
Answering Queries Determined by Views

Foto Afrati
Electrical and Computing Engineering

National Technical University of Athens

157 73 Athens, Greece

afrati@cs.ece.ntua.gr

Paper 188

December 9, 2005

Abstract

Answering queries using views is the problem which
examines how to derive the answers to a query when we
only have the answers to a set of views. In this paper we
investigate this problem in the case where the answers to
the views uniquely determine the answers to the query.
We say that a view set V determines a query Q if for
any two databases D1, D2 it holds: V(D1) = V(D2)
implies Q(D1) = Q(D2). We consider the case where
query and views are defined by conjunctive queries.
We ask the question: If a view set V determines a
query Q, is there an equivalent rewriting of Q using
V? Clearly if we can find an equivalent rewriting
then the complexity of answering the queries given a
view instance is polynomial. In this paper we show
that computing the answers to queries determined by
views is in NP ∩ coNP . We find cases, (such as
chain queries, views without nondistinguished variables)
where if a query is determined by a view set then
there is an equivalent rewriting, hence the complexity of
answering the query on a view instance is polynomial.
We reduce the general problem to special cases (such as
boolean queries, binary base predicates). We introduce
a problem which is a special case of the general problem
and relates determinacy to query equivalence.

1 Introduction

The problem of using materialized views to answer
queries [LMSS95] has received considerable attention
because of its relevance to many data-management ap-
plications, such as information integration [B+97, C+94,
HKWY97, IFF+99, LRO96, Ull97], data warehousing
[TS97],[ACN00] web-site designs [FLSY99], and query
optimization [CKPS95]. The problem can be stated as
follows: given a query Q on a database schema and a
set of views V over the same schema, can we answer the
query using only the answers to the views, i.e., for any

database D, can we find Q(D) if we only know V(D)?
A related fundamental question has recently arisen

which is related to the information that is provided by
a set of views for a specific query [SV05]. Thus, we say
that a set V of views determines a query Q if for any
two databases D1, D2 it holds: V(D1) = V(D2) implies
Q(D1) = Q(D2). A database query Q can be thought of
as defining a partition of the set of all databases in the
sense that databases on which the query produces the
same set of tuples in the answer belong to the same
equivalence class. In the same sense a set of views
defines a partition of the set of all databases. Thus,
if a view set V determines a query Q, then the views’
partition is a refinement of the partition defined by the
query. Thus if we are given V(D) only, then we can
“find” Q(D) by noting the equivalence class of V(D)
and seeing what Q computes on that equivalence class.
However, it is not easy to see whether the mapping from
the views’ equivalence class to the query equivalence
class is even computable. We show in this paper that if
a CQ view set determines a CQ query then computing
the answers to the query is in NP ∩ coNP .

A large amount of work in answering queries using
views concerns finding rewritings of queries using a set
of views. When there is an equivalent rewriting of a
query Q using a set of views V then V determines Q.How
about the converse? Given that V determines Q, can
we say that there exists an equivalent rewriting of Q
using V? The existence of rewritings depend on the
language of the rewriting and the language of the query
and views. Given query languages L, LV , LQ we say
that a language L is complete for LV -to-LQ rewritings
if whenever a set of views V in LV determines a query
Q in LQ then there is a rewriting of Q in L which uses
only V . In [SV05] this problem is investigated and is
shown that there are cases where a certain language is
not complete, e.g., it is shown that the language of union
of conjunctive queries (UCQ) is not complete for UCQ-

to-UCQ rewritings. However it is noticed that a hard
case to settle and hence an open problem is whether
the language of conjunctive queries (CQ) is complete
for CQ-to-CQ rewritings. In this paper we answer this
question positively in special cases and also we show
that some special cases are as hard to resolve as the
general problem by reducing the general problem to
them. Finally we introduce a seemingly simpler problem
that relates determinacy and query equivalence which
also remains open, whereas here we solve a special case
of it.

The organization and the contribution of the paper
are as follows: In Section 3 we show that if the views
determine the query then the query answering problem
is in NP ∩ coNP . In Section 4 we prove that there
is an algorithm to find an equivalent rewriting in case
there exists one. In particular, we show that if there
is an equivalent rewriting then the canonical rewriting

is such a rewriting. We show how to construct a
canonical rewriting. In Section 5 we present three
special cases of CQ-to-CQ rewritings for which CQ is
complete. The special cases are: when views have
no nondistinguished variables, when views and query
are chain queries and when the query has a single
variable and the view set contains a single view with one
nondistinguished variable. Hence, in these special cases
the query answering problem is in PTIME. A summary
of all CQ cases for which we know that CQ is complete
is in Table 1.

In Section 6 we ask the question: If a single
view determines the query then are there some natural
conditions to add so that the query and view are
equivalent? We identify such conditions and show that if
they hold for a view and query then the following is true:
If CQ is complete for CQ-to-CQ rewritings, and the
view determines the query, then the view and query are
equivalent. Thus we have a new variant of the problem
which, although it seems like an ”easier” problem to
solve, this also remains open; here we solve a special
case of it. In Section 7 we reduce the original problem
to a special case where, if an equivalent rewriting exists
then it is a projection of a single view. In Section 8
we present more reductions of the general problem to
special cases, such as when we use only binary base
predicates and when the query is Boolean. We also
include a reduction which addresses connectivity issues
related to determinacy.

1.1 Related Work In [SV05], the problem of de-
terminacy is investigated for many languages including
first order logic and fragments of second order logic and
a considerable number of cases are resolved. The re-
sults closer to our setting show that if a language L is
complete of UCQ-to-UCQ (i.e., unions of CQs) rewrit-
ings, then L must express non-monotonic queries. More-

over, this holds even if the database relations, views and
query are restricted to be unary. This says that even
Datalog is not complete for UCQ-to-UCQ rewritings.
Datalog is not complete even for CQ 6=-to-CQ rewritings.
For CQ query and views, it is shown in [SV05] that CQ
is complete for CQ-to-CQ rewritings iff whenever a set
of views V determines a query Q over finite instances
then V determines Q over unrestricted (i.e., may be in-
finite too) instances. They also prove that for unary
or Boolean CQ views, then CQ is complete for CQ-to-
CQ rewritings. For the unrestricted case, they prove
that CQ is complete for CQ-to-CQ rewritings, however
no monotonic language is complete for UCQ-to-UCQ
rewritings.

Determinacy and notions related to it are also in-
vestigated in [GT00] where the notion of subsumption is
introduced and used to the definition of complete rewrit-
ings and in [CdGLV02] where the concept of lossless
view with respect to a query is introduced and inves-
tigated both under the sound view assumption (a.k.a.
open world assumption) and under the exact view as-
sumption (a.k.a. closed world assumption) on regular
path queries used for semi-structured data. Lossless-
ness under the CWA is identical to determinacy. There
is a large amount of work on equivalent rewritings of
queries using views. It includes [LMSS95] where it is
proven that it is NP-complete whether a given CQ query
has an equivalent rewriting using a given set of CQ
views, [CR97] where polynomial subcases were identi-
fied. In [RSU95], [ALM02], [DG97] cases were investi-
gated for CQ queries and views with binding patterns,
arithmetic comparisons and recursion, respectively. In
some of these works also the problem of maximally con-
tained rewritings is considered. Intuitively, maximally
contained rewritings is the best we can do when there
is no equivalent rewriting and want to obtain a query
that uses only the views and computes as many cer-
tain answers [AD98] as possible. In [LBU01] the no-
tion of p-containment and equipotence is introduced
to characterize view sets that can answer the same
set of queries. Answering queries using views in semi-
structured databases is considered in [CdGLV02] and
references therein.

2 Preliminaries

2.1 Basic Definitions We consider queries and
views defined by conjunctive queries (CQ for short) (i.e.,
select-project-join queries) in the form:

h(X̄) : −g1(X̄1), . . . , gk(X̄k).

Each subgoal in the body is a relational atom. In each
subgoal gi(X̄i), predicate gi defines a base relation (we
use the same symbol for the predicate and the relation),
and every argument in the subgoal is either a variable
or a constant. A variable is called distinguished if it

Query Views Reference

any without nondistinguished this paper
any unary [SV05]
any boolean [SV05]

single variable single view, binary, 1 nondist. * this paper
chain chain * this paper

Table 1: Summary of polynomial cases: CQ is a complete language for rewritings for the listed subcases of CQ
queries and views. The cases with asterisk (*) assume binary base predicates.

appears in the head. We shall use names beginning
with lower-case letters for constants and relations, and
names beginning with upper-case letters for variables.
We use V, V1, . . . , Vm to denote views that are defined by
conjunctive queries on the base relations. We say that a
CQ is minimized if there are not redundant subgoals, i.e,
if we delete any subgoal then we obtain a query which is
not equivalent to the original query. In the rest of this
paper, we consider wlog minimized queries and views.

A relational structure is a set of atoms over a domain
of variables and constants. A relational atom with
constants in its arguments is called a ground atom. A
database instance is a relational structure with only
ground atoms. The body of a conjunctive query can be
also viewed as a relational structure. A homomorphism
is a mapping from the variables and constants of a
relational structure S1 to the variable and constants of
another relational structure S2 so that an atom of S1

maps on an atom of S2 with the same predicate name.

definition 2.1. (canonical database of query) A
canonical database DQ of conjunctive query Q is de-
rived by freezing the variables of Q to distinct constants
and adding in DQ exactly all frozen subgoals in the body
of Q.

For minimized queries canonical database is unique up
to renaming. We will use the notation DQ to denote
the canonical database of query Q without mentioning
it.

definition 2.2. (query containment and equivalence)
A query Q1 is contained in a query Q2, denoted Q1 v
Q2, if for any database D of the base relations, the
answer computed by Q1 is a subset of the answer by Q2,
i.e., Q1(D) ⊆ Q2(D). The two queries are equivalent,
denoted Q1 ≡ Q2, if Q1 v Q2 and Q2 v Q1.

Chandra and Merlin [CM77] show that a conjunctive
query Q1 is contained in another conjunctive query Q2

if and only if there is containment mapping from Q2 to
Q1. A containment mapping is a homomorphism which
maps the head and all the subgoals in Q2 to Q1. It
maps each variable to either a variable or a constant,
and maps each constant to the same constant.

definition 2.3. (expansion of a query using views)
The expansion of a query P on a set of views V, denoted
P exp, is obtained from P by replacing all the views in
P with their corresponding base relations. Existentially
quantified variables (i.e., nondistinguished variables) in
a view are replaced by fresh variables in P exp.

We denote by V(D) the result of computing the views
on database D, i.e., V(D) =

⋃
V ∈V V (D).

definition 2.4. (equivalent rewritings) Given a query
Q and a set of views V, a query P is an equivalent
rewriting of query Q using V, if P uses only the views
in V, and for any database D on the schema of the base
relations it holds: P (V(D)) = Q(D).

For conjunctive queries and views the following is shown
to be an equivalent definition.

definition 2.5. (equivalent rewritings) Given a query
Q and a set of views V, a query P is an equivalent
rewriting of query Q using V, if P uses only the views
in V, and P exp is equivalent to Q, i.e., P exp ≡ Q.

A CQ query is called chain query if it is defined
over binary predicates and also the following holds:
The body contains as subgoals a number of binary
atoms which if viewed as labeled graph (since they
are binary) they form a directed path and the start
and end nodes of this path are the arguments in the
head. For an example, this is a chain query: q(X, Y) :
−a(X, Z1, b(Z1, Z2), c(Z2, Y).

2.2 Determinacy For two databases D1, D2,
V(D1) = V(D2) means that for each Vi ∈ V it holds
Vi(D1) = Vi(D2).

definition 2.6. (views determine query) Let query Q
and views V. We say that V determines Q if the
following is true: For any pair of databases D1 and D2,
if V(D1) = V(D2) then Q(D1) = Q(D2).

Thus if a set of views V determines a query Q, then,
given a view instance IV we know that for any database
D such that IV = V(D) the answer to the query Q(D)
depends only on IV , hence we write Q(IV) to denote it.

The following example shows a view set and two
queries, one query being determined by the view set the
other query not.

example 2.1. (i) Consider query:

Q : q(X, Y) : −a(X, Z1), a(Z1, Z2), b(Z2, Y).

and views:

V3 : v3(X, Y) : −a(X, Z ′
1), a(Z ′

1, Z2), b(Z2, Y).

V4 : v4(X) : −b(X, X).

View set {V3, V4} determines Q because V3 is equivalent
to Q.

(ii) Now consider query

Q′ : q′(X, Y) : −a(X, X), b(X, Y).

View set {V3, V4} does not determine Q′ and also there
is no rewriting of Q′ using {V3, V4}. To see that {V3, V4}
does not determine Q′, consider the databases D1 =
{a(x, z′1), a(z′1, z2), b(z2, y)} and D2 = {a(x, x), b(x, y)}.
The output of the view computation is the same, i.e.,
V(D1) = V(D1) = {v3(x, y)} but on D2 query Q′

computes Q′(D2) = {q′(x, y)} and on D1 query Q′

computes the empty set.

definition 2.7. (complete language for rewritings) Let
LQ and LV and L be query languages. We say that a
language L is complete for LV -to-LQ rewritings if the
following is true for any query Q in LQ and set of views
V in LV : Suppose V determines Q; then there is a query
R in L such that R is an equivalent rewriting of Q using
V.

The following proposition states some easy observa-
tion about query and views when the views determine
the query.

Proposition 2.1. Let query Q and views V be given by
minimized conjunctive queries. Suppose V determines
Q.

Let Q′ be query resulting from Q after deleting one
or more subgoals. Let DQ and DQ′ be the canonical
databases of Q and Q′ respectively. Then the following
hold:

a) V(DQ) 6= V(DQ′).
b) For any database D, the constants in the tuples

in Q(D) is a subset of the constants in the tuples in
V(D).

c) All base predicates appearing in the query defini-
tion appear also in the views (but not necessarily vice
versa).

d) V(DQ) 6= ∅.

Proof. The proof of the first part of the claim is by
contradiction: If not, then V(DQ) = V(DQ′) and con-
sequently Q(DQ) = Q(DQ′). Hence there is a homo-
morphism from Q to DQ′ which yields a containment
mapping from the subgoals of Q to the subgoals of Q′,
which is a contradiction. For the second part, suppose
x is a constant in Q(D) which does not appear in V(D).
Then let us construct D1 and D2 to be isomorphic to
D only that in D1 we have renamed the constant x to
c where c is not used again in either D1 or D2. Now
we have V(D1) = V(D2) but there is a tuple in Q(D1)
which contains c and there is no such tuple in Q(D2).
Hence Q(D1) 6= Q(D2) contradiction.

To prove the third part, suppose pi is the predicate
name which appears in the query but does not appear
in the views definition. Consider the canonical database
DQ of the query and a database D′ which results from
DQ after deleting any fact pi(t). Then on both D and
D′ the views compute the same relations but the query
does not. The fourth part is a consequence of a similar
construction, now D′ is empty. Then again, on both D
and D′ the views compute the same relations but the
query does not. a

It is easy to show that if there is an equivalent
rewriting of a query using a set of views then this set of
views determine the query.

Proposition 2.2. Let Q and V be query and views
which are conjunctive. If there is an equivalent rewriting
of Q using V then V determines Q.

Proof. Let P be an equivalent rewriting of Q using V .
Let D1 and D2 be databases such that V(D1) = V(D2).
Then P (V(D1)) = P (V(D2)). Since P is an equivalent
rewriting, this yields that Q(D1) = Q(D2). a

3 Complexity of Query Answering

The following theorem shows that, in the case the views
determine the query, then the query answering problem
is in NP ∩ coNP .

Theorem 3.1. Let query Q and views V be given by
conjunctive queries. Suppose V determines Q. If we
are given a view instance IV such that there exists a
database D for which IV = V(D), then computing Q(IV)
is in NP ∩ coNP .

Proof. Let a tuple t be given. We want to decide
whether t ∈ Q(IV) or not. We will show that for every
IV there exists at least one database Dh of polynomial
size such that IV = V(Dh). Hence we can decide by
computing Q(Dh).

We construct a database D′ over the base relations.
We “expand” IV to D′ (recall that IV is over the
schema of the views) by replacing each view tuple by

a set of tuples of base relations which are the frozen
subgoals of this view’s definition. More specifically,
nondistinguished variables in the view definition are
frozen to fresh constants that are not used for any
other frozen variable. (This construction is similar
to the construction which obtains the expansion of a
rewriting.)

Let D be any database such that IV = V(D).
Clearly there is a homomorphism from D′ to D. Also,
for any database Di such that V(D) = V(Di) if Di is
minimal (in the sense that if we delete one tuple from
Di then V(D) 6= V(Di)), then Di is a homomorphic
image of D′. Thus, consider all databases that are
homomorphic images of D′. Among those there exists
at least one, say Dh, such that IV = V(Dh). To compute
Q(IV) just compute Q(Dh).

The above reasoning puts the problem in NP ∩
coNP : The size of any homomorphic image of D′

is polynomial in the size of IV . Thus, we guess a
homomorphic image Dh of D′. Then in polynomial
time, we compute the views V on Dh and verify that
it is equal to IV . Finally we compute Q on Dh. a

4 Canonical Rewriting

In this section we show that given a query and views
that are defined by conjunctive queries, then there is
a particular conjunctive query Rc which uses only view
atoms as subgoals which has the property: If there is an
equivalent rewriting then Rc is an equivalent rewriting.

Let DQ be the canonical database of Q. We
compute the views on DQ and get view instance
V(DQ) [ALU01]. We construct canonical rewriting Rc

as follows. The body of Rc contains as subgoals exactly
all unfrozen view tuples in V(DQ) and the tuple in the
head of Rc is as the tuple in the head of query Q. Here
is an example which illustrates this construction.

example 4.1. Suppose we have the query:

Q : q(X, Y) : −a(X, Z1), a(Z1, Z2), b(Z2, Y).

and the views V:

V1 : v1(X, Z2) : −a(X, Z1), a(Z1, Z2).

V2 : v2(X, Y) : −b(X, Y).

Then DQ contains the tuples
{a(x, z1), a(z1, z2), b(z2, y)} and V(DQ) contains
the tuples {v1(x, z2), v2(z2, y)}. And thus, Rc is the
following:

Rc : q(X, Y) : −v1(X, Z2), v2(Z2, Y).

For convenience of reference, we retain in Rc the names
of the variables used in Q. Observe that all variables of
Rc are also variables of Q but not necessarily vice versa.

Proposition 4.1. Let Q and V be conjunctive query
and views and Rc be the canonical rewriting. Then the
following hold: a) Query Q is contained in the expansion
Rexp

c of Rc. b) If there is an equivalent rewriting of
Q using V then the canonical rewriting Rc is such an
equivalent rewriting.

Proof. a) By construction of Rc there is a containment
mapping from its expansion Rexp

c to Q.
b)Suppose there is an equivalent rewriting R of Q

using V . Then the expansion Rexp of R is equivalent to
Q. Hence there is a containment mapping from Rexp

to Q, and therefore, there is a homomorphism from
Rexp to DQ (the canonical database of Q). Thus if
a view atom v(t) is in the subgoals of R then there
is a homomorphism from the expansion of v(t) to DQ.
This establishes that all subgoals in R must be view
atoms that result from view tuples of V(DQ). But Rc

contains all view tuples in V(DQ). Thus, any equivalent
rewriting R contains a subset of the subgoals of Rc, and
hence R contains Rc and thus Q contains Rexp

c . a

5 Query Answering in PTIME

In this section we prove that in certain special cases, if
views determine the query then there is an equivalent
rewriting, hence, computing the answers to the views
can be done in polynomial time.

Theorem 5.1. Given are a query Q and a set of views
V as in one of the cases below:

1. All views with no nondistinguished variables.

2. Binary base predicates, chain views and query.

3. Binary base predicates, query contains only one
variable single binary view with only one non-
distinguished variable.

Suppose V determines Q. Then there is an equivalent
rewriting of Q using V.

Proof. For each special case we prove that the canonical
rewriting Rc is an equivalent rewriting.

Case 1. (no nondistinguished variables in views)
Since there are no nondistinguished variables in

view definitions Rexp
c contains exactly the variables of

Rc. By construction, there is a one-to-one mapping
from the variables of Rc to the variables of Q which
can be extended to a containment mapping µ from Rexp

c

to Q. Moreover, because of Proposition 2.1, µ uses as
targets all subgoals of Q. Since the variables of Rexp

c are
exactly the variables on Rc, µ is one-to-one and onto,
hence µ−1 is a containment mapping from Q to Rexp

c .
Case 2. (Binary base predicates, chain views and

query)

Preliminary observations: Let Rexp
c be the expan-

sion of the canonical rewriting Rc. Let Dexp
c be the

canonical database of Rexp
c and DQ be the canonical

database of Q. Recall that we keep the same names of
variables in Rc as in Q and do the same for the constants
in Dexp

c and DQ. As in Dexp
c there are more constants

than those in DQ, we call the new constants fresh (they
come from the frozen variables of the fresh variables
in Rexp

c). Let X, Y be the variables in the head of Q
and x, y the corresponding constants in DQ. Rexp

c is an
acyclic (no cycles if the body is viewed as a graph) query
(otherwise there is no containment mapping from Rexp

c

to Q). Let µ be a containment mapping from Rexp
c to

Q. We may view µ also as a homomorphism from Dexp
c

to DQ. We consider the expansion vexp
i (t) of each view

subgoal vi(t) separately in Rexp
c , we observe that its im-

age on Q under µ is a chain isomorphic to vexp
i (t); hence

for every vexp
i (t), µ−1 is an homomorphism. Let G be

the underlined undirected graph of Dexp
c and Gc be the

underlined undirected graph of the canonical database
Dc of Rc. Note that connectivity of graphs G and Gc are
related because all views definitions have a body which
is connected if seen as a graph. Thus, each connected
component of Gc creates a connected component of G
and vice versa.

The proof uses connectivity arguments on G. Let x
and y be the two constants that are the frozen distin-
guished variables of Rexp

c . Then Dexp
c can be viewed as

a graph with three parts as concerns connectivity of G:
(i) a connected component of G that includes x, (ii) a
connected component of G that includes y and (iii) the
remaining part of G. We have two cases: a) the parts (i)
and (ii) are the same, i.e., x and y belong to the same
connected component of G and b) the parts (i) and (ii)
are disconnected.

For the first case, we argue that there is a rewriting.
We will present in detail the case where the query is also
a chain query. It is done by induction on the distance
between x and y on the graph G. If the distance is one
then there is necessarily a view on the tuple (x, y) and
this view consists the rewriting because µ−1 provides
the containment mapping from Rexp

c to Q. Inductive
hypothesis: If the distance is less than n then the views
on the path from x to y consist a rewriting. Suppose
the distance is n. Then, there is a constant c in Dexp

c

in distance less than n from x and hence by inductive
hypothesis, there is a rewriting of the query Q′ which
consists of the first but one subgoals of the query Q
(since it is a chain query, we may view its subgoals as
having a natural order). Then the n-th view added
to this rewriting creates a rewriting of Q due to the
isomorphism property.

For the second case we argue that this leads to
contradiction. We have the following cases:

a) The connected component in G which contains

x is empty. This means that in Gc also the connected
component that contains X is empty and hence there is
no tuple in V(DQ) which contains X . Then we construct
the following two database instances: D1 is a copy of
DQ and D2 is a copy of DQ with x and the tuples that
contains it being deleted. Clearly V(D1) = V(D2) but
Q(D1) 6= Q(D2), contradiction.

b) There are only two connected components in G,
one which contains x and one which contains y. Then we
construct the following two database instances: D1 is a
copy of DQ and D2 is the disjoint union of two database
instances, one for each component of G. For component
Gx we take the homomorphic image µ(Gx) and same for
the other component. Note that µ(Gx) is isomorphic to
the longest path in Gx because all homomorphisms that
produce view tuples are isomorphisms in our case. We
claim that V(D1) = V(D2). Suppose not. Then there
is a view tuple in V(D2) which is not in V(D1). We
argue on the graph Gc inductively on the distance from
x. If this tuple contains x then this means that there is
a homomorphism of some view definition on D2 and not
on D1. However this homomorphism on D2 would have
created a view tuple in component Gx and hence would
have created a view tuple in D1 too. This argument can
be inductively (on the distance of x′ from x in Gx

c , the
component of Gc that corresponds to Gx.) applied to all
x′ where x′ is a constant in a view tuple in component
Gx. Thus what remains is to assume that there is a view
tuple in D2 which does not contain any constants also
appearing in view tuples in Gx

c . Then this means that
this view tuple appears in a third connected component
in Gc, contradiction because we assumed there is not
any such component. To finish, this case, note that
a consequence of the claim is that Q(D1) 6= Q(D2),
contradiction.

c) There are in G at least three connected compo-
nents and two of those contain x and y each. In this
case, we consider D1, D2 as in previous case (with the
only difference that D2 is the disjoint union of the ho-
momorphic image under µ for each component of G) but
we are not done yet with the construction of counterex-
ample database instances. We consider tuples that are
in V(D2) and not in V(D1). As we showed above such a
tuple does not contain constants in Gx

c . Let v(t) be such
a tuple. Since D2 homomorphically maps on DQ, a copy
v(t′) of v(t) exist in µ(Gx) hence in V(DQ) hence in D2.
If the component of D2 in which v(t′) appears is such
that no ”fresh” tuple from Gy appears, then we merge
this component (its homomorphic image actually) with
Gx and create D′

2. We do the same for each tuple that
satisfies this condition. Thus we need to argue on tuples
v(t′) that do not satisfy this condition. We do that by
an inductive argument on the length of the expansion of
view tuple v(t′) and in each inductive step we create a
connected component in the counterexample database

which is shorter than the component we created in the
previous inductive step.

Case 3. (Binary base predicates, query contains
only one variable single binary view with only one non-
distinguished variable)

Let the distinguished variables of the view V be
called X, Y and the nondistinguished Z. In this case
the canonical rewriting is Rc : q′(A) : −v(A, A). We
consider the expansion Rexp

c of Rc and the canonical
database Dexp

c of Rexp
c . Note that in Rexp

c (Dexp
c

respectively) there are only two variables (constants
respectively), let us call them A and B (a and b
respectively). Suppose there is no mapping from the
query to Rexp

c . Then there is a base relation atom r(X)
in the body of the query and there is no atom r(X) in
the body of Rexp

c . Then there is a database instance
D which is a homomorphic image of the view definition
with the property: D contains two constants c, d and
V (D) contains tuple (c, d) and there is no tuple r(c, c)
in D. To construct this database just take the view
definition and identify variable Z to Y . Then rename X
to c and Y to d. Symmetrically, there is also a database
instance D′ which is a homomorphic image of the view
definition with the property: D′ contains two constants
c′, d′ and V (D′) contains tuple (d′, c′) and there is no
tuple r(c′, c′) in D′. To construct this database just take
the view definition and identify variable Z to X . Then
rename Y to c′ and X to d′.

We construct two databases D1 and D2. D1 is
constructed by the disjoint union of Dexp

c with D and
D′ and moreover by identifying a with c and c′ and then
b with d and d′. D2 is the union of D1 with the query
canonical database and we identify the constant in the
query with a. Now both V (D1) and V (D2) contain
all four possible tuples but Q(D2) contains (a, a) and
Q(D1) does not, hence contradiction. a

6 Determinacy and query equivalence

The problem that we investigate in this paper relates
determinacy to query rewriting. Since the problem for
the CQ case remains open, we address in this section
the question whether a simpler (and probably easier to
resolve) variant of the problem may relate determinacy
to query equivalence. First we ask: If Q1 is contained
in Q2 and Q2 determines Q1, then are Q1 and Q2

equivalent? The following simple example shows that
this statement does not hold: Let Q1 : q1(X, X) :
−a(X, X) and Q2 : q2(X, Y) : −a(X, Y). Obviously
Q1 is contained in Q2. Also Q2 determines Q1 because
there is an equivalent rewriting of Q1 using Q2, it is
R : q(X, X) : −q2(X, X). But Q1 and Q2 are not

equivalent.
We add some stronger conditions: Suppose in

addition that there is a containment mapping that uses
as targets all subgoals of Q1 and this containment

mapping maps the variables in the head one-to-one.
Still the following counterexample shows that we can
not conclude that Q1 and Q2 are equivalent.

example 6.1. In this example we have two queries:
Q1 : q1(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),

s(Z, Z1), s(Z1, Z1), s(Z1, W), s(A,A1), s(A1, A1), s(A1, B).

and
Q2 : q2(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),

s(Z, Z1), s(Z1, Z2), s(Z2, W), s(A,A1), s(A1, A1), s(A1, B).

Clearly Q1 is contained in Q2. Also Q2 determines Q1

because there is an equivalent rewriting of Q1 using Q2:
R : q′

1(X, Y, Z, W,A, B) : −q2(X, Y, Z, W,A, B),

q2(X1, Y1, Z1, W1, Z, W).

Moreover there is a homomorphism from Q2 to Q1 that
uses all subgoals of Q1 and is one-to-one on the head
variables. But Q1 and Q2 are not equivalent.

Finally, in order to be convinced that R is a
rewriting, let us consider the expansion
Rexp: q′

1(X, Y, Z, W,A, B) : −r(Y,X), s(Y, X), r(Z, W),

s(Z, Z1), s(Z1, Z2), s(Z2, W), s(A,A1), s(A1, A1), s(A1, B),

r(Y1, X1), s(Y1, X1), r(Z1, W1), s(Z1, Z
′

1), s(Z
′

1, Z
′

2), s(Z
′

2, W1),

s(Z, A′

1), s(A
′

1, A
′

1), s(A
′

1, W).

Then homomorphism µ1 is a containment mapping
from Rexp to Q1 and homomorphism µ2 is a contain-
ment mapping from Q1 to Rexp:
µ1: {X → X, Y → Y, Z → Z, W → W, A → A, B →

B, Z′

1 → Z1, Z
′

2 → Z1, A
′

1 → A1, A
′′

1 → Z1, X1 → X, Y1 →

Y, Z1 → Z, W1 → W,Z′′

1 → Z1, Z
′′

2 → Z1}

µ2: {X → X, Y → Y, Z → Z, W → W, A → A, B →

B, A1 → A′

1, Z1 → A′′

1}

Finally we add another condition which we denote
by Q2(D1) ⊆s Q2(D2), where D1, D2 is the canonical
databases of Q1, Q2 respectively.

We need first explain the notation Q(D1) ⊆s Q(D2)
which in general expresses some structural property
of databases D1 and D2 with repsect to Q and this
property is invariant under renaming. We say that
Q(D1) ⊆s Q(D2) holds if there is a renaming of the
constants in D1, D2 such that Q(D1) ⊆ Q(D2). For an
example, say we have query Q : q(X, Y) : −r(X, Y)
and three database instances D1 = {r(1, 2), r(2, 3)},
D2 = {r(a, b), r(b, c)} and D3 = {r(a, b), r(a, c)}.
Then it holds that Q(D1) ⊆s Q1(D2) and Q(D1) ⊆s

Q(D2) because there is a renaming of D2 (actually here
D1, D2 are isomorphic) such that Q(D1) ⊆ Q1(D2) and
Q(D1) ⊆ Q(D2). But the following does not hold:
Q(D3) ⊆s Q(D2).

We may also allow some constants in D1, D2 that
are special as concerns renaming. Although we need
incorporate these constants in the notation, we will
keep (slightly abusively) the same notation here since
we always mean the same constants. Thus let us return
to queries Q1, Q2 and their canonical databases D1, D2

respectively. Then by Q2(D1) ⊆s Q2(D2) we mean in

addition that (i) the frozen variables in the head of the
queries are identical component-wise, i.e., if in the head
of Q1 we have tuple (X1, . . . , Xm) then in the head of
Q2 we also have same tuple (X1, . . . , Xm) and in both
D1, D2 these variables freeze to constants x1, . . . , xm

and (ii) if we need to rename, then we are not allowed
to rename the constants x1, . . . , xm.

We introduce a new problem which relates determi-
nacy to query equivalence:

Determinacy and query equivalence: Let Q1, Q2 be
conjunctive queries. Suppose Q2 determines Q1, and
Q1 is contained in Q2. Suppose also that the following
hold: a) there is a containment mapping from Q2 to
Q1 which (i) uses as targets all subgoals of Q1 and
(ii) maps the variables in the head one-to-one, and b)
Q2(D1) ⊆s Q2(D2), where D1, D2 are the canonical
databases of Q1, Q2 respectively. Then are Q1 and Q2

equivalent?
Theorem 6.1 states that if CQ is complete for CQ-

to-CQ rewritings then the answer to the above question
is ”yes”.

Theorem 6.1. For the following two statement it
holds: Statement (A) implies statement (B).

A) Let Q and V be conjunctive query and views.
Suppose V determines Q. Then there is an equivalent
rewriting of Q using V.

B) Let Q1, Q2 be conjunctive queries. Suppose Q2

determines Q1, and Q1 is contained in Q2. Suppose
also that the following hold: a) there is a containment
mapping from Q2 to Q1 which (i) uses as targets all
subgoals of Q1 and (ii) maps the variables in the head
one-to-one, and b) Q2(D1) ⊆s Q2(D2), where D1, D2

are the canonical databases of Q1, Q2 respectively. Then
Q1 and Q2 are equivalent.

Proof. Suppose statement (A) is true. Since Q2 deter-
mines Q1 and statement (A) is true, there is an equiv-
alent rewriting of Q1 using Q2. Then the canonical
rewriting Rc is such a rewriting (see Proposition 4.1).
Hence Rexp

c is equivalent to Q1. Thus, if we prove that
Rexp

c is equivalent to Q2, then this implies that Q1 and
Q2 are equivalent. We know that there is a contain-
ment mapping from Q2 to Rexp

c . In order to prove that
there is a containment mapping from Rexp

c to Q2, we ob-
serve that Q2(D1) ⊆s Q2(D2) implies such a mapping.
The reason is that there is a containment mapping from
Rexp

c to Q1 and this mapping produces some tuples in
Q2(D1). Therefore analogous tuples must be produced
in Q2(D2). Hence there is a containment mapping from
Rexp

c to Q2. a

The determinacy and query equivalence question
remains open. The following theorem settles a special
case where we have replaced condition (b) with a
stronger one.

Theorem 6.2. Let Q1, Q2 be conjunctive queries.
Suppose Q2 determines Q1, and Q1 is contained in Q2.
Suppose also that the following hold: a) there is a con-
tainment mapping that uses as targets all subgoals of
Q1 and this containment mapping maps the variables
in the head one-to-one, and b) Q2(D1) contains exactly
one tuple, where D1 is the canonical databases of Q1.
Then Q1 and Q2 are equivalent.

Proof. Intuitively the first condition in the statement of
the theorem says that Q1 is a homomorphic image of Q2,
i.e., formed from Q2 by identifying variables. Moreover
it also says that the distinguished variables are not to be
identified, so Q1 is Q2 with (perhaps) nondistinguished
variables identified. Suppose towards contradiction that
Q2 and Q1 are not equivalent. Then there is a query
Q′

1 such that Q1 v Q′
1 v Q2 and Q′

1 differs from Q1

only in that Q1 results from Q′
1 by identifying only two

variables (not both distinguished). The following lemma
states formally this observation.

Lemma 6.1. Suppose Q1 is contained in Q2 but they
are not equivalent. Then there is a query Q′

1 with the
properties: a) Q′

1 is contained in Q2 b) Q1 is properly
contained in Q′

1 and c) the containment mapping h from
Q′

1 to Q1 is identity for all variables of Q′
1 except that

h(X1) = h(X2) = X1.

Proof. Observe that we conveniently keep the names of
the variables in Q1 and Q′

1 (except X2 which appears
only in Q′

1).
Let h1 be the homomorphism from the subgoals of

Q2 to the subgoals of Q1. Based on h1 we construct
homomorphism h which defines a homomorphic image
of Q2 and has the properties as in the statement of
the lemma. Since Q1 and Q2 are not equivalent, there
are variables X1, X2 of Q2 such that h1(X1) = h1(X2).
Then h is the following: It is the same as h1 except that
for h we have h(X1) 6= h(X2). Hence in Q′

1 we have
all variable names as in Q1 and an additional variable
X2. It is easy to see that Q′

1 properly contains Q1 and
is contained in Q2. a

Let Q′
1 be a query with the properties of the lemma

above. Consider the canonical database D′
1 of Q′

1 and
compute Q2(D

′
1). We claim that Q2(D

′
1) contains at

most two tuples. Because: Q2(D1) (which contains only
one tuple) is a homomorphic image of Q2(D

′
1) and thus

(because Q′
1 has the property in Lemma 6.1 wrto Q1,

i.e, the homomorphism h which maps Q′
1 to Q1 is the

identity except what concerns the variables X1 and X2)
there may be only one additional tuple in Q2(D

′
1), the

one that contains X2.
Thus we have two cases: a) Q2(D

′
1) contains one

tuple. b) Q2(D
′
1) contains two tuples. In the first case,

Q2(D
′
1) = Q2(D1), hence Q1(D

′
1) = Q1(D1) which is

false, hence a contradiction. In the second case, we
construct database D′′

1 : D′′
1 is D1with additional facts

the frozen subgoals that contain X2 in Q′
1 – observe that

D′
1 is a subset of D′′

1 . We observe that Q2(D
′′
1) contains

at most two tuples for the same reason for which Q2(D
′
1)

contains at most two tuples. Hence Q2(D
′′
1) = Q2(D

′
1)

and consequently Q1(D
′′
1) = Q1(D

′
1) a contradiction. a

Theorem 6.2 covers interesting special cases that
include: a) queries do not contain self-joins and b) query
Q1 contains a single variable.

7 Principal view set reduction

In this section we first define the concept of principal
view set for query Q. Informally a view set V is principal
for Q if in V(DQ) there exists one view Vp which we call
principal view for Q for which it holds: if there is an
equivalent rewriting of Q using V then a projection of
the principal view is such a rewriting. In Theorem 7.1
we reduce the general problem to the special case where
the view set is principal.

Let Dexp
p be the canonical database of the expansion

V exp
p of the principal view Vp. We use the notation

Vp(DQ) ⊆s Vp(D
exp
p) where again we assume that a set

of frozen variables are shared between DQ and Dexp
p

and are not allowed to be renamed. This is the set of
variables in the head of Vp which includes the set of
variables in the head of Q and is a subset of the set of
variables in Q.

definition 7.1. (principal view set) Let Q and V be
CQ query and views.

• A view Vp ∈ V is called principal view for Q if
the following hold: a) There is a homomorphism
from the definition of Vp to Q which uses all
subgoals of Q as targets and is one-to-one for the
distinguished variables of Vp. b) Let t be the tuple
of frozen distinguished variables in Dexp

p . Then all
tuples in Vp(DQ) use only constants from t and c)
Vp(DQ) ⊆s Vp(D

exp
p).

• A view set is called principal view set for Q if it
contains a principal view Vp.

example 7.1. We use the queries Q1, Q2 defined in
Example 6.1. Thus let Q = Q1 and let the view set
contain a single view V = Q2. Then conditions (a) and
(b) in Definition 7.1 are true but condition (c) is not.

In order to show that V (DQ) ⊆s V (Dexp) does not
hold let us consider canonical databases, DQ, of query
Q and Dexp, of the expansion of view V . It is impor-
tant however to name constants in Dexp according to
the targets in Q of the homomorphism claimed in part
(a) in Definition 7.1. Thus these databases are:
DQ = {r(y, x), s(y, x), r(z, w), s(z, z1), s(z1, z1), s(z1, w),

s(a, a1), s(a1, a1), s(a1, b)}

Dexp = {r(y, x), s(y, x), r(z, w), s(z, z′

1), s(z
′

1, z
′

2), s(z
′

2, w),

s(a, a1), s(a1, a1), s(a1, b)}

We compute V (DQ) = {(x, y, z, w, a, b), (x, y, z, w, z, w)}

and V (Dexp) = {(x, y, z, w, a, b)}. Hence V (DQ) ⊆s

V (Dexp) does not hold, therefore V is not a principal view

for Q and view set {V } is not a principal view set for Q.

Given arbitrary query Q and views V we can
construct a principal view from the canonical rewriting
Rc. We call this view canonical view and denote by Vc.
We construct view Vc to have as subgoals exactly all
subgoals of the expansion of Rc and in the head of Vc

we have exactly all variables of Rc.

example 7.2. From Example 4.1 we have that the
canonical rewriting for {V1, V2} and Q is

Rc : q(X, Y) : −v1(X, Z2), v2(Z2, Y).

and hence the canonical view is

Vc : vc(X, Y, Z2) : −a(X, Z1), a(Z1, Z2), b(Z2, Y).

Proposition 7.1. Let Q and V be query and views
defined by conjunctive queries. Then the canonical view
Vc is a principal view for Q.

Proof. Clearly Vc(DQ) contains at least one tuple t by
construction of Vc. Moreover t is obtained by a ho-
momorphism which maps one-to-one the distinguished
variables of Vc and uses all subgoals of Q according to
Proposition 2.1. This proves part (a) of Definition 7.1.

Now observe that any homomorphism from the
definition of Vc to DQ creates view tuples in V(DQ).
Suppose there is an homomorphism from the definition
of Vc to DQ which does not use constants in t. Then this
homomorphism creates view tuples not in Rc which is a
contradiction because Rc contains as subgoals all view
tuples in V(DQ). This proves part (b) of the definition.
For the same reason, the following leads to contradiction
and hence proves part (c) of the definition: If there is a
tuple in Vp(DQ) and not in Vp(D

exp
p) then this yields

that a view tuple in V(DQ) does not appear in the
subgoals of Rc. a

The following theorem reduces the general problem
to the problem where we have a principal view set.

Theorem 7.1. Let Q and V be query and views. Then
there is a principal view set V ′ such that the following
hold:

1. If V determines Q then V ′ determines Q.
2. If there is an equivalent rewriting of Q using V ′

then there is an equivalent rewriting of Q using V.

Proof. View set V ′ is the union of V and the set
that contains only the canonical view. We proved in
Proposition 7.1 that the canonical view is a principal
view.

The following proposition is an immediate consequence
of Proposition 4.1.

Proposition 7.2. Let Q and V be query and views
such that V is a principal view set for Q. If there is
an equivalent rewriting of Q using V, then there is an
equivalent rewriting which is a projection of the principal
view of V.

Proposition 7.2 states that in the case of principal
view set, if there is an equivalent rewriting then a pro-
jection of the principal view is an equivalent rewriting.
Note that in Section 6 we essentially discussed a case
where the principal view does not need a projection to
produce a rewriting.

8 Other Reductions

In this section we prove the following theorem and
provide some formal considerations about connectivity
too. By CQbin we mean the language of CQs where the
base predicates are binary. By CQBool,bin we mean the
language of CQbin where the query is boolean.

Theorem 8.1. If the language of CQ is complete for
CQbin-to-CQBool,bin rewritings then it is complete for
CQ-to-CQ rewritings.

8.1 Binary base predicates Here we prove:

Theorem 8.2. If the language of CQ is complete for
CQbin-to-CQbin rewritings then it is complete for CQ-
to-CQ rewritings.

The above theorem is an immediate consequence of
the following theorem.

Theorem 8.3. Let Q and V be query and views. Then
there is a view set V ′ and a query Q′ defined on binary
base predicates such that the following hold:

1. If V determines Q then V ′ determines Q′.
2. If there is an equivalent rewriting of Q′ using V ′

then there is an equivalent rewriting of Q using V.

Proof. We construct query Q′ and views V ′ as follows:
We introduce for each base predicate pi of arity ri a
collection of ri(ri − 1)/2 distinct binary base predicates
ai

j,j′ , j < j′ = 1, . . . , r. From query Q (view Vj respec-

tively) we construct query Q′ (view V ′
j respectively) as

follows. We replace each occurrence of predicate atom
pi(X1, . . . , Xr) by ri(ri − 1)/2 binary predicates atoms
which in particular are: ai

j,j′(Xj , Xj′), j < j′ = 1, . . . , r.
Intuitively each base predicate is replaced by a clique
but the edges of the clique have different predicate
names in order to retain the information about the po-
sitions of the variables when they are used as arguments
in the non-binary predicates.

Proof of part 1. Let D′
1, D

′
2 be databases over

the binary predicates such as V ′(D′
1) = V ′(D′

2). We

construct from D′
1, D

′
2 database instances D1, D2 over

the predicates used in V . For each homomorphic image
of a clique in D′

i we add in Di a tuple accordingly
in a way that corresponds to the construction above.
The homomorphic mappings of the views V ′ on D′

i

carry over to homomorphic mappings of the views V
on Di and vice versa. Hence V ′(D′

i) = V(Di) and
Q′(D′

i) = Q(Di). Therefore V(D1) = V(D2). This
yields that Q(D1) = Q(D2).

Proof of part 2. If there is an equivalent rewriting
of Q′ using V ′ then we claim that the same with the
primed view atoms replaced by unprimed view atoms is
an equivalent rewriting of Q using V . The containment
mappings that are used in the former case carry over
to the latter because the distinct binary base predicates
introduced take care of the positions of the variables in
the non-binary base predicates of the latter case. a

8.2 Boolean Queries Here we prove Theorem 8.1
which is an immediate consequence of the following:

Theorem 8.4. Let Q and V be query and views over
binary predicates. Then there is a view set V ′ and a
boolean query Q′ over binary predicates such that the
following hold:

1. If V determines Q then V ′ determines Q′.
2. If there is an equivalent rewriting of Q′ using V ′

then there is an equivalent rewriting of Q using V.

Proof. Given query Q of arity r and views V we con-
struct query Q′ and views V ′ as follows. First intro-
duce r new predicates for new base relations let them
be a1, . . . , ar. Query Q′ is a Boolean query with all
subgoals in Q and additional subgoals one for each ar-
gument in the head. More specifically, if variable X is
in the head in position i then we add ai(X, Z) where
Z is also a new variable used (different from all other
variables used also in Q). The views V ′ include all views
in V and some new views. We add new views one for
each ai defined by vi(t) : −ai(t).

Now consider two databases on which views V ′

compute the same relations. Since V is a subset of
V ′ then views V compute the same relations on both
databases. Hence query Q computes the same relation
on both databases. If the query output is empty on
both then query Q′ is false. Otherwise it might be
either false or true depending on how the new relations
vi, i = 1, 2. . . . compute on the two databases. However,
since they produce the same output and Q produces the
same output on both, then Q′ is either false on both or
true on both. The reason is that Q′ can be rewritten
using Q and the relations vi, i = 1, 2. a

8.3 Connectivity The following example shows the
intuition for the result in this section.

example 8.1. Suppose we have query:

Q : Q(X) : −r(Y, X), s(Y, X), s(Z, Z1), s(Z1, Z).

and views V:

V1 : v1(X, Y) : −r(Y, X).

V2 : v2(X, Y) : −s(Y, X), s(Z, Z1), s(Z1, Z).

Clearly the rewriting R1 : Q(X) : −v1(X, Y), v2(X, Y).
is an equivalent rewriting of Q using V. Note however,
that the two last subgoals in the query are (what we call
in the definition below semi-covered) such that either
they are covered by a single view among the views in
the particular view set or not at all. The reason is that
these two subgoals do not contain any variables in the
view tuples of V(DQ) (DQ is the canonical database of
Q) hence it is not possible to ”glue together” several
views to ”cover” these two subgoals. In that case, we
might be able to simplify the problem by reducing it to
the following query Q′ and views V:

Q′ : Q′(X) : −r(Y, X), s(Y, X).

and views V:

V ′
1 : v′1(X, Y) : −r(Y, X).

V ′
2 : v′2(X, Y) : −s(Y, X).

Then the same rewriting provides an equivalent rewrit-
ing of Q′ using V ′. We make this formal in this subsec-
tion.

definition 8.1. (Connectivity graph of query) Let Q
be a conjunctive query. The nodes of the connectivity
graph of Q are all the subgoals of Q and there is an
(undirected) edge between two nodes if they share a
variable or a constant.

A connected component of a graph is a maximal subset
of its nodes such that for every pair of nodes in the
subset there is a path in the graph that connects them.
A connected component of a query is a subset of subgoals
which define a connected component in the connectivity
graph. A graph with only one connected component is
called connected. A query is connected if its connectivity
graph is connected.

definition 8.2. (semi-covered component) Let Q and
V be CQ query and views. Let G be a connected
component of query Q. Suppose that any variable in
G is such that there is no tuple in V(DQ) (DQ is the
canonical database of Q) that contains it. Then we say
that G is a semi-covered component of Q wrto V.

We prove the following which is the main result of
this subsection.

Theorem 8.5. If the language of CQ is complete for
CQ-to-CQ rewritings where the query does not contain
any semi-covered components wrto the views then it is
complete for CQ-to-CQ rewritings.

Theorem 8.6. Let Q and V be query and views. Then
there is a view set V ′ and a query Q′ such that Q′ has
no semi-covered components wrto V ′ and the following
hold:

1. If V determines Q then V ′ determines Q′.
2. If there is an equivalent rewriting of Q′ using V ′

then there is an equivalent rewriting of Q using V.

Proof. We define:

definition 8.3. (covering subgoals) Let view V , query
Q and let S be a subset of the subgoals of Q. We say
that V covers S if there is a homomorphism µ from the
view definition to Q such that S is a subset of µ(vexp)
i.e., a subset of the targets of the view’s subgoals under
µ.

We use the following lemma:

Lemma 8.1. Let Q and V be conjunctive query and
views. Suppose V determines Q. Let GQ be a dis-
connected component of Q which is semi-covered by V.
Then there is a view in V which contains a connected
component which is isomorphic to GQ.

Proof. Because of Proposition 2.1, all subgoals of GQ

are targets of some view tuple mapping when we com-
pute V(DQ).

First we need to prove that in any mapping µ
from the views to DQ there is only one view which
covers GQ. Towards contradiction, suppose there is
a mapping µ for which GQ is covered by more than
one view, say it is covered by views (wlog) v1, v2. This
means that the union of µ(v1) and µ(v2) contains all
subgoals in GQ. Now, we do some construction: First
rename all variables in µ(v1) and µ(v2) so that they take
names from disjoint sets for each µ(vi). Then consider
canonical databases for µ(vi)’s and GQ – for simplicity
we keep the same name. We construct a database D1

by taking DQ and deleting GQ and adding all µ(vi)’s.
Clearly D1 and DQ are such that V(D1) = V(DQ)
(because component GQ did not produce any view
tuples, and its replacement G′

Q is such that GQ is a

homomorphic image of G′
Q, hence G′

Q does not produce

any view tuples either). Then D1 and DQ are such that
V(DQ) = V(D1) but Q(DQ) 6= Q(D1). a

We construct Q′ and V ′. Let Q′ be the query which
has the same head as Q and all subgoals of Q except
those that are semi-covered. Let V ′ be a set of views
same as the set V but in their definition we have deleted
the subgoals that cover semi-covered components of the

query. It is easy to see from the above lemma that if
there is an equivalent rewriting R of Q′ using V ′ then
there is an equivalent rewriting R1 of Q using V .

Now the first part in the statement of Theorem 8.6
remains to be proven. Let D1 and D2 be databases
on which V ′ computes the same answer, i.e., V ′(D1) =
V ′(D2). We want to construct database instances
D′

1, D
′
2 such that V(D′

1) = V(D′
2) and Q′(Di) =

Q(D′
i, i = 1, 2. It is worth noting that a construction

that is straightforward does not work: Construct D′
i

as the disjoint union of Di and database DM which is a
copy of all semi-covered components of Q (with variables
frozen appropriately similar to the case of constructing
a canonical database of a query). The reason is that
a tuple vi(t) might exist which is in V(D′

1) and not
in V(D′

2). This is possible for tuples t which contain
constants from DM – remember that databases D1, D2

may be quite different from each other.
Construction of databases D′

1 and D′
2. We will

construct databases D′
1 and D′

2 as follows: They are
both isomorphic copies of a database D where D is
the disjoint union of D1 and D2 and database DM .
Observe that we can partition the variables of D into
three subsets A1, A2, A3 which are those that belong
to D1, those that belong to D2 and those that belong
to DM . By hypothesis, we have that V ′ computes the
same view tuples on D1 and D2. Thus, we can rename
the constants in D so that we create two databases D′

1

and D′
2: In D′

1 we do not do any renaming. In D′
2,

we swap names among constants that are contained in
view tuples when we are computing views V ′(D1) and
V ′(D2). More precisely, if view tuple v′

j(x1, x2, x3) is in
V ′(D1) then a ”corresponding” view tuple v′

j(y1, y2, y3)
is in V ′(D2). We swap xi for yi. This kind of swap
would run into inconsistencies if it were not true that
V ′(D1) = V ′(D2). Hence it is feasible in our case.

Now it is easy to show that on D′
1 and D′

2, views
V compute the same tuples (notice that although D′

1

and D′
2 are isomorphic, because of the renaming, they

might not compute the same set of view tuples). Hence
the answers of Q are the same on D′

1 and D′
2. This

implies in a straightforward way that the answers of Q′

are the same on D1 and D2.

9 Conclusion

We have investigated the problem whether CQ is com-
plete for CQ-to-CQ rewritings. We have presented a
number of special cases for which CQ is complete. On
the other end, we have reduced the general problem
to more restricted variants. A new problem is intro-
duced in Section 6 that relates determinacy to query
equivalence and seems ”easier” to resolve than the orig-
inal problem. However this also remains open, since
here we have solved only a (pretty broad) special case
of it. Reducing the original problem to the determi-

nacy and query equivalence problem is another open
question. Further we provided a reduction in Section 7
which shows that the problem can be reduced to the
case where a projection of a special view provides an
equivalent rewriting if there exists one.

References

[ACN00] A. Agrawal, S. Chaudhuri, and V. Narasayya.
Automated selection of materialized views and indexes
in microsoft sql server. In Proc. of VLDB, 2000.

[AD98] Serge Abiteboul and Oliver M. Duschka. Complex-
ity of answering queries using materialized views. In
PODS, pages 254–263, 1998.

[ALM02] Foto Afrati, Chen Li, and Prasenjit Mitra. An-
swering queries using views with arithmetic compar-
isons. In PODS, 2002.

[ALU01] Foto Afrati, Chen Li, and Jeffrey D. Ullman.
Generating efficient plans using views. In SIGMOD,
pages 319–330, 2001.

[B+97] Roberto J. Bayardo Jr. et al. Infosleuth: Semantic
integration of information in open and dynamic envi-
ronments (experience paper). In SIGMOD, pages 195–
206, 1997.

[C+94] Sudarshan S. Chawathe et al. The TSIMMIS
project: Integration of heterogeneous information
sources. IPSJ, pages 7–18, 1994.

[CdGLV02] D. Calvanese, G. de Giacomo, M. Lenzerini, and
M. Vardi. Lossless regular views. In PODS. ACM,
2002.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros
Potamianos, and Kyuseok Shim. Optimizing queries
with materialized views. In ICDE, pages 190–200,
1995.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. STOC, pages 77–90, 1977.

[CR97] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. In ICDT, 1997.

[DG97] Oliver M. Duschka and Michael R. Genesereth.
Answering recursive queries using views. In PODS,
pages 109–116, 1997.

[FLSY99] Daniela Florescu, Alon Levy, Dan Suciu, and
Khaled Yagoub. Optimization of run-time manage-
ment of data intensive web-sites. In Proc. of VLDB,
pages 627–638, 1999.

[GT00] Stéphane Grumbach and Leonardo Tininini. On the
content of materialized aggregate views. In PODS,
pages 47–57, 2000.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L.
Wimmers, and Jun Yang. Optimizing queries across
diverse data sources. In Proc. of VLDB, pages 276–
285, 1997.

[IFF+99] Zachary Ives, Daniela Florescu, Marc Friedman,
Alon Levy, and Dan Weld. An adaptive query execu-
tion engine for data integration. In SIGMOD, pages
299–310, 1999.

[LBU01] Chen Li, Mayank Bawa, and Jeff Ullman. Mini-
mizing view sets without losing query-answering power.
In ICDT, 2001.

[LMSS95] Alon Levy, Alberto O. Mendelzon, Yehoshua
Sagiv, and Divesh Srivastava. Answering queries using
views. In PODS, pages 95–104, 1995.

[LRO96] Alon Levy, Anand Rajaraman, and Joann J. Or-
dille. Querying heterogeneous information sources us-
ing source descriptions. In Proc. of VLDB, pages 251–
262, 1996.

[RSU95] A. Rajamaran, Y. Sagiv, and J. D. Ullman. An-
swering queries using templates with binding patterns.
In PODS, pages 105–112, 1995.

[SV05] Luc Segoufin and Victor Vianu. Views and queries:
Determinacy and rewriting. In PODS. ACM, 2005.

[TS97] Dimitri Theodoratos and Timos Sellis. Data ware-
house configuration. In Proc. of VLDB, 1997.

[Ull97] Jeffrey D. Ullman. Information integration using
logical views. In ICDT, pages 19–40, 1997.

