp) and let e; = (V1,HE1), --sen = (Vn, HE ) be the expansions such that
V=VoUViU--UVn and HE = HEQUHELU .U HER; €1,....en have depth at
most mK thus, by induction hypothesis, they are expansions of 7’; therefore e is
an expansion of 7'.

This ends up the proof that every expansion of 7 is an expansion of 7’; thus 7 and
7' have the same set of expansions which means - according to definition 3.10 - that
they are strongly equivalent. It follows that 7' has weak persistency number m¥;
thus 7' has syntactic persistency number > m¥. Since we showed, at the beginning
of the proof, that 7' has syntactic persistency number < m¥ we conclude that =’
has syntactic persistency number mY. O

4Recall definition 3.10.
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5. ADORNED DEPENDENCY GRAPH OF A PROGRAM: A TOOL FOR VISUAL-
IZING PERSISTENT SETS

We visualize program expansions and their persistencies by means of the adorned
dependency graph which is a labeled version of the well-known dependency graph
of the program. On the labels of this new graph appear special functions, called
pattern transformations, which express, for each rule r and each IDB atom Q(%)
occurring in body(r), the argument vector ¢ in terms of the argument vector Z of
head(r).

Definition 5.1. For every pair (X,Y) of variable vectors where X = (21, ...,2p)
(the variables z1, ..., 2, are distinct) and Y = (y1, ..., y,) (the variables y1, ...,y, are
distinct) we define a total function 8 : {1,2, ...,q} — {1,2, ..., p,x} (where * is a new
symbol) as follows: 6(i) = j if y; = z; and (i) = x if y; # «; Vj = 1,...,p. The
function @ defined by (X,Y) is called a pattern transformation of type (p,q) ( 0 is
not necessarily an onto function). We say that 6 : {1,2,...,q} = {1,2,...,p,x} is a
m-pattern transformation, 0 < m < g, if there are exactly m elements of {1,2, ..., ¢}
such that their image under 6 is different from .

Every pattern transformation 0 : {1,2,...,q} — {1,2,...,p,x} of type (p,q) can
be defined by infinitely many pairs of variable vectors in such a way that for every
pair of variable vectors (X,Y") defining 6 the following holds: if X = (1, ...,z,) is
a vector of distinct variables and if every variable of Y is either a variable of X or a
distinct variable u then Y = (zg(y), ..., Tg(q)) Where z, = u; in that case the pattern
transformation 6 defined by the pair (X,Y") is an m-pattern transformation if and
only if X and Y have exactly m variables in common.

Ezample 5.2. The pattern transformation defined by the pair ((z,y, 2), (y, u, z,v))
is the substitution § = {1|2,2|%,3|1,4[x} : {1,2,3,4} — {1,2,3,%}; notice that
is also defined by the pair ((u,v,y), (v, w,u,t)) for instance. However the two
pairs ((z,y, 2,t), (y,u, z,v)) and ((z,y, 2), (y,u,z,v)) do not define the same pat-
tern transformation: the pair ((z,y, 2, t), (y, u, z,v)) defines the pattern transforma-
tion 8" = {1|2, 2|, 3|1,4|*} : {1,2, 3,4} — {1,2,3,4,x} with codomain {1,2, 3,4, *}
which is different from the codomain {1,2,3,%} of 6. O

Definition 5.3. Let o1 : {1,2,....,p} — {1,2,...,s,%} and o3 : {1,2,....,q} —
{1,2, ..., p,x} be two pattern transformations of respective types (s, p) and (p, q), re-
spectively defined by pairs (X,Y") and (Y, Z). Let o7 : {1,2,...,p,*} = {1,2,...,s,%}
be the pattern transformation which is equal to o7 on {1,2,...,p} and such that
o3 (x) = *. We denote by o102 : {1,2,...,q} = {1,2,...,s,%} the composition of o}
and oy such that o102(z) = 6} (02(z)); the function o102 is a pattern transforma-
tion of type (s, q), defined by the pair (X, Z') where Z' is the vector of variables
obtained from Z by replacing each variable z € X \ Y with a new variable.

Ezxample 5.4. Suppose that X = Z = (z), Y = (y). Let o1 = {1|x} : {1} —
{1,%} and o2 = {1|*} : {1} — {1, *} be two pattern transformations of respective
types (1,1) and (1, 1), respectively defined by pairs (X,Y") and (Y, Z); the function
o102 is the pattern transformation {1|x} of type (1,1), defined by the pair (X, Z")
where Z' = (u). The pattern transformation of type (1,1), defined by the pair
(X, Z) is the function {1|1} # 0102. O
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It is important to notice that the situation described in example 5.4 cannot
happen in our context since in expansions each variable that disappears at some
point, never appears again later on; therefore the composition o102(x) of o} and
o2 in definition 5.3 can be naturally formulated as ”pattern transformation of type
(s, q), defined by the pair (X, Z)”.

Definition 5.5. The adorned dependency graph ADG, of w has the set of IDB
predicates as set of vertices and its set of edges is defined as follows: for every
recursive rule r with head P(Z) and for every IDB atom Q;(7;) in body(r) there
is a directed edge from P to @; with label the pair (r,6;) where 6; is the pattern
transformation defined by (Z,%;). The sequence (r1,01),...,(Tn,05) such that p :

(r1,01)

p gy (rmgn) Q is a path in ADG, of length n starting from P is called the
P-trace of path p; we say that (r1,01),...,(rn,0n) is a P-trace of 7 (or simply a trace
of 7) of length n and of label o1...6,,. We say that (ry,o01),...,(rn,0n) is a trace of
the expansion e of 7 if r1,...,7, is a branch in the skeleton tree Skel of e; if r; is
the root of Skel and r,, is the father of a leaf of Skel then the trace is called full
trace of e. If t : (r1,01),...,(Tn,0n) is a trace then the sequence (r;,0;),...,(r;,0;),
1<i<j<nmn,is called subtrace of t.

We now show how paths in the adorned dependency graph allow to reason about

program expansions and their persistent sets. Indeed every path p : Qg Tlm)

(rn.gn)

@, in the adorned dependency graph ADG,. of program 7 provides two
pieces of information: (1) the sequence r; — ... — r, corresponds to a branch
b:Ni:ry — ... & Ny :ry, of skeleton trees (where by N : r we denote that node N
has label r) and (2) the m-pattern transformation o5...0,,—; determines, if m > 0,
the existence of a linear persistent set of size m and of length n, which occurs in all
expansions containing the branch b in their skeleton tree. According to definition
2.7, every persistent set has length at least 2. It follows from the definition 2.2 of
expansions and from the canonical tree-decomposition of an expansion viewed as a
hypergraph (see proof of proposition 2.6) that two bubbles b; and b in the skeleton
tree of expansion e, such that by is the father of by, define a trivial persistent set of
e of length 2. Therefore the length n of non-trivial persistent sets is n > 3.

PROPOSITION 5.6. Lete = (V,HE) be an expansion of m with tree-decomposition

(T, 1)
1. For every path b : Ny : 11 — . —) Ny, : r, with n > 1 nodes in T there is a

rl,ol) (rn- 1,0n 1)

unique path p : Q1 Qn of length n—1 in the adorned dependency
graph ADG; of w, where Qn is the head predicate of rule r,.

2. Moreover the set S = f(N1) N...N f(Ny,) is a linear persistent set (on path
(ri,..-,mn)) of size m > 0 and of length n, if and only if oy...0n_1 is an m-pattern
transformation.

PROOF. The proof of part 1. is by induction on the number n > 1 of nodes in b.
Basisn =2
Let b: Ny : 71 — Ny : 12 be a path of the skeleton tree 7, where the two rules r;
and Tro are such that ro: Ql(-’fl) «— ...,Qz(gl),... and Tro : QQ(.’EQ) +— ... and let o1
be the pattern transformation defined by the pair (#,%1). We associate to b the
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path p: Q (Tl—’(;l) @ of the adorned dependency graph ADG,; of .
Inductive step:

Let b: Ny : 1 — ... &> N, : r, be a path with n nodes in the skeleton tree 7.

Let po : Q1 (ripg) | (ra=2gn=2) Q@n_1 be the path of length n — 2 in ADG,; which,
by induction hypothesis, we associate to the initial segment (with n — 1 nodes)
b(] tNi:ri = ... > Np_1:The1 ofpath b. The last step by : Np_1:71-1 = Np:rp
of path b is a path of 7 with 2 nodes, where the two rules r,_; and r, are such
that rp—1 : Qn-1(Fn-1) < «s; Qn(Fn-1), ... and rp, : Qn (&) + .... We associate to

b, the path p; : Qn—1 (rn=1,gn-1) Q. where o,_; is the pattern substitution defined
by the pair (Z,—1,%n—1). Finally we associate to b the concatenation of py and p;

i.e. the path p: Q (rugn) (T"_z’—(;"_z) Qn-1 (T"_l—’(;"_l) Qn.
We prove now part 2.
Recall that to the path b: Ny : 11 = ... & N, : r, in T we associate the unique

(r1,01)

pathp: Q; = .. (rn=1,gn-1) Q@ in ADG, and suppose that the set S = f(N7)N
...Nf(Ny,) is a persistent set of size m > 0. For every ¢ = 2,...,n—1, therule r; has a
variant Q;(%;) ¢ ...Qi+1(Zix1), ... such that the pattern transformation o; is defined
by the pair (#;,Z;+1). The m vertices of the set S correspond to the m variables
of 2 N ... N &,. From the definition of the mapping f in a tree-decomposition,
Zo N ...N T, = T2 N T, and this exactly means that os...0,—1 is an m-pattern
transformation. Let now os...0,,_1 be the pattern transformation defined by the
pair (Zo, &), such that, for every i = 2,...,n—1, the rule Q;(Z;) + ...Qs1(ZFix1), ---
is a variant of r;. By hypothesis, 0s...0,,_1 is an m-pattern transformation which
means that Z» and Z,, have m variables in common and that f(Ny) and f(N,)
have m elements in common. Since (7, f) is a tree-decomposition f(Ny)N f(N,) =
Ff(Ny) N ...n f(Ny); thus the set S = f(N1) N ...N f(N,) is a persistent set of size
m > 0 and of length n. The previous argument uses programs’ normal form; indeed,
in a program which is not normal, f(N;) N f(N,,) may be affected by the parts of
T around path b (which means that some variables may have been identified in the
path from the root until the beginning of b and therefore path b is not sufficient to
determine the exact size of the persistent set). [

6. AUTOMATA RECOGNIZING PERSISTENT SETS

In the previous section we saw that from the traces of a program 7 we can determine
linear persistent sets occurring in expansions of n. In fact we can - and will -
reason on traces instead of reasoning on persistent sets as explained in the following
corollary to proposition 5.6.

COROLLARY 6.1. To every linear persistent set of size m and of length n occur-
ring on path (ri,...,r,) in some expansion of w corresponds naturally some trace
t = (r1,01),.-,(Tn,0n) such that os...0n_1 is an m-pattern transformation. To
every trace t = (11,01),-.-,(Tn,0n) in ADG, such that 02...0,_1 is an m-pattern
transformation corresponds the set of all linear persistent sets on path (r1,...,m5),
of size m and of length n occurring in some expansion of 7.

An important property of traces is that they can be recognized by a finite au-
tomaton. First we need some definitions:
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Definition 6.2. We call type set of program w the set Type, of all pairs (p,q),
p,q > 0, such that there exists a pattern transformation 6 of type (p,q) in some
label of the adorned dependency graph of w. We call transformation set of  the set
T, of all possible pattern transformations with type belonging to the type set Type,
of w. If the adorned dependency graph of 7 contains a pattern substitution with
type (p, q) then the transformation set 7, of  contains all pattern transformations
with type (p,q) i.e all total functions f : {1,2,...,q} = {1,2,...,p, x}.

The sets Type, and T, are both finite. We denote by 7, the subset of 7. consisting
of all m-pattern transformations; we denote by 7<.,, the subset of 7, consisting of
all n-pattern transformations for n > m.

Recall that traces have been introduced in definition 5.5.

Definition 6.3. 1. A trace t of 7 is called (m, K)-good when, if ¢ has length > K
then the label of ¢ does not belong to T<,. °
2. A trace t of 7 is called (m, K)-acceptable if ¢ and all subtraces of ¢ are (m, K)-
good.

PROPOSITION 6.4. Let m be a program and U be a family of expansions of .
The following propositions are equivalent:
1. U is of-m-persistencies.
2. m is the minimum integer satisfying the following: there exists an integer K
such that for every expansion e € U, every trace of e is (m, K)-good.
3. m is the minimum integer satisfying the following: there exists an integer K
such that for every expansion e € U, every trace of e is (m, K)-acceptable.
4. m is the minimum integer satisfying the following: there exists an integer K
such that for every expansion e € U, every full trace of e is (m, K)-acceptable.

ProoF. 1) & 2) It follows from definitions 6.3 and 4.3.
2) = 3) It follows immediately from definition 6.3.
3) = 4) obvious since every full trace is a trace.
4) = 2) obvious from definition 6.3 (2). O

LEMMA 6.5. 1. Let m be a program, let P be an IDB predicate symbol of 7, let
o be a pattern transformation in the transformation set T, of m and let K > 1 and
0 < m < maz(arity), be integers (recall that max(arity), is the mazimum arity
of the IDB predicates of 7).
1. There exists a finite non deterministic automaton A(x p,s) which recognizes the
set of all P-traces of w of label o.
2. There exists a finite non deterministic automaton A, which recognizes the set
of all traces of .
3. There exists a finite non deterministic automaton B(r . k) which recognizes the
set of all (m, K)-acceptable traces of m 5.

A. Construction of the automaton A, pq).

5Recall definition 5.5.
SRecall definition 6.3.
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- The set of states S of the automaton A, p s is the finite set of 2-tuples of the
form (T',0) where T is an IDB predicate symbol of # and 6 is a pattern transfor-
mation belonging to the transformation set 7.

- The set of initial states of the automaton A, p,,) consists of the state (P,o).

- The set of final states of the automaton A, p,) consists of all states (T, e)
where 7" is an IDB predicate symbol of 7 and e is the identity function. Notice that
the transformation set 7, may contain more than one pattern transformation which
is the identity function on its domain; we use € for any of these identity functions
since it is clear from the context how to distinguish them.

- The alphabet ¥ of the automaton A, p+) is the finite set of 2-tuples of the
form (r,6) where r is a rule of 7 and 6 is a pattern transformation belonging to the
transformation set 7.

- The transition relation A C Sx X xS is defined as follows: ((T',6.), (r,0),(T",0"))

e Aiff; =00 and T (T—@ T' is an edge in the adorned dependency graph ADG,; of
m. We will often use the notation p((T',0;), (r,0)) = (T",68") whenever ((T,6,), (r,0),

(T',0") € A. In particular p((7,8), (r,0)) = (T",¢) if there is an edge T' @ 71 in
ADG,.

In general the automaton A, p ) is not deterministic as shown by the following
remarks: (a) if the rules of 7 have more than one IDB in their bodies, suppose

T,0
_)

that in the adorned dependency graph ADG; of 7 there exist two edges T (T—’g) T

and T 9 77 , T' # T" and consider the state (T, 6;) of the automaton such that
6, = 66’ for some substitution ’; in that case there exist two distinct transitions
p((T,61)(r,8)) = (T",6") and p((T,0,)(r,0)) = (T",0") from the state (T, 6,) both
with label (r,8).

(b) even if 7 is linear, for two given pattern transformations 6, and 6, there is not
a unique ¢’ such that §; = 66', which means that the corresponding transition is
not unique.

Let w = (r1,01)...(tn,0n) € T*. A run of the automaton A(; pq) on w is
a sequence of states (7o,60), ..., (Tn,6,) such that (Ty,60p) is an initial state and
p((T;,6,), (ri,0:)) = (Tit1,0i41) for @ = 0,...,m — 1. A run of the automaton
A(r,pe) On w is accepting if (T},,0,) is a final state. It is not hard to prove the
following proposition by induction on the length of w using the definition of the
automaton A p,q)-

PROPOSITION 6.6. For every w = (r1,01)...(*n,0,) € X* there exists an accept-
ing run (P,01...01), ..,
(T, €) of the automaton Ay ps) on w if and only if w is a P-trace of m of label
01...0p .

B. Construction of the automaton A,.

From the automaton A, p,) we define a new automaton A, recognizing all
traces of 7. The automaton A has exactly the same characteristics as A(x, p,q)
except that all states are initial states.

PROPOSITION 6.7. For every w = (r1,01)...(vn,0,) € X* there exists an accept-
ing run (To,0),...,(Tn,€) of the automaton A, on w if and only if w is a To-trace
of m.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2004.



26 - F. Afrat, S. Cosrredakis, E. Foustouas

C. Construction of the automaton B(; ,,, k)-

- The set of states S of the automaton B, ,, k) consists of the (K + 2)-tuples of
the form (@, X1, ..., X k1) where @ is an IDB predicate symbol and Xy, ..., X g1
are subsets of the transformation set 7.

- The set of initial states of the automaton B ., k) consists of the states (@, 0, ..., 0)
where ) is an IDB predicate symbol.

- The set of final states of the automaton B, n, k) consists of all states (@, 1, ...,
Y k+1) where @ is an IDB predicate symbol and ¥, ..., ¥ k11 are subsets of T, such
that g (T>m = 0 and g 41 () T>m = 0 where 75, is the subset of T, consisting
of all n-pattern transformations for n > m.

- The alphabet ¥ of the automaton B, m k) is equal to the alphabet of the
automaton A p,q)-

- The transition relation A C S x ¥ x S is defined as follows:

(T, 51, o0y Sc41), (1,0), (T7, 51, o0, B 1)) € Aif (a) T 2 T is an edge in the
adorned dependency graph ADG, of 7w and (b) ¥ = {0}, X} = {06 | 0 € Z;_1}
fori=2,.,K—1,% ={00|0c€Xgk_1UZk}and ¥ | = Xx UXKky1.

PROPOSITION 6.8. Letw = (r1,01)...(rn,0n) € * and letr : (To, 0, ..., 0), (T1, =1,
...,E}(H),...,(Tn,E?,...,E?@rl) be a run of the automaton B(; m. k) on w. For
i=1,..,K—1, the set £ consists of the labels of all suffizes t of w of length i (we
call suffizes of the word ajy...a, the words a;aitq...an, for 1 <i < mn). The set %
consists of the labels of all suffizes t of w of length > K. The set ¥% | consists of
the labels of all subtraces t of w of length > K such that t is not a suffix of w.

PrOOF. By induction on the length n of w.
Basis (n = 1) w = (ry,01) € £* and (T, 0, ...,0), (T1, %1, ..., Sk, ;) is a run on w.
Since w has length 1, the set 1 consists of g1 and for i = 2,..., K + 1, the set X} is
empty; we find these values for X1, ..., E}(H knowing that (((To, 9, ...,0), (r1,01),
(T1,%%, .., 5% +1)) € A and applying the definition of the transition relation A.
Inductive Step: Let w = (r1,01)...(rn,0,) € * and let r : (Tp, 0, ..., 0), (T1, 1, ...,
Yki1)s o (Tny BF, ..., % 1) be a run of the automaton B m k) on w. The prefix
rml s (To, 0,0, 0), (T1, B4, o, Skt)s oo (T, 771, o, S5 ) of the run 7 of the
automaton B m k) on w is arun of B 1, k) on the prefix w = (r1,01)..(Pn_1,0n_1)
of length n — 1 of w. By induction hypothesis we know that, for i = 1, ..., K — 1,
the set E?‘l consists of the labels of all suffixes ¢ of w™~! of length i, that the set
Y% consists of the labels of all suffixes ¢ of w™~! of length > K and that the set
%7 consists of the labels of all subtraces ¢ of w™! of length > K such that ¢t is
not a suffix of w™=!. Now (T, 37, ..., Z% 1) = p(Tu—1, 571, -, BKY), (Pny o))
therefore X7 = {o,}, £ = {00, | 0 € X0} for i = 2,.., K — 1, &% =
{oo, |0 € S UK '} and £, = S UERS,; this precisely means that,
fori=1,..., K —1, the set ¥ consists of the labels of all suffixes ¢ of w of length 4,
that the set X7 consists of the labels of all suffixes ¢ of w of length > K and that
the set X% ,; consists of the labels of all subtraces t of w of length > K such that
t is not a suffix of w. O

A run (Ty,0,...,0), (T1, 51, s Bk y1)s oo (T, BP0, B ) Of the automaton
B(rx,m,k) On w = (r1,01)...(Tn,0,) € ¥* is accepting if, for i = 1,..n, p((Ti_1, vt
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e St )s (riy09)) = (T3, %, ., B ) and if % ( Tom = Dand B% (| Tom = 0.

PROPOSITION 6.9. For every w = (r1,01)...(Tn,0,) € X*, there exists an ac-
cepting run (To, 0, ...,0), (T1, 31, -, Bk 1), o (T, BT, -, B 1) of the automaton
B(x,m,kx) on w if and only if w is a (m, K)-acceptable trace of .

PRrROOF. The proof of proposition 6.9 follows from proposition 6.8 and from the
fact that the two conditions % (75>, = 0 and %, (| Tsm = 0 which character-
ize (m, K')-acceptable traces are satisfied because (T3, X, ..., ¥% ;) is a final state.
More precisely:

(=) If there exists an accepting run (To, 0, ..., 0), (T1, ], .-, Xy 1)s ooy (Tn, B, o, B 1)
of the automaton By, ,,, k) on the trace w = (ry,01)...(rn, 0y) then % N Tom =0
and X%, T>m = 0 because (T, %7, ...,X%_, ) is a final state; since 7., # 0,
the two conditions X% (7>, = 0 and X%, (| T>m = 0 are satisfied either when
the length of w is less than K (i.e. ¥% = X%, = 0) or when the length of w is
> K and no (proper or not proper) subtrace of w of length > K has its label in
T>m; in both cases w is a (m, K)-acceptable trace.

(¢<=) By definition of the automaton B, k) we know that if w is trace of 7 then
there exists a run (7,0, ...,0), (T1, 2], ., Xk 1), - (Tns BT s B y1) Of B, k)
on w. If now w is a (m, K)-acceptable trace of 7 then either the length of w is
less than K which means that £% = X%, = 0 or the length of w is > K and the
label of any subtrace of w of length > K does not belong to 7<.,,; in both cases
the two conditions £% (75, = 0 and X%, (| T>m = 0 are satisfied which means
that (T, X7, ..., 5%, ,) is a final state and thus the run is accepting. O

7. THE VARYING ROLE OF PERSISTENCIES IN DATALOG PROGRAMS: THE
MAIN LEMMA

In this section we present results that show the different role of each persistency
number; moreover a fourth kind of persistency number comes out which is not
equivalent to the strongest notion of the three.

We first give preliminary results that relate the persistency number with the weak
persistency number, using the notion of (m, k)-acceptable trace and the automata-
theoretic techniques which are both introduced in section 6.

LEMMA 7.1. Let 7 be a program and let max(arity), be the mazimum arity of
IDB predicate symbols occurring in w. For every m < max(arity), and for every
k, we can construct a program w' such (1) every IDB predicate T of 7 is an IDB
predicate of @', (2) for every IDB predicate T of w, the T-expansions of @' are
ezactly the T-expansions of w having only (m, k)-acceptable traces.

PRrROOF. Recall from proposition 6.9 that for every m < maz(arity), and for
every k we can construct the automaton By ) which recognizes all (m,k)-
acceptable traces of m. We now show that from B, ,, ) we can construct a program
7' with set of expansions the expansions of 7 having only (m, k)-acceptable traces;
obviously such a program 7’ satisfies the two conditions of the lemma. Program =’
is constructed from 7 as follows: for every IDB predicate T of m, for every recur-
sive rule r : T(Z) + T1(¢1), -, Ts(Js), €1, ..., €1 of m and for every set of transitions

t = {(T,%1,... Sp) "% (1,1, L), o (T, 5, o, B0) ) (1,32, .,82)) in
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the automaton By . 1), create s + 1 new IDB predicates: (1) T(¥1-%n) which

has the same arity as T, (2) TI(E%""’El) which has the same arity as T,..., (s+1)
Ts(zi""’zi) which has same arity as Ts; then replace r with the new recursive rule
Mlsr,may P T E(E) T2 (), TP () e, e of . For
every new IDB predicate symbol T(*31---%) guch that (T, X1, ..., X,) is a final state
and for every initialization rule r : T(Z) < ey, ...,e; of m, create the new initializa-
tion rule r(x,, . x,.) : T&0E0)(F) < eq,...,e; of «'. At last, for every new IDB
predicate T(®9_ add to 7’ the new rule T(&) « T -9 (&#). It is not hard to see
that (i) the T-expansions of 7' have only (m, k)-acceptable traces and that (ii) if
(T(Z),D,0) is a T-expansion of 7’ then (T'(Z), D, D) is a T-expansion of w. O

The following is one of the main results of the paper and it relates the three no-
tions of persistency numbers, (1) the persistency number, (2) the weak persistency
number and (3) the syntactic persistency number.

LEMMA 7.2. Consider the following propositions:
1) program 7w has P-persistency number m
2) program © has a P-equivalent program with P-weak persistency number m
3) program w has weak persistency number m
4) program 7 has a strongly equivalent program with syntactic persistency number
m.
The implications 1) = 2) and 3) = 4) hold while the implications 2) = 1) and 4)
= 3) do not hold.

PROOF. 1) = 2) Since program 7 has P-persistency number m, we know from
lemma 4.4 that m is the minimum integer such that 7= has a P-useful family of
expansions of-m-persistencies. Let U be such a P-useful family of expansions of-
m-persistencies for program 7. The integer m is the minimum integer such that -
according to proposition 6.4 - there exists an integer K such that for every expansion
e € U, every trace of e is (m, K)-acceptable; for such an integer K, consider the
automaton B, , k)- If we know K we can construct the automaton B, , k) and
from this automaton we can construct, according to lemma 7.1, a program 7' such
that, for every IDB predicate of P of , the set £L, of P-expansions of 7' consists
of the P-expansions of w having only (m, K)-acceptable traces; thus - according
to proposition 6.4 - 571:, is of-m-persistencies which means that 7' has weak P-
persistency number m. Every expansion of 7' is, by construction, an expansion of
7 and, since Y C &, is a P-useful family of 7, every P-expansion of 7 is P-accepted
by a P-expansion of 7'. Thus 7’ is P-equivalent to 7 according to proposition 3.9.
Thus we proved that (1) program 7 has a P-equivalent program 7’ such that 7' has
P-weak persistency number m and that (2) if we know K then we can effectively
construct 7'.

3) = 4) this is precisely proposition 4.7.
The implications 2) = 1) and 4) = 3) do not hold: see the counter-examples given
in the example 7.4 below. [

COROLLARY 7.3. 1. If program w has weak P-persistency number m then © has
a strongly P-equivalent program with syntactic persistency number m.
2. If program w has P-persistency number m then w has a P-equivalent program
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with syntactic P-persistency number m.

Proor. 1. This can be easily proved by a straightforward adaptation of the
proof of proposition 4.7.
2. Follows immediately from 1. and from lemma 7.2. O

We will further discuss about the constructibility of lemma 7.2 in subsection 8.2.
The following example is a counterexample showing that the implications 2) = 1)
and 4) = 3) of lemma 7.2 do not hold.

Ezample 7.4. We consider two strongly equivalent programs 7 and 7', both
defining the transitive closure query.
Program 7 consists of the two rules
r1: T(.fl?,y) <« E(.CL',y)
T2 : T(:I’.Jy) « E(w,z),T(z,y)
Clearly 7 has persistency number 1, weak persistency number 1 and syntactic per-
sistency number 1.
Program #' consists of the three rules
r: T(z,y) « E(z,y)
vy T(z,y) « Blz,2), B(z,y)-
Té : T(.Z‘,y) « E(xaZ1)7T(z17z2)7E(z27y)-
Clearly 7’ has persistency number 0, weak persistency number 0 and syntactic per-
sistency number 0.
Notice that programs 7 and 7' both have only one IDB predicate, namely T'; there-
fore, for each of these programs, the notions of T-persistency number (resp. 7-
weak persistency number/ T-syntactic persistency number) and persistency num-
ber (resp. weak persistency number/ syntactic persistency number) coincide.
Program 7 is equivalent to 7’ which has weak persistency number 0, but 7 has per-
sistency number 1. Program 7’ is equivalent to = which has syntactic persistency
number 1, but 7 has weak persistency number 0. O

The previous example shows that P-equivalent programs don’t necessarily have
the same P-persistency number. In other terms: the P-persistency number does
not characterize queries. Therefore, there is need to introduce a stronger notion of
persistency number called the P-persistency number—modulo equivalence, which is
invariant up to program equivalence and thus characterizes queries.

Definition 7.5. The P-persistency number—modulo equivalence of a program 7 is
the minimum integer m such that 7 is P-equivalent to a program of P-persistency
number m.

The persistency number—modulo equivalence of a query Q is the P-persistency
number—-modulo equivalence of any pair (7, P) defining O.

It follows from lemma, 7.2 that it is equivalent to define the P-persistency number—
modulo equivalence of 7 as the minimum integer m such that 7 is P-equivalent to
a program of weak P-persistency number m; it is also equivalent to define the P-
persistency number-modulo equivalence of 7 as the minimum integer m such that
m is P-equivalent to a program of syntactic P-persistency number m (this result is
stated as a theorem in the Introduction).
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In example 7.4 program 7 has persistency number 1 but its persistency number—
modulo equivalence is 0; therefore the transitive closure query has persistency
number—-modulo equivalence equal to 0.

It is not hard to prove the following proposition.

PROPOSITION 7.6. 1. Let 7 be a program with syntactic P-persistency number a,

weak P-persistency number b, P-persistency number ¢ and P-persistency number—
modulo equivalence d; let arity(P) be the arity of IDB predicate symbol P. Then
arity(P)>a>b>c¢>d.
2. Let w be a program with syntactic persistency number a, weak persistency
number b, persistency number ¢ and persistency number-modulo equivalence d; let
maz(arity), be the mazimum arity of IDB predicate symbols occurring in w. Then
maz(arity), > a>b>c>d.

8. DECIDABILITY RESULTS

8.1 s it possible to decide if a given program has syntactic persistency number (resp.
weak persistency number) equal to m?

We consider the corresponding decision problem, namely “given a positive integer
m does the program have syntactic (resp. weak) persistency number equal to m?”
The syntactical notions of persistency numbers are decidable, as shown below.

PROPOSITION 8.1. The decision problems for the following numbers are decid-
able:

a) the syntactic persistency number,

b) the weak persistency number.

ProOF. a) The decidability of the syntactic persistency number follows imme-
diately from its definition.
b) The decidability of the weak persistency number follows from automata-theoretic
considerations. Recall from lemma 6.5 the finite non deterministic automaton
A(x,p,s) Which recognizes the set of all P-traces of 7 of label o. It is easy to trans-
form Ay p,) into a finite non deterministic automaton A, 7,y which recognizes
the set of all traces of 7 of label some m-pattern-transformation (7, is the set of all
m-pattern-transformations belonging to the transformation set 7). The automa-
ton A(r,7,,) differs from the automaton A, p o in that a state (Q,0) of A 7,,)
is initial for any IDB predicate symbol @ if and only if o € T,,. Notice that 7, (of
definition 6.2) can be written as the finite disjoint union 7o U71 U ... U Tryaa(arity) .
where maz(arity), is the maximum arity of IDB predicate symbols occurring in .
Program 7 has weak persistency number m if and only if the language recognized by
the automaton A, ;) is finite for those n exactly such that m < n < maz(arity)r.
The decidability of the weak persistency number follows from the decidability of
the finiteness of the language recognized by a finite automaton: recall that the
language recognized by a finite automaton is infinite if and only if there exists a
sequence s of - not all distinct - states starting from some initial state and ending
up to a final state of the automaton (i.e the sequence s contains a loop). [

We prove in an analogous way that the decision problems for (a) the syntactic
P-persistency number and (b) the weak P-persistency number are decidable, for
any predicate symbol P.
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8.2 Is lemma 7.2 constructive?

In this subsection, we first study the decision problem ”does a given program have
characteristic integer w.r.t.-weak-persistency-number m > 1?” 7. This will allow
us to show that in lemma 7.2 the proof of the implication 3) => 4) is constructive.

PROPOSITION 8.2. Let m be a program. We can compute the characteristic in-
teger of ™ w.r.t.-weak-persistency-number.

Proor. Recall from proposition 8.1 that program 7 has weak persistency number
m if and only if the language recognized by the automaton A, ;) is finite for those
n exactly such that m < n < maz(arity),; for every such n we can compute the
maximum length I, of the traces recognized by A, 7,) and we can also compute
Imae the maximum among those integers I, for m < n < maz(arity),. Therefore
every trace of 7 labeled with an s-pattern transformation for s > m has length at
most 4. Recall from corollary 6.1 that every linear persistent set of size s > m
and of length ! (occurring in some expansion of ) is determined by some trace of ©
of length [ — 2 with label an s-pattern transformation. Thus every persistent set of
size > m occurring in some expansion of 7 has length at most [,,,4, +2, which means
that the characteristic integer of = w.r.t.-weak-persistency-number is l,,4, + 3. [

We can compute, in an analogous way, the characteristic integer w.r.t.-weak-P-
persistency-number, for any predicate symbol P.

PROPOSITION 8.3. (Refinement of lemma 7.2) If program 7 has weak persistency
number m then we can construct a program w', strongly equivalent to w, such that
7' has syntactic persistency number m.

PROOF. Let us compute K¢ the characteristic integer of m w.r.t.-weak-persistency-
number, according to proposition 8.2. In the proof 4 of lemma 7.2 3) => 4) we can
take K = Kyeqr; thus we can construct the equivalent program 7’ as explained in
proof 4. [

The next lemma is an important consequence of lemma 7.2 and proposition 8.3.
When we say that a given program property P is (un)decidable, this means that
the decision problem ”given program w, does w have property P?” is (un)decidable.

LEMMA 8.4. Let P be a program property, invariant up to program equivalence
(for instance the boundedness property). If P is decidable for the class of programs
with syntactic persistency m then P is decidable for the class of programs of weak
persistency number m.

PROOF. Let 7w be a program of weak persistency number m. According to lemma
7.2 3) = 4) and to proposition 8.3 we can construct a program 7' of syntactic
persistency number m, which is equivalent to m; 7 has property P if and only if #’
has property P, and we can decide if 7' has or not property P; therefore we can
decide if 7 has or not property P. O

The effective construction of program =’ from program = is the key to lemma
8.4. Another equivalent way of expressing the idea of lemma 8.4 is the following: if

"Recall definitions 4.1 and 4.2.
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property P is undecidable for the class of programs of weak persistency number m
then P is undecidable for the class of programs of syntactic persistency number m.

8.3 New classes of programs for which boundedness is undecidable

PROPOSITION 8.5. 1. Boundedness is undecidable for programs that have weak
persistency number 0.
2. Boundedness is undecidable for programs that have syntactic persistency number
0.

PRrROOF. The proof is based on the result that ”program boundedness is un-
decidable for linear binary programs with a single IDB predicate” ([Var88] and
theorem 2.3 in the journal version of [HKMV91]). The undecidability reduction in
[HKMV91] constructs a program which has weak persistency number 0 and also
syntactic persistency number 0. [

PROPOSITION 8.6. 1. Boundedness is undecidable for programs that have weak
persistency number 2.
2. Boundedness is undecidable for programs that have syntactic persistency number
2.

PRrROOF. The proof is based on the result that ”program boundedness is unde-
cidable for programs having two linear recursive rules and one initialization rule”
(theorem 5.5 in the journal version of [HKMV91]). The undecidability reduction
in [HKMV91] constructs a program which has weak persistency number 2 and also
syntactic persistency number 2. [

PROPOSITION 8.7. 1. Boundedness is undecidable for programs with a single
IDB predicate and that have weak persistency number 3.
2. Boundedness is undecidable for programs with a single IDB predicate and that
have syntactic persistency number 3.

PROOF. The proof is based on the result that ”predicate boundedness is unde-
cidable for programs having one linear recursive rule, one initialization rule and one
projection” (theorem 6.3 in the journal version of [HKMV91]). The undecidability
reduction in [HKMV91] constructs a program which has weak persistency number
3 and also syntactic persistency number 3. []

The results stated in propositions 8.5(2), 8.6(2) and 8.7(2) - already implicite in
[HKMV91] - can also be seen as direct consequences of the corresponding statement
(1) in each case, by applying lemma, 8.4. This can be considered as a positive hint
to further applications of lemma, 8.4.

9. CONCLUSION AND OPEN PROBLEMS

In trying to analyze the role of persistencies, we observed that weaker and stronger
notions of “persistency numbers” came out. One contribution of the paper is to
categorize four different notions of persistencies and to give results about their in-
terrelationship and their decidability. Moreover we studied the decidability of the
boundedness problem on classes of programs defined according to the value of these
persistency numbers; more precisely, we proved that boundedness is undecidable
on the class of programs of weak (resp. syntactic) persistency number 0, 2 and
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3. These results, together with the results of Marcinkowski [Mar99], give a better
focus on the undecidability of boundedness, since they indicate a possible trade-
off between (the decreasing of) the number of recursive rules and (the increasing
of) the value of the weak persistency number: indeed Marcinkowski proved that
program boundedness is undecidable for programs consisting of one linear rule and
one initialization rule (theorem 4.10 in [Mar99]) improving previous undecidability
results concerning programs with more than one linear recursive rule; we noticed
however that this better result of Marcinkowski comes at a cost: that of increasing
the weak persistency number of the program (indeed the - one linear rule and one
initialization rule - programs maserp, constructed in the undecidability reductions
of Marcinkowski have a high weak persistency number p+ 3 where p is a parameter
defined according to definition 4.1 in [Mar99)); it is natural to consider as persisten-
cies the constants appearing in programs and our formal definitions can be easily
adapted to that case.

We briefly refer below to some subsequent work, related to the results of the
present paper, and done after the present paper was submitted. We also mention
some further research directions that are worth pursuing in the future.

—In proposition 8.1 we have given an algorithm - based on our automata of section
6 - for evaluating the weak persistency number of a Datalog program. We give
a rough estimate of the complexity of this algorithm: first the transformation of
a program 7w into a normal program 7' increases its size at most exponentially,
and can be done in exponential time (in the size of 7); then in Proof 8.1 the
automaton A, 7,) can then be constructed in time exponential in the size of
w', and its size is at most exponential in the size of «'; and the finiteness prob-
lem can be solved in time polynomial in the size of A 7;,). Thus, the weak
persistency number of m can be determined in exponential time, in the size of
m. In subsequent work, we have determined the exact complexity of computing
the weak persistency number as well as the exact complexity of computing the
characteristic integer w.r.t.-weak-persistency-number, both for normal programs
and for general form programs [CFS03].

—1In subsequent work we have shown that determining the persistency number and
the persistency number-modulo-equivalence are both undecidable [CF02].

—Lemma 8.4 says that for every integer m and for every program property P
which is invariant up to program equivalence, the decidability of P on the class
of programs of syntactic persistency m implies the decidability of P on the class
of programs of weak persistency m. We are expecting that our lemma 8.4 will
produce decidability results for some properties other than boundedness, but still
invariant up to program equivalence.

—The formal results of the paper should lead to a deeper understanding of the
behavior of Datalog programs. In particular, the fourth persistency number -
?persistency number-modulo equivalence” - is the most deeply semantical one
since it characterizes queries. It follows from our main lemma 7.2 that for ev-
ery query Q having persistency number-modulo equivalence m, there exists (at
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least) one program 7 expressing Q such that the four numbers of 7 coincide
and are equal to m. We expect that further research on the persistency num-
bers (especially on the persistency number-modulo equivalence) will help to solve
expressibility questions concerning Datalog.
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