
On Approximation Algorithms for Data Mining

Applications

Foto N. Afrati∗

National Technical University of Athens, Greece

June 3, 2004

Abstract

We aim to present current trends in the theoretical computer science research on
topics which have applications in data mining. We briefly describe data mining tasks
in various application contexts. We give an overview of some of the questions and
algorithmic issues that are of concern when mining huge amounts of data that do not
fit in main memory.

1 Introduction

Data mining is about extracting useful information from massive data such as finding
frequently occurring patterns or finding similar regions or clustering the data. From
the algorithmic point of view mining algorithms seek to compute good approximate
solutions to the problem at hand. As a consequence of the huge size of the input,
algorithms are usually restricted to making only a few passes over the data, and they
have limitations on the random access memory they use and the time spent per data
item. The advent of the internet has added new applications and challenges to this
area too.

The input in a data mining task can be viewed, in most cases, as a two dimensional
m × n 0,1-matrix which often is sparse. This matrix may represent several objects
such as a collection of documents (each row is a document and each column is a word
and there is a 1 entry if the word appears in this document), or a collection of retail
records (each row is a transaction record and each column represents an item, there is
a 1 entry if the item was bought in this transaction), or both rows and columns are
sites on the web and there is a 1 entry if there is a link from the one site to the other.
In the latter case, the matrix is often viewed as a graph too. Sometimes the matrix
can be viewed as a sequence of vectors (its rows) or even a sequence of vectors with
integer values (not only 0,1).

∗This work was partially supported by European Commission, Project APOLL-IST-1999-14084 and the
Greek General Secretariat of Research and Technology, Project on Data Mining.

1

The performance of a data mining algorithm is measured in terms of the number
of passes, the required work space in main memory and computation time per data
item. A constant number of passes is acceptable but one pass algorithms are mostly
sought for. The workspace available ideally is constant but sublinear space algorithms
are also considered. The quality of the output is usually measured using conventional
approximation ratio measures [97], although in some problems the notion of approx-
imation and the manner of evaluating the results remain to be further investigated.
Space and time per item is measured as a function of N , the number of items read by
the algorithm.

These performance constraints call for designing novel techniques and novel com-
putational paradigms. Since the amount of data far exceeds the amount of workspace
available to the algorithm, it is not possible for the algorithm to “remember” large
amounts of past data. A recent approach is to create a summary of the past data to
store in main memory, leaving also enough memory for the processing of the future
data. Using a random sample of the data is also another popular technique.

Besides data mining, other applications can be also modeled as one pass prob-
lems such as the interface between the storage manager and the application layer of a
database system or processing data that are brought to desktop from networks, where
each pass essentially is another expensive access to the network. Several communities
have contributed (with technical tools and methods as well as by solving similar prob-
lems) to the evolving of the data mining field, including statistics, machine learning
and databases.

Many single pass algorithms have been developed recently and also techniques and
tools that facilitate them. We will review some of them here. In the first part of
this chapter (next two sections), we review formalisms and technical tools used to find
solutions to problems in this area. In the rest of the chapter we briefly discuss recent
research in association rules, clustering and web mining. An association rule relates
two columns of the entry matrix (e.g., if the i-th entry of a row v is 1 then most
probably the j-th entry of v is also 1). Clustering the rows of the matrix according to
various similarity criteria in a single pass is a new challenge which traditional clustering
algorithms did not have. In web mining, one problem of interest in search engines is
to rank the pages of the web according to their importance on a topic. Citation
importance is taken by popular search engines according to which important pages are
assumed to be those that are linked by other important pages.

In more detail the rest of the chapter is organized as follows. The next section
contains formal techniques used for single pass algorithms and a formalism for the
data stream model. Section 3 contains an algorithm with performance guarantees for
finding approximately the Lp distance between two data streams. Section 4 contains a
list of what are considered the main data mining tasks and another list with applications
of these tasks. The last three sections discuss recent algorithms developed for finding
association rules, clustering a set of data items and for searching the web for useful
information. In these three sections, techniques mentioned in the beginning of the
chapter are used (such as SVD, sampling) to solve the specific problems. Naturally
some of the techniques are common, such as, for example, spectral methods are used
in both clustering and web mining.

2

2 Formal Techniques and Tools

In this section we present some theoretical results and formalisms that are often used
in developing algorithms for data mining applications. In this context, the singular
value decomposition (SVD) of a matrix (subsection 2.1.2) has inspired web search
techniques, and, as a dimensionality reduction technique, is used for finding similari-
ties among documents or clustering documents (known as the latent semantic indexing
technique for document analysis). Random projections (subsection 2.1.1) offer another
means for dimensionality reduction explored in recent work. Data streams (subsec-
tion 2.2) is proposed for modeling limited pass algorithms; in this subsection some
discussion is done on lower and upper bounds on the required workspace. Sampling
techniques (subsection 2.3) have also been used in statistics and learning theory, under
somewhat different perspective however. Storing a sample of the data that fits in main
memory and running a “conventional” algorithm on this sample is often used as the
first stage of various data mining algorithms. We discuss the problem of selecting a
random sample out of a dataset. We present a computational model for probabilistic
sampling algorithms that compute approximate solutions. This model is based on the
decision tree model [27] and relates the query complexity to the size of the sample.

We start by providing some (mostly) textbook definitions for self containment pur-
poses. In data mining we are interested in vectors and their relationships under several
distance measures. For two vectors, ~v = (v1, . . . , vn), ~u = (u1, . . . , un), the dot
product or inner product is defined to be a number which is equal to the sum of the
component-wise products ~v · ~u = v1u1 + . . . + vnun and the Lp distance (or Lp norm)
is defined to be: ||~v − ~u||p = (Σn

i=1|vi − ui|
p)1/p. The Lp distance is extended to be

defined between matrices : ||~V − ~U ||p = (Σi(Σj |Vij −Uij|
p))1/p. We sometimes use || ||

to denote || ||2. The cosine distance is defined to be 1 − ~v·~u
||~v|| ||~u|| . For sparse matrices

the cosine distance is a suitable similarity measure as the dot product deals only with
non-zero entries (which are the entries that contain the information) and then it is
normalized over the lengths of the vectors.

Given a sequence of reals x1, . . . , xn, the k-th statistical moment is defined as
µk(x1, . . . , xn) = 1/nΣn

i=1x
k
i . The first statistical moment is simply the mean. Some

results are based on stable distributions [85]. A distribution D over the reals is called
p-stable if for any n real numbers a1, . . . , an and independent identically distributed,
with distribution D, variables X1, . . . , Xn, the random variable ΣiaiXi has the same
distribution as the variable (Σi|ai|

p)1/pX, where X is a random variable with the same
distribution as the variables X1, . . . , Xn. It is known that stable distributions exist
for any p ∈ (0, 2]. A Cauchy distribution defined by the density function 1

π(1+x2)
, is

1-stable, a Gaussian (normal) distribution defined by the density function 1√
2π

e−x2/2,

is 2-stable.
A randomized algorithm [81] is an algorithm that flips coins, i.e., it uses random

bits, while no probabilistic assumption is made on the distribution of the input. A
randomized algorithm is called Las-Vegas if it gives the correct answer on all inputs.
Its running time or workspace could be a random variable depending on the random
variable of the coin tosses. A randomized algorithm is called Monte-Carlo with error
probability ε if on every input it gives the right answer with probability at least 1 − ε.

3

2.1 Dimensionality Reduction

Given a set S of points in the multidimensional space, dimensionality reduction tech-
niques are used to map S to a set S ′ of points in a space of much smaller dimensionality
while approximately preserving important properties of the points in S. Usually we
want to preserve distances. Dimensionality Reduction techniques can be useful in many
problems where distance computations and comparisons are needed. In high dimen-
sions distance computations are very slow and moreover it is known that, in this case,
the distance between almost all pairs of points is the same with high probability and
almost all pair of points are orthogonal (known as the Curse of Dimensionality).

Dimensionality reduction techniques that are popular recently include Random
Projections and Singular Value Decomposition (SVD). Other dimensionality reduc-
tion techniques use linear transformations such as the Discrete Cosine transform or
Haar Wavelet coefficients or the Discrete Fourier Transform (DFT). DFT is a heuristic
which is based on the observation that, for many sequences, most of the energy of the
signal is concentrated in the first few components of DFT. The L2 distance is preserved
exactly under the DFT and its implementation is also practically efficient due to an
O(nlogn) DFT algorithm. Dimensionality reduction techniques are well explored in
databases [51, 43].

2.1.1 Random Projections

Random Projection techniques are based on the Johnson-Lindenstrauss (JL) lemma [67]
which states that any set of n points can be embedded into the k-dimensional space
with k = O(log n/ε2) so that the distances are preserved within a factor of ε.

Lemma 2.1 (JL) Let ~v1, . . . , ~vm be a sequence of points in the d-dimensional space
over the reals and let ε, F ∈ (0, 1]. Then there exists a linear mapping f from the
points of the d-dimensional space into the points of the k-dimensional space where
k = O(log(1/F)/ε2) such that the number of vectors which approximately preserve
their length is at least (1 − F)m. We say that a vector ~vi approximately preserves its
length if:

||~vi||
2 ≤ ||f(~vi)||

2 ≤ (1 + ε)||~vi||
2

2

The proof of the lemma, however, is non-constructive: it shows that a random
mapping induces small distortions with high probability. Several versions of the proof
exist in the literature. We sketch the proof from [65]. Since the mapping is linear,
we can assume without loss of generality that the ~vi’s are unit vectors. The linear
mapping f is given by a k × d matrix ~A and f(~vi) = ~A~vi, i = 1, . . . ,m. By choosing
the matrix ~A at random such that each of its coordinates is chosen independently from
N(0, 1), then each coordinate of f(~vi) is also distributed according to N(0, 1) (this is
a consequence of the spherical symmetry of the normal distribution). Therefore, for
any vector ~v, for each j = 1, . . . , k/2, the sum of squares of consecutive coordinates
Yj = ||f(~v)2j−1||

2 + ||f(~v)2j ||
2 has exponential distribution with exponent 1/2. The

expectation of L = ||f(~v)||2 is equal to ΣjE[Yj] = k. It can be shown that the value
of L lies within ε of its mean with probability 1 − F . Thus the expected number of
vectors whose length is approximately preserved is (1 − F)m.

4

The JL lemma has been proven useful in improving substantially many approxima-
tion algorithms (e.g., [65, 17]). Recently in [40], a deterministic algorithm is presented
which finds such mapping in time almost linear in the number of distances to preserve
times the dimension d of the original space. In recent work, random projections are
used to compute summaries of past data called sketches to solve problems such as
approximating the Lp norm of a data stream (see also section 3).

2.1.2 Singular Value Decomposition

Consider matrices with real numbers as entries. We say that a matrix ~M is orthogonal
if ~M ~MTr = ~I where ~I is the identity matrix (by ~ATr we denote the transpose of matrix
~A). An eigenvalue of a n × n matrix ~M is a number λ such that there is a vector ~t
which satisfies ~M~t = λ~t. Such a vector ~t is called an eigenvector associated with λ.
The set of all eigenvectors associated with λ form a subspace and the dimension of
this subspace is called the multiplicity of λ. If ~M is a symmetric matrix, then the
multiplicities of all eigenvalues sum up to n. Let us denote all the eigenvalues of such a
matrix ~M by λ1(~M), λ2(~M), . . . λn(~M), where we have listed each eigenvalue a number
of times equal to its multiplicity. For symmetric matrix ~M , we can choose for each
λi(~M) an associated eigenvector ~ti(~M) such that the set of vectors {~ti(~M)} forms an
orthonormal basis for the n-dimensional space over the real numbers. Let ~Q be the
matrix with columns these vectors and let Λ be the diagonal matrix with diagonal
entries the list of eigenvalues. Then, it is easy to prove that: ~M = ~QΛ ~QTr. However
the result extends to any matrix as the following theorem states.

Theorem 2.1 (Singular Value Decomposition/SVD) Every m × n matrix ~A can be
written as ~A = ~U ~T ~V Tr where ~U and ~V are orthogonal and ~T is diagonal. 2

The diagonal entries of ~T are called the singular values of ~A. It is easy to verify that
the columns of ~U and ~V represent the eigenvectors of ~A ~ATr and ~ATr ~A respectively and
the diagonal entries of ~T 2 represent their common set of eigenvalues. The importance
of the SVD in dimensionality reduction lies in the following theorem which states that
~U, ~T , ~V can be used to compute, for any k, the matrix Ak of rank k which is “closest”
to ~A over all matrices of rank k.

Theorem 2.2 Let the SVD of ~A be given by ~A = ~U ~T ~V Tr. Suppose τ1, . . . , τk are the
k largest singular values. Let ~ui be the i-th column of ~U and ~vi be the i-th column of
~V and let τi be the i-th element in the diagonal of ~T . Let r be the rank of ~A and let
k < r. If

~Ak = Σk
i=1τi~ui~v

Tr
i

Then
minrank(~B)=k||

~A − ~B||2 = || ~A − ~Ak||2 = τk+1

2

The SVD technique displays optimal dimensionality reduction (for linear projec-
tions) but it is hard to compute.

5

2.2 The Data Stream Computation Model

The streaming model is developed to formalize a single (or few) pass(es) algorithm over
massive data that do not fit in main memory. In this model, the data is observed once
(or few times) and in the same order it is generated. For each data item, we want to
minimize the required workspace and the time to process it.

In the interesting work of [61] where the stream model was formalized, a data stream
is defined as a sequence of data items v1, v2, . . . , vn which are assumed to be read by
an algorithm only once (or very few times) in increasing order of the indices i. The
number P of passes over the data stream and the workspace W (in bits) required by
the algorithm in the main memory are measured. The performance of an algorithm is
measured by the number of passes the algorithm makes over the data and the required
workspace, along with other measures such as the computation time per input data
item. This model does not necessarily require a bound on the computation time.

Tools from communication complexity are used to show lower bounds on the workspace
of limited-pass algorithms [8],[61]. Communication complexity [79] is defined as follows.
In the (2-party) communication model there are two players A and B. Player A is given
a x from a finite set X and player B is given a y from a finite set Y . They want to
compute a function f(x, y). As player A does not know y and player B does not know
x, they need to communicate. They use a protocol to exchange bits. The communi-
cation complexity of a function f is the minimum over all communication protocols of
the maximum over all x ∈ X, y ∈ Y of the number of bits that need to be exchanged
to compute f(x, y). The protocol can be deterministic, Las-Vegas or Monte-Carlo.
If one player is only transmitting and one is only receiving then it is called one-way
communication complexity. In this case, only the receiver needs to be able to compute
function f .

To see how communication complexity is related to deriving lower bounds on the
space, think of one way communication where player A has the information of the
past data and player B has the information of the future data. The communication
complexity can be used as a lower bound on the space available to store a “summary”
of the past data.

It is natural to ask whether under the stream model there are noticeable differences
regarding the workspace requirements (i) between one-pass and multi-pass algorithms,
(ii) between deterministic and randomized algorithms and (iii) between exact and ap-
proximation algorithms. These questions were explored in earlier work [82] in context
similar to data streams and it was shown that: (i) Some problems require a large
space in one pass and a small space in two passes. (ii) There can be an exponential
gap in space bounds between Monte-Carlo and Las-Vegas algorithms. (iii) For some
problems, an algorithm for an approximate solution, requires substantially less space
than an exact solution algorithm.

In [8], space complexity for estimating the frequency moments of a sequence of
elements in one pass was studied and tight lower bounds were derived. The problem
studied in [82] is the space required for selecting the k-th largest out of n elements using
at most P passes over the data. An upper bound of n1/P log n and a lower bound of
n1/P is shown, for large enough k. Recent work on space lower bounds includes also
[90].

The data stream model appears to be related to other work e.g., on competitive
analysis [69], or I/O efficient algorithms [98]. However, it is more restricted in that it

6

requires that a data item can never again be retrieved in main memory after its first
pass (if it is a one-pass algorithm). A distributed stream model is also proposed in
[53] which combines features of both streaming models and communication complexity
models.

Streaming models have been extensively studied recently and methods have been
developed for comparing data streams under various Lp distances, or clustering them.
The stream model from the database perspective is investigated in the Stanford stream
data management Project [93] (see [11] for an overview and algorithmic considerations).

2.3 Sampling

Randomly sampling a few data items of a large data input is often a technique used to
extract useful information about the data. A small sample of the data may be sufficient
to compute many statistical parameters of the data with reasonable accuracy. Tail
inequalities from probability theory and the central limit theorem are useful here [81,
47].

One of the basic problems in this context is to computes the size of the sample
required to determine certain statistical parameters. In many settings, the size of the
sample for estimating the number of distinct values in a data set is of interest. The
following proposition [86] gives a lower bound on the size of the sample in such a case
whenever we know the number of distinct values and each has a frequency greater than
ε.

Proposition 2.1 If a dataset D contains l ≥ k distinct values of frequency at least
ε, then a sample of size s ≥ 1

ε log k
δ contains at least k distinct values with probability

> 1 − δ. 2

To prove, let a1, . . . , al be the l distinct values of frequencies p1, . . . , pl respectively
and, each frequency is at least ε. Then the probability our sample missed k of these
distinct values is at most Σk

i=1(1 − pi)
s ≤ k(1 − ε)s ≤ δ by our choice of s.

In a similar context, random sampling from a dataset whose size is unknown, is
of interest in many applications. The problem is to select a random sample of size
n from a dataset of size N when N is unknown. A one-pass reservoir algorithm is
developed in [99]. A reservoir algorithm maintains a sample (reservoir) of data items
in main memory and data items may be selected for the reservoir as they are processed.
The final random sample will be selected from the sample maintained in the reservoir
(hence the size of the sample in the reservoir is larger than n). In [99] each data item
is selected with probability M/n where n is the number of data items read so far and
M is the size of the reservoir.

An algorithm that uses a sample of the input is formalized in [14] as a uniform

randomized decision tree. This formalism is used to derive lower bounds on the required
size of the sample. A randomized decision tree has two kinds of internal nodes, query
nodes and random coin toss nodes. Leaves are related to output values. On an input
x1, . . . , xn, the computation of the output is done by following a path from the root
to a leaf. On each internal node a decision is made as to which of its children the
computation path moves next. In a random coin toss node this decision is based on
a coin toss which picks one of the children uniformly at random. A query node v has
two labels, an input location (to be queried), and a function which maps a sequence of

7

query locations (the sequence is thought of as the input values queried so far along the
path from the root) to one of the children of this node v. The child to which the path
moves next is specified by the value of this function. Each leaf is labeled by a function
which maps the sequence of query locations read along the path to an output value.
The output is the value given by the function on the leaf which is the end point of the
computation path.

Note that any input x1, . . . , xn may be associated with several possible paths leading
from the root to a leaf, depending on the random choices made in the random coin
nodes. These random choices induce a distribution over the paths corresponding to
x1, . . . , xn.

A uniform randomized decision tree is defined as a randomized decision tree with
the difference that each query node is not labeled by an input variable. The query in
this case is done uniformly at random over the set of input values that have not been
queried so far along the path from the root. A uniform decision tree can be thought
as a sampling algorithm which samples the input uniformally at random and uses only
these sample values to decide the output. Thus the number of query nodes along a
path from the root to a leaf is related to the size of the sample.

The expected query complexity of a decision tree T on input ~x = x1, . . . , xn denoted
Se(T, ~x), is the expected number of query nodes on paths corresponding to ~x. The
worst case query complexity of a tree T on input ~x, denoted Sw(T, ~x), is the maximum
number of query nodes on paths corresponding to ~x. Here the expectation and the
maximum are taken over the distribution of paths.

The expected and worst case query complexity of T Se(T) and Sw(T) are the max-
imum of Se(T, ~x) and Sw(T, ~x), respectively, over all inputs ~x in An.

Because of the relation between query complexity and the size of the required sam-
ple, a relationship can also be obtained between query complexity and space complexity
as defined in the data stream model. Let ε ≥ 0 be an error parameter, δ (0 < δ < 1) a
confidence parameter, and f a function. A decision tree is said to (ε, δ)-approximate f
if for every input ~x the probability of paths corresponding to ~x that output a values y
within a factor of ε from the exact solution is at least 1 − δ. The (ε, δ) expected query
complexity of f is:

Se
ε,δ(f) = min{Se(T) | T (ε, δ) − approximates f}

The worst case query complexity of a function f is defined similarly.
The (ε, δ) query complexity of a function f can be directly related to the space

complexity as defined on data streams. If a function has (ε, δ) query complexity S e
ε,δ(f),

then the space required in main memory is at most Sw
ε,δ(f)O(log |A| + log n), where

A,n are parameters of the input vector ~x. For input vector ~x = x1, . . . , xn, n is the
number of data items and A is the number of elements from which the values of each
xi is drawn.

Based on this formalization, a lower bound is obtained on the number of samples
required to distinguish between two distributions [14]. It it also shown that the k-th
statistical moment can be approximated within an additive error of ε by using a random
sample of size O(1/ε2 log 1

δ), and that this is a lower bound on the size of the sample.
Work that also refer to lower bounds on query complexity for approximate solutions
include results on the approximation of the mean [28], [36, 91], the approximation on
the frequency moment [31].

8

Lossy compression may be related to sampling. When we have files in compressed
form, we might want to compute functions of the uncompressed file without having
to decompress. Compressed files might even been thought of as not been able to be
precisely retrieved by decompression, namely the compression (in order to gain larger
compression factors) allowed for some loss of information (lossy compression). Prob-
lems of this nature are related to sampling algorithms in [46].

Statistical decision theory and statistical learning theory are fields where sampling
methods are used too. However they focus on different issues than data mining does.
Statistical decision theory [16] studies the process of making decisions based on infor-
mation gained by computing various parameters of a sample. However the sample is
assumed given and methods are developed that maximize the utitily of it. Computing
the required size of a sample for approximately computing parameters of the input data
is not one of its concerns. Statistical learning theory [96, 70] is concerned with learning
an unknown function from a class of target functions, i.e., approximating the function
rather, whereas, in data mining, the interest is in approximating some parameter of
the function.

For an excellent overview on key research results and formal techniques on data
stream algorithms see the tutorial in [51] and references therein. Also an excellent
survey on low distortion embedding techniques for dimensionality reduction can be
found in [63].

3 Approximating the Lp distance. Sketches.

We consider in this section the following problem which may be part of various data
mining tasks. The data stream model is assumed and we want to compute an approx-
imation to the Lp distance. Formally, we are given a stream S of data items. Each
data item is viewed as a pair (i, v), i = 1, . . . , n, with entries for v an integer in the
range {−M,M} where M is a positive integer (so we need log M memory to store
the value of each data item). Note that there may exist several pairs (with possibly
different values for v) for a specific i. We want to compute a good approximation of
the following quantity:

Lp(S) = (Σi=1,...,n|Σ(i,v)∈Sv|p)1/p

The obvious solution to this problem, i.e., maintain a counter for each i is too costly
because of the size of the data. In the influential paper [8], a scheme is proposed for
approximating L2(S) within a factor of ε in workspace O(1/ε) with arbitrarily large
constant probability.

In [46], a solution for L1(S) is investigated for the special case where there are
at most two non zero entries for each i. In this case, the problem can be equiva-
lently viewed as having two streams Sa and Sb and asking for a good approxima-
tion of L1(Sa, Sb) = Σi|Σ(i,v)∈Sa

v − Σ(i,v)v∈Sb
v|. A single pass algorithm is developed

which, with probability 1 − δ, computes an approximation to L1(S) within a fac-
tor of ε using O(log M log n log(1/δ)/ε2) random access space and O(log n log log n +
log M log(1/δ)/ε2) computation time per item. The method in [46] can be viewed as

9

using sketches of vectors, which is a summary data structure. In this case, a sketch
C(Sa), C(Sb) is computed for each data stream Sa, Sb respectively. Sketches are much
smaller in size than Sa, Sb and such that an easily computable function of the sketches
gives a good approximation to L1(Sa, Sb).

In [62], a unifying framework is proposed for approximating L1(S) and L2(S) within
a factor of ε (with probability 1−δ) using O(log M log(n/δ) log(1/δ)/ε2) random access
space and O(log(n/δ)) computation time per item. The technique used combines the
use of stable distributions [85] with Nisan pseudorandom generators [84]. The property
of stable distributions which is used in this algorithm is the following. The dot product
of a vector ~u with a sequence of n independent identically distributed random variables
having p-stable distribution is a good estimator of the Lp norm of ~u. In particular we
can use several such products to embed a d-dimensional space into some other space
(of lower dimensionality) such that to approximately preserve the Lp distances. Dot
product can be computed in small workspace.

We shall describe here in some detail the first stage of this algorithm for approxi-
mating L1(S): For l = O(c/ε2 log 1/δ) (for some suitable constant c), we initialize nl
independent random variables X j

i , i = 1, . . . , n, j = 1, . . . , l with Cauchy distribution
defined by the density function f(x) = 1

π
1

1+x2 (we know this distribution is 1-stable).
Then, the following three steps are executed:

1. Set Sj = 0, for j = 1, . . . , l.
2. For each new pair (i, v) do: Sj = Sj + vXj

i for all j = 1, . . . , l.
3. Return the median(|S0|, . . . , |Sl−1|).

To prove the correctness of this algorithm we argue as follows: We want to compute
L1(S) = C = Σi|ci| where ci = Σ(i,v)∈Sv. First, it follows from the 1-stability of
the Cauchy distribution that, each Sj has the same distribution as CX where X
has Cauchy distribution. Random variable X has Cauchy distribution with density
function f(x) = 1

π
1

1+x2 hence median(|X|) = 1 and median(v|X|) = v for any v. It

is known that for any distribution, if we take l = O(c/ε2 log 1/δ) independent samples
and compute the median M , then for distribution function F (M) of M we have (for a
suitable constant c) Pr[F (X) ∈ [1/2− ε, 1/2 + ε]] > 1− δ. Thus, it can be proven that
l = O(c/ε2 log 1/δ) independent samples approximate L1(S) within a factor of ε with
probability > 1 − δ.

This stage of the algorithm, though, assumes random numbers of exact precision.
Thus, random generators are used to solve the problem of how to reduce the number
of required random bits.

The problem of approximating Lp distances in one pass algorithms has a variety
of applications including estimation of the size of self join [8, 52] and estimation of
statistics of network flow data [46].

In the above frameworks a solution was facilitated by using summary descriptions of
the data which approximately preserved the Lp distances. The summaries were based
on computing with random variables. Techniques that use such summaries to reduce
the size of the input are known as sketching techniques (they compute a sketch of each

10

input vector). Computing sketches has been used with success in many problems to
get summaries of the data. It has enabled compression of data and has been speeding
up computation for various data mining tasks [64, 34, 25, 26, 35]. (See also section 5
for a description of the algorithm in [34].) Sketches based on random projections are
often used to approximate Lp distances or other measure of similarities depending on
them. In such a case (see e.g., [35]) sketches are defined as: The i-th component of the
sketch ~s(~x) of ~x is the dot product of ~x with a random vector ~ri.

~si(~x) = ~x · ~ri

where each component of each random vector is drawn from a Cauchy distribution.
Work that use sketching techniques include [38, 49] where aggregate queries and

multi-queries over data streams are computed.

4 Data Mining Tasks and Applications

The data available for mining interesting knowledge (e.g., census data, corporate data,
biological data) is often in bad shape (have been gathered under no particular consid-
erations), e.g. it may contain duplicate or incomprehensible information. Therefore a
preprocessing stage is required to clean the data. The main data mining tasks are con-
sidered to be those that have an almost well defined algorithmic objective and assume
that the given data are in a good shape. Moreover after the results of a data mining
task are obtained they may need a post processing stage to interprete and visualize
them. In this section, we mention some areas of research and applications that are
considered of interest in the data mining community [59]. We begin with a list of the
most common data mining tasks:

• Association rules: Find correlations among the columns of the input matrix of
the form: if there is a 1 entry in column 5 then most probably there is a 1 entry
in column 7 too. These rules are probabilistic in nature.

• Sequential patterns: Find sequential patterns that occur often in a dataset.

• Time series similarity: Find criteria that check in a useful way whether two
sequences of data exhibit “similar features”.

• Sequence matching: Given a collection of sequences and a sequence query, find
the sequence which is closest to the query-sequence.

• Clustering: Partition a given set of points into groups, called clusters so that
“similar” points belong to the same cluster. A measure of similarity is needed,
often it is a distance in a metric space.

• Classification: Given a set of points and a set of labels, assign labels to point so
that similar objects are labeled by similar labels and a point is labeled by the
most likely label. A measure of similarity of points and similarity of labels is
assumed and a likelihood of a point to be assigned a particular label.

• Discovery of outliers: Discover points in the dataset which are isolated, i.e., they
do not belong to any multi-populated cluster.

• Frequent episodes: An extension of sequential pattern finding, where more com-
plex patterns are considered.

11

These tasks as described in the list are usually decomposed in more primitive modules
that may be common in several tasks, e.g., comparing large pieces of the input matrix
to find similarity patterns is useful in clustering, and association rules mining.

We include a list of some of the most common applications of data mining:

• Marketing. Considered one of the most known successes of data mining. Mar-
ket basket analysis is motivated by the decision support problem and aims at
observing customer habits to decide on business policy regarding prices or prod-
uct offers. Basket data are collected by most large retail organizations and used
mostly for marketing purposes. In this context, it is of interest to discover associ-
ation rules such as ”if a person buys pencil then most probably buys paper too”.
Such information can be used to increase sales on pencils by placing them near
paper or make a profit by offering good prices on pencils and increase the price
of paper.

• Astronomy. Clustering celestial objects by their radiation to distinguish galaxies
and other star formations.

• Biology. Correlate diabetes to the presence of certain genes. Find DNA sequences
representing genomes (sequential patterns). Work in time series analysis has many
practical applications here.

• Document analysis. Cluster documents by subject. Used, for example, in collab-
orative filtering, namely tracking user behavior and making recommendations to
individuals based on similarity of their preferences to these of other users.

• Financial Applications. Use time series similarity to find stocks with similar
price movements or find products with similar selling patterns. Observe similar
patterns in customers’ financial history to decide if a bank loan is awarded.

• Web mining. Search engines like Google rank web pages by their “importance”
in order to decide the order on which to present search results on a user query.
Identifying communities on the web, i.e., groups that share a common interest and
have a large intersection of web pages that are most often visited by the members
of a group. This may be useful for advertising or to identify the most up-to-date
information on a topic or to provide a measure of page rank which is not easy
to spam. One popular method is to study co-citation and linkage statistics: web
communities are characterized by dense directed bipartite subgraphs.

• Communications. Discover the geographic distribution of cell phone traffic at
different base stations or the evolution of traffic at Internet routers over time.
Detecting similarity patterns over such data is important, e.g., which geographic
regions have similar cell phone usage distribution, or which IP subnet traffic
distributions over time intervals are similar.

• Detecting intrusions. Detecting intrusions the moment they happen is important
to protecting a network from attack. Clustering is a technique used to detecting
intrusions.

• Detecting failures in network. Mining episodes helps to detect faults in electricity
network before they occur or detect congestions in packet switched networks.

12

5 Association Rules

Identifying association rules in market basket data is considered to be one of the most
well known successes of the data mining field. The problem of mining for association
rules and the related problem of finding frequent itemsets have been studied extensively
and many efficient heuristics are known. We will mention some of them in this section.

Basket data is a collection of records (or baskets), each record typically consisting
of a transaction date and a collection of items (thought of as the items bought in this
transaction). Formally we consider a domain set I = {i1, . . . , im} of elements called
items and we are given a set D of transactions where each transaction T is a subset of
I. We say that a transaction T contains a set X of items if X ⊆ T . Each transaction is
usually viewed as a row in a n × k 0,1-matrix where 1 means that the item represented
by this column is included in this transaction and 0 that it is not included. The rows
represent the baskets and the columns represent the items in the domain. The columns
are sometimes called attributes or literals. Thus an instance of marker basket data is
represented by a 0,1-matrix.

The problem of mining association rules over basket data was introduced in [4]. An
association rule is an “implication” rule X ⇒ Y where X ⊂ I and Y ⊂ I and X,Y are
disjoint. The rule X ⇒ Y holds in the transaction set D with confidence c if c% of the
transactions in D that contain X also contain Y . The rule X ⇒ Y has support s in the
transaction set D if s% of the transactions in D contain Y ∪ X. The symbol ⇒ used
in an association rule is not a logical implication, it only denotes that the confidence
and the support are estimated above the thresholds c% and s% respectively. In this
context, the problem of mining for association rules on a given transaction set asks to
generate all association rules with confidence and support thresholds greater than two
given integers.

Functional dependencies are association rules with 100% confidence and any support
and they are denoted as X → A. Consequently, having determined a dependency
X → A, any dependency of the form X ∪ Y → A can be ignored as redundant. The
general case of association rules however is probabilistic in nature. Hence a rule X ⇒ A
does not make rule X ∪ Y ⇒ A redundant because the latter may not have minimum
support. Similarly, rules X ⇒ A and A ⇒ Z do not make rule X ⇒ Z redundant
because the latter may not have minimum confidence.

In the context of the association rule problem, mining for frequent itemsets is one
of the major algorithmic concerns. The frequent itemsets problem asks to find all sets
of items (itemsets) that have support above a given threshold. This problem can be
reduced to finding all the maximal frequent itemsets due to the monotonicity property
– i.e., any subset of a frequent itemset is a frequent itemset too. A frequent itemset is
maximal if any itemset which contains it is not frequent.

5.1 Mining for frequent itemsets

The monotonicity property has inspired a large number of algorithms known as a-priori
algorithms which use the following a-priori trick: The algorithms begin the search for
frequent itemsets with searching for frequent items and then construct candidate pairs
of items only if both items in the pair are frequent. In the same fashion, they construct
frequent candidate triples of items only if all the three pairs items in the triple are
found frequent in the previous step. Thus, to find frequent itemsets, they proceed

13

levelwise, finding first the frequent items (sets of size 1), then the frequent pairs, the
frequent triples, and so on.

An a-priori algorithm [4, 6] needs to store the frequent itemsets found in each level
in main memory (it assumes that there is enough space) so that to create the candidate
sets for next level. It needs so many passes through the data as the maximum size of a
frequent itemset or two passes if we are only interested in frequent pairs as is the case
in some applications. Improvements have been introduced in this original idea which
address issues such as: if the main memory is not enough to accommodate counters
for all pairs of items, then e.g., hashing is used to prune some infrequent pairs in the
first pass.

In [21], the number of passes is reduced by taking a dynamic approach to the apriori
algorithm which is called Dynamic Itemset Counting. It reduces the number of passes
of apriori by starting counting 2-itemsets (and possibly 3-itemsets) during the first pass.
After having read (say) one third of the data, it builds candidate 2-itemsets based on
the frequent 1-itemsets count so far. Thus running on the rest two thirds of the data, it
checks also the counts of these candidates and it stops checking the 2-itemsets counts
during the second pass after having read the first third of data. Similarly, it may
start considering 3-itemsets during the first pass after having read the first two thirds
of the data and stops considering them during the second run. If the data is fairly
homogeneous, this algorithm finds all frequent itemsets in around two passes.

In [89], a hash table is used to determine on the first pass (while the frequent items
are being determined) that many pairs are not possibly frequent (assuming that there
is enough main memory). The hash table is constructed so that each of its buckets
stores the accumulative counts of more than one pairs. This algorithm works well
when infrequent pairs have small counts so that even when all the counts of pairs in
the same bucket are added, the result is still less than the threshold. In [44], multiple
hash tables are used in the first pass and a candidate pair is required to be in a large
bucket in every hash table. In the second pass another hash table is used to hash pairs
and in the third pass, only if a pair belongs to a frequent bucket in pass two (and has
passed the test of pass one too) is taken as a candidate pair. The multiple hash tables
improve the algorithm when most of the buckets have counts a lot below the threshold
(hence many buckets are likely to be small).

These methods, however, cannot be used for finding all frequent itemsets in one or
two passes. Algorithms that find all frequent itemsets in one or two passes usually rely
on randomness of data and sampling. A simple approach is to take a main-memory-
sized sample of the data, run one of the main-memory algorithms, find the frequent
itemsets and either stop or run a pass through the data to verify. Some frequent
itemsets might be missed in this way. In [94] this simple approach is taken. The
algorithm on main memory is run on a much lower threshold so it is unlikely that it
will miss a frequent itemset. To verify, we add to the candidates of the sample the
negative border: an itemset S is in the negative border if S is not identified as frequent
in the sample, but every immediate subset of S is. The candidate itemsets includes
all itemsets in the negative border. Thus the final pass through the data counts the
frequency of the itemsets in the negative border. If no itemset in the negative border
is frequent, then the sample has given all the frequent itemsets candidates. Otherwise,
we may rerun the whole procedure if we do not want to miss any frequent itemset.

A large collection of algorithms have been developed for mining itemsets in vari-

14

ous settings. Recent work in [71] provides a unifying approach for mining constrained
itemsets, i.e., under a more general class of constraints than the minimuum support
constraint. The approach is essentially a generalization of the a priori principle. An-
other consideration in this setting is that the collection of frequent itemsets found may
be large and hard to visualize. Work done in [2] shows how to approximate the collec-
tion by a simpler bound without introducing many false positives and false negatives.

5.2 Other Measures for Association Rules

However confidence and support are not the only measures of “interestingness” of
an association rule and do not always capture the intuition. Confidence is measured
as the conditional probability of X given Y and it ignores the comparison to the
(unconditional) probability of X. If the probability of X is high then confidence might
be measured above threshold although this would not imply any correlation among X
and Y . Other measures considered are the interest and the conviction [21]. Interest is
defined as the probability of both X and Y divided by the product of the probability of
X times the probability of Y . It is symmetric with respect to X and Y , and measures
their correlation (or how far they are from being statistically independent). However,
it can not derive an implication rule (which is non-symmetric). Conviction is defined as
a measure closer to the intuition of an implication rule X ⇒ Y . Its motivation comes
from the observation that if X ⇒ Y is viewed as a logical implication, then it can be
equivalently written as ¬(X ∧¬Y). Thus conviction measures how far from statistical

independence are the facts X and ¬Y and is defined as follows: P (X)P (¬Y)
P (X,¬Y) .

In [20] conditional probability is not used to measure interestingness of an associa-
tion rule and propose statistical correlation instead. In [92], causal rules instead of mere
associations are discussed aiming to capture the intuition whether X ⇒ Y means that
X causes Y or some other item causes them both to happen. This direction of investi-
gation is taken by noticing that yielding a small number (possibly arbitrarily decided)
of the “most interesting” causal relationships might be desirable in many data mining
contexts, since exploratory analysis of a dataset is what is usually the aim of a data
mining task. In that perspective, it is pointed out that ongoing research in Bayesian
learning (where several techniques are developed to extract causal relationships) seems
promising for large scale data mining.

5.3 Mining for Similarity Rules

As pointed out, various other kinds of rules may be of interest given a set of basket
data. A similarity rule X ' Y denotes that the itemsets X and Y are highly correlated,
namely they are contained both in a large fraction of the transactions that contain
either X or Y . A similarity rule does not need to satisfy a threshold on the support, low-
support rules are also of interest in this setting. Although for market basket analysis,
the low support mining might not be very interesting, when the matrix represents the
web graph, then similar web sites with low support might encompass similar subjects
or mirror pages or plagiarism (in this case, rows will be sentences and columns web
pages).

As low support rules are also of interest, techniques with support pruning (like
finding all frequent itemsets) are not of use. However, in cases where the number of

15

columns is sufficiently small then we can store something per column in main memory.
A family of algorithms were developed in [34] to solve the problem in those cases using
a hashing techniques.

For each column C, a signature S(C) is defined which, intuitively, is a summary of
the column. Signatures are such that a) they are small enough such that a signature for
each column can fit in main memory and, b) similar columns have similar signatures.
When the matrix is sparse, we cannot choose a small number of rows at random and
use each shortened column in this set of rows as the signature. Most likely almost all
signatures will be all 0’s. The idea in this paper is: For each pair of columns, ignore the
rows that both columns have zero entries, find the fraction of rows that these columns
differ (over all non-both-zero-entry rows) and define this as the similarity measure.
Interestingly, it can be proven that this similarity measure is proposrtional to the
probability that both rows have the first occurrence of 1 in the same row. Thus the
signature of each column is defined as the index of the first row with a 1 entry. Based
on this similarity measure, two techniques that are developed in [34] are Min-Hashing
(inspired by an idea in [33] –see also [24]) and Locality-Sensitive Hashing (inspired by
ideas used in [56]–see also [65]).

In Min-Hashing, columns are hashed to the same bucket if they agree on the index
of the first row with a 1 entry. To reduce the probability of false positives and false
negatives, a set of p signatures are collected instead of one signature. This is done
by implicitly considering a set of p different random permutations of the rows and
for each permutation get a signature for each column. For each column, we use as
its new signature the sequence of the p row indices (the row where the first 1 entry
appears in this column). Actually these p row indices can be derived using only one
pass through the data by hashing each row using p different hash functions each hash
function represents a permutation). However, if the number of columns is very large
and we cannot afford work which is quadratic on the number of columns, then Locality-
Sensitive Hashing is proposed. Locality-Sensitive Hashing aims at reducing the number
of pairs of columns that are to be considered by finding quickly many non-similar pairs
of columns (and hence eliminating those pairs from further consideration). Briefly, it
works as follows: It views the signatures in each column as a column of integers. It
partitions the rows of this collection of rows into a number of bands. For each band
it hashes the columns into buckets. A pair of columns is a candidate pair if they hash
in the same bucket in any band. Tuning on the number of bands allows for a more
efficient implementation of this approach.

If the input matrix is not sparse, a random collection of rows serves as a signature.
Hamming LSH constructs a series of matrices, each with half as many rows as the
previous, by OR-ing together two consecutive rows of the previous matrix.

These algorithms, although very efficient in practice, might still yield false positives
and false negatives, i.e., yield a similarity rule which is false or miss some similarity
rules. In [48], a family of algorithms is proposed which is called Dynamic Miss-Counting
(DMC) that avoid both false positives and false negatives. Two passes over the data are
made and the amount of main memory used allows for data of moderate size. The key
idea in DMC algorithms is confidence-pruning. For each pair of columns the algorithm
counts the number of rows with entries in these columns that disagree and if the count
exceeds a threshold they discard this similarity rule.

16

5.4 Transversals

We point out here the connection between maximal frequent itemsets and transversals
[94, 80] which are defined as follows: A hypergraph is a 0-1 matrix with distinct rows.
Each row can be viewed as an hyperedge and each column as an element. A transversal
(a.k.a. hitting set) is a set of elements such that each hyperedge contains at least one
element from the set. A transversal is minimal if no subset of it is a transversal.

Recall that a frequent itemset is a subset of the columns such that the number of
rows with 1 entries in all those columns is above some support threshold. A maximal
frequent itemset is a frequent itemset such that no superset is a frequent itemset.
Given a support value, an itemset belongs to the negative border iff it is not a frequent
itemset and all its subsets are frequent itemsets. The following proposition states the
relationship between transversals and maximal frequent itemsets.

Proposition 5.1 Let HFr be the hypergraph of the complements of all maximal fre-
quent itemsets, and let HBd− be the hypergraph of all itemsets in the negative border.
Then the following holds:

1. The set of all minimal transversals of HFr is equal to the negative border.
2. The set of all minimal transversals of HBd− is equal to the set of all maximal

itemsets. 2

It is not difficult to prove. A transversal T of HFr has the property: For each
maximal frequent itemset S, the transversal T contains at least one attribute which
is not included in this itemset S. Hence the transversal is not a maximal frequent
itemset. Hence a minimal transversal belongs to the negative border.

For an example, suppose we have four attributes {A,B,C,D} and let all maxi-
mal frequent itemsets be {{A,B}, {A,C}, {D}}, then the hypergraph of complements
of those itemsets contains exactly the hyperedges {{C,D}, {B,D}, {A,B,C}}. All
minimal transversals of this hypergraph are {{C,B}, {C,D}, {A,D}, {D,B}} which is
equal to the negative border.

This result is useful because the negative border can be found easier in general and
then used to retrieve the maximal frequent itemsets.

Transversals have been studied for a long time and hence this connection is useful.
In [80] this result is extended in more general framework for which finding maximal
frequent itemsets is a subcase. A connection is shown among the three problems of
computing maximal frequent itemsets, computing hypergraph transversals and learn-
ing monotone boolean functions. This approach as well as the approach taken in [5]
has its roots in the use of diagrams of models in model theory (see e.g., [30]).

For an excellent detailed exposition of algorithms mentioned in this section see [95].

6 Clustering

There are many different variants of the clustering problem and literature in this field
spans a large variety of application areas and formal contexts. Clustering has many
applications besides data mining including statistical data analysis, compression, vector

17

quantization. It has been formulated in various contexts such as machine learning,
pattern recognition, optimization and statistics. Several efficient heuristics have been
invented. In this section, we will review some recent one pass algorithms and mention
some considerations on the quality of clustering.

Informally, the clustering problem is that of grouping together (clustering) similar
data items. One approach is to view clustering as a density estimation problem. We
assume that in addition to the observed variables for each data item, there is a hidden,
unobserved variable indicating the ”cluster membership”. The data is assumed to
be produced by a model with hidden cluster identifiers. A mixture weight wi(x) is
assumed for each data item x to belong to a cluster i. The problem is estimating the
parameters of each cluster Ci, i = 1, . . . , k, assuming the number k of clusters is known.
The clustering optimization problem is that of finding parameters for each Ci which
maximize the likelihood of the clustering given the model.

Most conventional clustering algorithms require space Ω(n2) and require random
access to the data. Hence recently several heuristics have been proposed for scaling
clustering algorithms. Algorithms for clustering usually fall in two large categories
k-median approach algorithms and hierarchical approach algorithms.

6.1 The k-median approach

A common formulation of clustering is the k-median problem: Find k centers in a set of
n points so as to minimize the sum of distances from data points to their closest cluster
centers. Or, equivalently, to minimize the average distance from data points to their
closest cluster centers. The assumptions taken by the classical k-median approach are:
1) each cluster can be effectively modeled by a spherical Gaussian distribution, 2) each
data item is assigned to one cluster and 3) the weights are assumed equal.

In [18], a single pass algorithm is presented for points in the Euclidean space and
is evaluated by experiments. The method used is based in identifying regions of the
data that are compressible (compression set), other regions that must be maintained
in memory (retained set) and a third kind of regions that can be completely discarded
(discard set). The discard set is set of points that are certain to belong to a specific
cluster. They are discarded after they are used to compute the statistics of the cluster
(such as the number of points, the sum of coordinates, the sum of squares of coor-
dinates). The compression set is set of points that are close to each other so that it
is certain that they will be assigned to the same cluster. They are replaced by their
statistics (same as for the discard set). The rest of the points that do not belong in
either of the two other categories remain in the retained set. The algorithm begins by
storing a sample of points (the first points to be read) in main memory and running on
them a main memory algorithm (such as k-means [66]). A set of clusters is obtained
which will be modified as more points are read into main memory and processed. In
each subsequent stage, a main-memory full set of points is processed as follows. 1.
Determine if a set of points is (a) sufficiently close to some cluster ci and (b) unlikely
for ci to “move” far from these points (during subsequent stages) and another cluster
come closer. A discard set is decided in this way and its statistics used to update the
statistics of the cluster. 2. Cluster the rest of the points in main memory and if a
cluster is very tight, then replace the corresponding set of points by its statistics; this
is a compression set. 3. Consider merging compression sets.

Similar summaries of data as in [18] and a data structure like an R-tree to store

18

clusters are used in [50] to develop a one pass algorithm for clustering points in arbitrary
metric spaces.

Algorithms with guaranteed performance bounds include a constant-factor approx-
imation algorithm developed in [57] for the k-median problem. It uses a single pass on

the data stream model and requires workspace θ(nε) for a factor of 2O(1

ε
). Other work

includes [12] where the problem is studied on the sliding windows model.
A related problem is the k-center problem (minimize the maximum radius of a

cluster) which is investigated in [32] where a single pass algorithm which requires
workspace O(k) is presented.

6.2 The hierarchical approach

A hierarchical clustering is a nested sequence of partitions of the data points. It starts
with placing each point in a separate cluster and merges clusters until it obtains either
a desirable number of clusters (usually the case) or a certain quality of clustering.

The algorithm CURE [58] handles large datasets and assumes points in Euclidean
space. CURE employs a combination of random sampling and partitioning. A random
sample, drawn from the data set, is first partitioned and cluster summaries are stored
in memory in a tree data structure. For each successive data point, the tree is traversed
to find the closest cluster to it.

Similarity measures according to which to cluster objects is also an issue of inves-
tigation. In [35], methods for determining similar regions in tabular data (given in a
matrix) are developed. The proposed measure of similarity is based on the Lp norm for
various values for p (non-integral too). It is noticed that on synthetic data, when clus-
tering uses as a distance measure either L1 or L2 norms, the quality of the clustering is
poorer than when p is between 0.25 and 0.8. The explanation for this is that, for large
p, more emphasis is put on the outlier values (outliers are points that are isolated, so
they do not belong to any cluster), whereas for small p the measure approaches the
Hamming distance, i.e., it counts how many values are different. On real data, it is
noticed that different values for p bring out different features of the data. Therefore,
it seems that p can be used as a useful parameter of the clustering algorithm: set p
higher to show full details of the data set, reduce p to bring out unusual clusters in the
data. For the technical details to go through, sketching techniques similar to [62] are
used to approximate the distances between subtables and reduce the computation. The
proposed similarity measure is tested using the k-means algorithm to cluster tabular
data.

6.3 Clustering documents by Latent Semantic Indexing
(LSI)

The use of vector space models for information retrieval purposes has been used as
early as 1957. The application of SVD in information retrieval is proposed in [37]
through the latent semantic indexing technique and it is proven a powerful approach
for dimension reduction. The input matrix ~X , is a document versus terms matrix. It
could be a 0,1-matrix or each entry could be the frequency of the term in this document.

19

Matrix ~X is approximated according to SVD by ~Xk = ~Uk
~Tk

~V Tr
k . The choice of k is

an issue for investigation. Note that each entry of the matrix ~Xk does not correspond
to a term any more, it corresponds to a weighted sum of term measures. The matrix
Vk represents similarities among documents, e.g., given a document that the user is
interested in more documents can be decided that are of interest to this user (even if
they do not use exactly the same terms). The matrix Uk displays similarities between
terms, e.g., given a term, other related terms may be decided (such the term “car” is
related to “automobile” and “vehicle”). The matrix Xk may be used for term-document
associations, e.g., on a given term, extract documents that contain material related to
this term.

Spectral methods –i.e., the use of eigenvectors and singular vectors of matrices–in
document information retrieval and the application of SVD through the latent semantic
indexing technique are discussed in detail in [73], which is an excellent survey on this
direction of research.

6.4 Quality of Clustering

In a clustering algorithm the objective is to find a good clustering but a good clustering
is not formally defined. Intuitively the quality of a clustering is assessed by how much
similar points are grouped in the same cluster. In [68] the question is posed: how good
is the clustering which is produced by a clustering algorithm? As already discussed the
k-median clustering may produce a very bad clustering in case the “hidden” clusters are
far from spherical. E.g., imagine two clusters, one that is a sphere and a second one is
formed at a certain distance around the sphere forming a ring. Naturally the k-median
approach will fail to produce a good clustering in this example. A bicriteria measure
is proposed therein for assessing the quality of clusters. The dataset is represented
as a graph with weights on the edges that represent the degree of similarity between
the two vertices (high weight means high similarity). First a quantity which measures
the relative minimum cut of a cluster is defined. It is called expansion and is defined
as the weight of the minimum cut divided by the number of points in the smaller
subset among the two that the cut partitions the cluster-graph. It seems however
that it is more appropriate to give more importance to vertices with many similar
other vertices than to vertices with few similar other vertices. Thus, the definition is
extended to capture this observation and the conductance is defined where subsets of
vertices are weighted to reflect their importance. Optimizing the conductance gives
the right clustering in the sphere-ring example. However if we assume the conductance
as the measure of quality, then imagine a situation where there are mostly clusters of
very good quality and a few points that create clusters of poor quality. In this case the
algorithm might create many smaller clusters of medium quality. A second criterion is
considered in order to overcome this problem. This criterion is defined as the fraction
of the total weight of edges that are not covered by any cluster.

This bicriterion optimization framework is used to measure the quality of several
spectral algorithms. These algorithms, though have proven very good in practice, were
hitherto lacking a formal analysis.

20

6.5 Bibliographical Notes

Popular clustering algorithms in the literature include k-means [66], CLARANS [83],
BIRCH [100], DBSCAN [41].

In [86], results from [57] are used to develop an algorithm that achieves dramati-
cally better clustering quality than BIRCH although it takes longer to run. In [3], they
define clusters in euclidean space by DNF formulas and address performance issues for
data mining applications. In [87], the drawbacks of random sampling in clustering al-
gorithms (e.g., small clusters might be missed) are avoided by density biased sampling.
The goal is to under-sample dense regions and over-sample sparse regions of the data.
A memory efficient single pass algorithm is proposed that approximates density biased
sampling.

An excellent detailed exposition of algorithms in [58], [18] and [50] can be found in
[95]. An excellent survey of the algorithms in [55, 3, 13, 15] is given in [45].

7 Mining the web

The challenge in mining the web for useful information is the huge size and unstructured
organization of data. Search engines, one of the most popular web mining applications,
aim to search the web for a specific topic and give to the user the most important web
pages on this topic. A considerable amount of research has been done on ranking web
pages according to their importance.

Page Rank, the algorithm used by the Google search engine [22] ranks pages ac-
cording to the page citation importance. This algorithm is based on the observation
that usually important pages have many other important pages linking to them. Thus
it is an iterative procedure which essentially computes the principal eigenvector of a
matrix. The matrix has one non zero entry for each link from page i to page j and this
entry is equal to 1/n if page i has n successors (i.e., links to other pages). The intu-
ition behind this algorithm is that page i shares its importance among its successors.
Several variants of this algorithm have been developed to solve problems concerning
spams and dead ends (pages with no successors). Random jumps from a web page
to another may be used to avoid dead ends or a slight modification of the iterative
procedure according to which some of the importance is equally distributed among all
pages in the beginning.

Hubs and Authorities, based on similar intuition, are viewed also as sharing their
importance to its successors only that there are two different roles assigned to important
web pages [72]. They follow the observation that authorities might not link to one
another directly but there are hubs that link “collectively” to many authorities. Thus
hubs and authorities have this mutually depending relationship: good hubs link to
many authorities and good authorities are linked by many hubs. Hubs are web pages
that do not contain information themselves but they contain many links to pages with
information e.g., a university course homepage. Authorities are pages that contain
information about a topic, e.g., a research project homepage. Again the algorithm
based on this idea is an iterative procedure which computes eigenvectors of certain
matrices. It begins with matrix A similar as the page rank algorithm only that the
entries are either 0 or 1 (if there is a link) and its output is two vectors which measure
the ”authority” and the ”hubbiness” of each page. These vectors are the principal

21

eigenvectors of the matrices AAT and AT A. Work in [54, 77] has shown that the
concepts of hubs and authorities is a fundamental structural feature of the web. The
CLEVER system [29] builds on the algorithmic framework of hub and authorities.

Other work on measuring the importance of web pages include [1]. Other research
directions for mining useful information from the web include [23], where the web is
searched for frequent itemsets by a method using features of the algorithm for dynamic
itemset counting [21]. Instead of a single deterministic run, the algorithm runs con-
tinuously exploring more and more sites. In [19], the extraction of structured data is
achieved from information offered by unstructured data on the web. The example used
is to search for books in the web starting from a small sample of books from which a
pattern is extracted. Based on the extracted patterns more books are retrieved in a it-
erative manner. Based on the same idea of pattern matching, the algorithm developed
in [9] searches the web for communities that share an interest on a topic. The pattern
is formed by using words from the anchor text.

More detailed descriptions of the Page Rank and the Hubs and Authorities algo-
rithms can be found in [95]. Also, an elegant formal exposition of spectral methods used
for web mining and the connections between this work and earlier work on sociology
and citation analysis [39] can be found in [73].

8 Evaluating the results of data mining

As we have seen, for many of the successful data mining algorithms there is no formal
analysis as to whether the solution they produce is a good approximation to the problem
at hand. Recently a considerable amount of research is focused in developing criteria
for such an evaluation.

A line of research is focused in building models for practical situations (like the
link structure of the web or a corpus of technical documents) against which to evaluate
algorithms. Naturally, the models, in order to be realistic, are shown to display several
of the relevant features that are measured in real situations (e.g., the distribution of
the number of outgoing links from a web page).

In [88], a model for documents is developed on which the LSI method is evaluated.
In this model, each document is built out of a number of different topics (hidden
from the retrieval algorithm). A document on a given topic is generated by repeating
a number of times terms related to the topic according to a probability distribution
over the terms. For any two different topics there is a technical condition on the
distributions that keeps the topics “well-separated”. The main result is that on this
model, the k-dimensional subspace produced by LSI defines with high probability very
good clusters as intended by the hidden parameters of the model. In this paper, it is
also proposed that if the dimensionality after applying LSI is too large, then random
projection can be used to reduce it and improve the results. Other work with results
suggesting methods for evaluating spectral algorithms include [10].

Models for the web graph are also developed. The web can be viewed as a graph
with each page being a vertex and an edge exists if there is a link pointing from one
web page to another. Measurements on the web graph [76, 77] have shown that this
graph has several characteristic features which play a major role in the efficiency of
several known algorithms for searching the web. In that context, the web graph is a
power-law graph, which means roughly that the probability that a degree is larger than

22

d is at least d−β for some β > 0. Models for power-law graphs are developed in [42],[7],
[78].

A technique for automatically evaluating strategies which find similar pages on
the web is presented in [60]. A framework for evaluating the results of data mining
operations according to the utility of the results in decision making is formalized in
[74] as an economically motivated optimization problem. This framework leads to
interesting optimization problems such as the segmentation problem which is studied
in [75]. Segmentation problems are related to clustering.

9 Conclusion

We surveyed some of the formal techniques and tools for solving problems on the data
stream model and on similar models where there are constraints on the amount of
main memory used and a few number of passes through the data are allowed because
access is too costly. We also presented some of the most popular algorithms that are
proposed in the literature for data mining applications. We provided reference for
further reading, with some good surveys and tutorials in the end of each section. As
the field is a rapidly evolving area of research with many diverging applications, the
exposition here is meant to serve as an introduction to approximation algorithms with
storage constraints and their applications.

Among topics that we did not mention are Privacy preserving data mining, Time
Series Analysis, Visualization of Data Mining results, Bio-informatics, Semistructured
data and XML.

Acknowledgements: Thanks to Chen Li and Ioannis Milis for reading and pro-
viding comments in an earlier version of this chapter.

References

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance
computation. In VLDB, 2002.

[2] F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent
sets. In KDD, 2004.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In SIGMOD,
1998.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets of
items in massive databases. In SIGMOD, pages 207–216, 1993.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining.
1996.

[6] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
VLDB, 1994.

[7] W. Aiello, F. Chung, and L. Lu. A random graph model for power law graphs.
In STOC, 2000.

[8] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
frequency moments. In STOC, pages 20–29, 1996.

23

[9] N. AlSaid, T. Argyros, C. Ermopoulos, and V. Paulaki. Extracting cyber com-
munities through patterns. In SDM, 2003.

[10] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia. Spectral analysis of data.
In STOC, pages 619–636, 2001.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In PODS, 2002.

[12] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.
[13] J. Banfield and A. Raftery. Model-based gaussian and non-gaussian clustering.

Biometrics, 49:803–821, 1993.
[14] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds

and applications. In STOC, 2001.
[15] A. Ben-Dor and Z. Yakhini. Clustering gene expression patterns. In RECOMB,

1999.
[16] J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag,

1985.
[17] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algo-

rithms for clustering problems in high dimensional spaces. In STOC, 1999.
[18] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large

databases. In KDD, 1998.
[19] S. Brin. Extracting patterns and relations from the world-wide web., 1998.
[20] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing

association rules to correlations. In SIGMOD, pages 265–276, 1997.
[21] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket data. In SIGMOD, pages 255–264, 1997.
[22] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In WWW7/Computer Networks, pages 107–117, 1998.
[23] S. Brin and L. Page. Dynamic data mining: Exploring large rule space by

sampling., 1998.
[24] A. Broder. On the resemblance and containment of documents. In Compression

and Complexity of Sequences, pages 21–29, 1997.
[25] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. In STOC, 1998.
[26] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the

web. In Sixth International World Wide We Conference, pages 391–404, 1997.
[27] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity:

A survey. available at: http://www.cwi.nl/ rdewolf, 1999.
[28] R. Canetti, G. Even, and O. Goldreich. Lower bounds for sampling algorithms

for estimating the average. Information Processing Letters, 53:17–25, 1995.
[29] S. Chakrabarti, B. Dom, R. Kumar, S. R. P. Raghavan, and A. Tomkins. Experi-

ments in topic distillation. In SIGIR workshop on hypertext information retrieval,
1998.

[30] C. Chang and H. Keisler. Model Theory. North Holland, Amsterdam, 1990.
[31] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards estimation

error guarantees for distinct values. In PODS, pages 268–279, 2000.
[32] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and

dynamic information retrieval. In STOC, pages 626–635, 1997.
[33] E. Cohen. Size-estimation framework with applications to transitive closure and

reachability. Journal of Computer and Systems Sciences, 55:441–453, 1997.
[34] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman,

and C. Yang. Finding interesting associations without support pruning. In TKDE
13(1) 2001 and also in ICDE, pages 64–78, 2000.

[35] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining of massive
tabular data via approximate distance computations. In ICDE, 2002.

24

[36] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for monte carlo
estimation. In FOCS, pages 142–149, 1995.

[37] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing
by latent semantic analysis. The American Society for Information Science,
41(6):391–407, 1990.

[38] A. Dobra, M. Garofalakis, and J. Gehrke. Sketch-based multi-query processing
over data streams. In EDBT, 2004.

[39] L. Egghe and R. Rousseau. Introduction to Informetrics. 1990.
[40] L. Engebretsen, P. Indyk, and R. O’Donnell. Derandomized dimensionality re-

duction with applications. In SODA, 2002.
[41] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Second International
Conference on Knoweledge Discovery and Data Mining, page 226, 1996.

[42] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou. Heuristically optimized
trade-offs: A new paradigm for power laws in the internet. In STOC, 2002.

[43] C. Faloutsos. Indexing and mining streams. In SIGMOD, 2004.
[44] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman. Com-

puting iceberg queries efficiently. In VLDB, 1998.
[45] D. Fasulo. An analysis of recent work on approximation algorithms. Techni-

cal Report 01-03-02, University of Washington, Dept. of Computer science and
Engineering, 1999.

[46] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate
l1-difference for massive data streams. In FOCS, 1999.

[47] W. Feller. An Introduction to Probability Theory and Its Applications. John
Wiley, New York, 1968.

[48] S. Fujiwara, J. D. Ullman, and R. Motwani. Dynamic miss-counting algorithms:
Finding implication and similarity rules with confidence pruning. In ICDE, pages
501–511, 2000.

[49] S. Gangulya, M. Garofalakis, and R. Rastogi. Sketch-based processing data
streams join aggregates using skimmed sketches. In EDBT, 2004.

[50] V. Ganti, R. Ramakrishnan, J. Gehrke, A. L. Powell, and J. C. French. Clustering
large datasets in arbitrary metric spaces. In ICDE, pages 502–511, 1999.

[51] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams:
You only get one look. In VLDB, 2002, also available at: http://www.bell-
labs.com/˜ minos.

[52] P. Gibbons and Y. Matias. Synopsis data structures for massive data sets. In
SODA, pages S909–S910, 1999.

[53] P. Gibbons and S. Tirthapura. Estimating simple functions on the union of data
streams. In ACM Symposium on Parallel Algorithms and Architectures, pages
281–291, 2001.

[54] D. Gibson, , and P. R. Jon M. Kleinberg. Inferring web communities from link
topology. In ACM Conference on Hypertext and Hypermedia, volume 8(3-4),
1998.

[55] D. Gibson, J. M. Kleinberg, and P. Raghavan. Two algorithms for nearest neigh-
bor search in high dimensions. In STOC, volume 8(3-4), 1997.

[56] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

[57] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In FOCS, 2000.

[58] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for
large databases. In SIGMOD, 1998.

25

[59] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining (Adaptive com-
putation and machine learning). MIT Press, 2001.

[60] T. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Similarity search on the web:
Evaluation and scalable considerations. In 11th International World Wide Web
Conference, 2002.

[61] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
available at: http://www.research.digital.com/SRC/, 1998.

[62] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data
stream computation. In FOCS, pages 189–197, 2000.

[63] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In
FOCS, 2001.

[64] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends
in massive time series data sets using sketches. In VLDB, pages 363–372, 2000.

[65] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In STOC, pages 604–613, 1998.

[66] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.
[67] W. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into hilbert

space. Contemporary Mathematics, 26:189–206, 1984.
[68] R. Kannan, S. Vempala, and A. Vetta. On clusterings - good, bad and spectral.

In FOCS, pages 367–377, 2000.
[69] A. Karlin, M. Manasse, L. Rodolph, and D. Sleator. Competitive snoopy caching.

In STOC, pages 70–119, 1988.
[70] M. Kearns and U. Vazirani. An introduction to comoputational learning theory.

MIT Press, 1994.
[71] D. Kifer, J. Gehrke, C. Bucila, and W. White. How to quickly find a witness. In

PODS, 2003.
[72] J. Kleinberg. Authoritative sources in a hyperlinked environment. J.ACM,

46(5):604–632, 1999.
[73] J. Kleinberg and A. Tomkins. Applications of linear algebra in information re-

trieval and hypertext analysis. In PODS, pages 185–193, 1999.
[74] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. A microeconomic view

of data mining. Data Mining and Knowledge Discovery, 2(4):311–324, 1998.
[75] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Segmentation problems.

In STOC, pages 473–482, 1998.
[76] S. Kumar, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.

Graph structure in the web: experiments and models. In International World
Wide Web Conference, pages 309–320, 2000.

[77] S. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling emerging
cybercommunities automatically. In International World Wide Web Conference,
volume 8(3-4), 1999.

[78] S. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, and E. Upfal. Stochastic
models for the web graph. In FOCS, pages 57–65, 2000.

[79] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1997.

[80] H. Mannila and H. Toivonen. On an algorithm for finding all interesting sen-
tences. In Cybernetics and Systems, Volume II, The Thirteenth European Meeting
on Cybernetics and Systems Research, pages 973 – 978, 1996.

[81] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[82] J. Munro and M. Paterson. Selection and sorting with limited storage. Theoretical
Computer Science, 12:315–323, 1980.

26

[83] R. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In VLDB, pages 144–155, 1994.

[84] N. Nisan. Pseudorandom generators for pseudorandom computations. In STOC,
pages 204–212, 1990.

[85] J. Nolan. An introduction to stable distributions.
http://www.cas.american.edu/ jpnolan/chap1.ps.

[86] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-
data algorithms for high-quality clustering. In ICDE, 2002.

[87] C. Palmer and C. Faloutsos. Density biased sampling: An improved method for
data mining and clustering. In SIGMOD, pages 82–92, 2000.

[88] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic
indexing: A probabilistic analysis. JCSS, 61(2):217–235, 2000.

[89] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for
mining association rules. In SIGMOD, pages 175–186, 1995.

[90] M. Saks and X. Sun. Space lower bounds for distance approximation in the data
stream model. In STOC, 2002.

[91] L. Schulman and V. Vazirani. Majorizing estimators and the approximation of
]p-complete problems. In STOC, pages 288–294, 1999.

[92] C. Silverstein, S. Brin, R. Motwani, and J. D. Ullman. Scalable techniques for
mining causal structures. In Data Mining and Knowledge Discovery 4(2/3), pages
163–192, 2000.

[93] STREAM. Stanford stream data management project. http://www-
db.stanford.edu/stream.

[94] H. Toivonen. Sampling large databases for association rules. In VLDB, pages
134–145, 1996.

[95] J. Ullman. Lecture notes on data mining. available at: http://www-
db.stanford.edu/˜ ullman/cs345-notes.html, 2000.

[96] V. Vapnik. Statistical learning theory. John Wiley, 1998.
[97] V. Vazirani. Approximation algorithms. Springer, 2001.
[98] D. Vengroff and J. Vitter. I/o efficient algorithms and environments. Computing

Surveys, page 212, 1996.
[99] J. Vitter. Random sampling with a reservoir. ACM Trans. on Mathematical

Software, 11(1):37–57, 1985.
[100] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering

method for very large databases. In SIGMOD, pages 103–114, 1996.

27

