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Abstract

Automated tracking of events from chronologically or-
dered document streams is a new challenge for statis-
tical text classification. Existing learning techniques
must be adapted or improved in order to effectively
handle difficult situations where the number of pos-
itive training instances per event is extremely small,
the majority of training documents are unlabelled, and
most of the events have a short duration in time. We
adapted several supervised text categorization methods,
specifically several new variants of the k-Nearest Neigh-
bor (kNN) algorithm and a Rocchio approach, to track
events. All of these methods showed significant im-
provement (up to 71% reduction in weighted error rates)
over the performance of the original kNN algorithm on
TDT benchmark collections, making kNN among the
top-performing systems in the recent TD'T'3 official eval-
uation. Furthermore, by combining these methods, we
significantly reduced the variance in performance of our
event tracking system over different data collections,
suggesting a robust solution for parameter optimization.
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1 Introduction

Topic Detection and Tracking (TDT) is a new line of re-
search composed of three major sub-problems: segment-
ing speech-recognized TV /radio broadcasts into news
stores, detecting novel events in segmented or unseg-
mented news streams, and tracking the development of

an event based upon human-identified sample stories of
that event[1, 24, 22, 3]. This last task, event tracking,
is the focus of our research in this paper. The prob-
lem is defined as automatically assigning pre-defined
event labels to documents presented to the system in
a chronological order. An eventin the TDT context is
something that occurs at specific place and time asso-
ciated with some specific actions. It contrasts with a
topicin the traditional text categorization sense in that
events are localized in space and time. For example,
the FgyptAir-990 crash is an event, but not a topic, and
“airplane accidents” is a topic but not an event. Sys-
tems in the TDT domain must be able to distinguish
between events, regardless of whether they are part of
the same topic or not. Events are typically short in du-
ration and thus only a small portion of any corpus will
be about any particular event.

Event tracking can be considered a text categoriza-
tion problem subject to the following constraints:

e BEach event of interest is defined by a set of positive
instances (documents) that are manually identi-
fied before tracking starts; no other knowledge is
available.

e As soon as a new document arrives, a binary
(YES/NO) decision must made by the tracking

system with respect to each defined event.

e Any document preceding the document being eval-
uated may be used as training data. However, only
the previously-identified positive instances are la-
belled; the rest of the documents are not, although
some of these unlabelled documents may actually
be positive instances.

e When training on an event, relevance judgements
for other events are assumed to be unknown. In
actual use, the user of a tracking system would
only be willing to identify a small number of doc-
uments relevant to the event of interest and none
for events he or she is not interested in, nor could
users be expected to share their relevance judge-
ments.

From a statistical learning point-of-view, it is more
difficult to identify documents as instances of small, liv-
ing events than of large, stable topics. For example,
the prior probabilities of subject categories in Reuters
newswire stories are relatively stable and can be ac-
curately estimated using a retrospective collection of



news stories. Estimating prior probabilities of recent
or future events is more difficult, since most of the new
events have no instances in retrospective data collec-
tions and events can evolve in unpredictable ways over
time. Moreover, since the majority of training docu-
ments are unlabeled, learning an exact decision surface
is much more difficult for event tracking than for the
traditional text categorization problems when all the
training documents are labelled with a complete cate-
gory set. Classification methods which rely on accurate
prior probability estimates or large amounts of labeled
training data will perform poorly in event tracking and
many existing text categorization methods would need
to be modified to perform well under TDT conditions.

The small size of an event also presents special diffi-
culties in tuning the parameters of the tracking system
to produce optimal results. In text categorization, a
standard approach to learning the optimal parameters
is to use one or more validation sets of documents which
are not used for training or evaluation but believed to
be sufficiently representative of the unseen test docu-
ments. In event tracking, however, the small number
of labelled positive examples available for training, and
the online decision required per test documents upon
it arrival make it difficult to construct a validation set
that is representative of the unseen documents. For
example, the typical number of positive training exam-
ples available in TDT benchmark evaluations are one
to four, but the size of an event in the evaluation set
is much larger (about 350 documents/event on average
in the TDT3 corpus). Holding off any of these posi-
tive training examples for validation would reduce the
effectiveness of training, and the small number of posi-
tive examples held for validation may not offer sufficient
statistics for parameter tuning. Furthermore, the early-
time positive training examples of an event may not be
representative of later positive examples of that event.

An alternative approach to parameter optimization
would be to tune parameters on a retrospective cor-
pus in which a larger number of positive examples have
been identified for some events. This works as long as
the optimal parameter settings for older events are opti-
mal for newer ones also, or if the events being evaluated
are large and long-lasting so that they have a sufficient
number of positive examples in the retrospective valida-
tion corpus. Empirical results in the TDT evaluations
(by our group and other research sites) have shown that
often this is not the case; optimal parameter settings for
early and later documents are often very different, and
it is overly optimistic to expect optimal parameter set-
tings to generalize to new events.

These and other open challenges in event tracking
have been partly addressed in the recent TDT research
and the benchmark evaluations[l, 6]. An increasing
number of information retrieval and machine learning
techniques have been applied, including k-Nearest Neigh-
bor (kNN) classification, Decision Tree induction, a va-
riety of Language Modeling (LM) approaches and
relevance-based filtering methods[2, 24, 22, 18, 15, 16],
and systematic analysis of their behavior on the event
tracking task have just begun. In this paper, we re-
port our new research findings with kNN and Rocchio in
event tracking. Our KNN methods were among the two
top-performing tracking systems in the official TDT1
and TDT3 evaluations, respectively. Rocchio approaches
have not been thoroughly investigated in TDT so far, al-

though several relevance-based filtering systems applied
to TDT are more or less similar to Rocchio[2, 15].

2 Methods

2.1 Document Representation

Each document is represented using a vector of weighted
terms which can be either words or phrases. We use
a common version of the TF-IDF scheme[13] for term
weighting !, defined to be

w(t,d) = (14 log, tf(t, 1) x log, (N/n:)

where

w(t, J) is the weight of term ¢ in document ci,

-

tf(t,d)is the within-document term frequency (TF);

log,(N/n;) is the Inverted Document Frequency

(IDF);
N is the number of documents in the training set;

n; is the number of training documents in which
t occurs;

-

lld]| = Ztegw(t,cz)Q is the 2-norm of vector d.

2.2 Rocchio

Rocchio is a classic retrieval method for query expansion
using relevance judgments on documents[12, 13]. The
Rocchio formula is defined to be

- . 1 . 1 S
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where ¢ is the original query, gf’ is the extended query,
D is a training set, R € D consists of the training doc-
uments relevant to the query, S = D — R consists of the
training documents irrelevant to the query, and «, 8 and
v are the weights for the three components in the sum-
mation. Rocchio has been applied to text categorization

(TC) in a modified form:

. 1 . 1 -
C(Dw):ﬁzervwn'Zz (1)

where &(D, v) is the prototype or the centroid of a cat-
egory and is Rocchio’s representation of the event. D
and R are the same as defined before; S, € D — R con-
sists of the n most-similar (as measured by cosine sim-
ilarity) negative instances to the positive centroid (e.g.
deR 7). This formula allows us to selectively use the

negative examples that lie in the neighborhood (called

ITF-IDF based term weighting has been intensively studied in
the IR literature. The implementation of the standard versions
(more than a dozen) are provided in the SMART benchmark re-
trieval system (developed at Cornell). We tested a few common
options and found the ltc option yielded the best results in our
limited experiments. This does not mean that ltc is the best pos-
sible term weighting scheme for document collections. Finding
the best term weighting scheme is an open research question.



the “query zone” in the literature[14]) of the positive
centroid. Using the category prototype, a test docu-
ment can be scored by computing the cosine similarity

r(Z,8(D,7)) = cos(Z,&D, 7)).

A binary decision is obtained by thresholding on this
score.

One should note that classification in Rocchio does
not depend on estimation of the prior probabilities of
categories and that its one-centroid-per-category assump-
tion is not necessarily a deficiency in event tracking,
where news stories collected over a short time period
are often similar in content and topic, and hence the
small number of positive examples available for train-
ing are likely to form a tight cluster. For these reasons,
we believe Rocchio may perform well in event tracking®
even though it is one of the weaker methods for text
categorization in cross-method comparisons with kNN,
Support Vector Machines, boosting methods, Sleeping
Experts, inductive rule learning and Naive Bayes clas-
sifiers [7, 14, 4, 10].

2.3 New Variants of kNN

kNN is an instance-based classification method com-
monly used in pattern recognition and machine learn-
ing. We have found kNN a robust approach to text
categorization, ranking among the top-performing clas-
sifiers in cross-method evaluations on benchmark collec-
tions [20, 21, 23]; other methods with comparable per-
formance include the Decision Trees with boosting by
Weiss et al., Support Vector Machines by Joachims, the
Boosting method by Schapire et al., the Linear Least
Squares Fit mapping by Yang and the neural networks
by Wiener et al. [21, 23, 14, 19].

We adapted conventional M-way classification kNN
to the 2-way classification problem of event tracking by
constructing a 2-way kNN for each event. The kNN
computes a relevance score for each test document by
the formula we call kNN.sum:

r(@k, D)= Y cos(Z, ) — Y cos(d, ?) (2)
TEPy Z€Qk
where
Z is the test document;
7 (%) is a positive (negative) training document;
D is the training set of documents;

k is the number of nearest neighbors ( “local zone”)
of # in D, which the system use to compute the
score;

Py (Qr) is the set of the positive (negative) in-
stances among the k nearest neighbors of Z in D.

A binary decision (YES or NO) on Z with respect
to the event is obtained by thresholding on kNN.sum.
Like Rocchio, kNN does not depend upon an estimate
of the prior probability of an event. Unlike Rocchio,

?Rocchio may not perform well when dealing with large, long-
lasting and evolving events. However, we cannot empirically
verify this without a corpus with a sufficient number of manually-
identified large, long-lasting events. To our knowledge, no such
corpus is available.

kNN allows multiple centroids per category, and uses
information from the neighborhood local to each test
document.

The performance of kNN depends on the choice of
the value of k. In text categorization, empirical eval-
uations have shown that a stable or optimal perfor-
mance of kNN typically occur with using a relatively
large value of k (between 30 to 200, for example), and
that using a retrospective validation set to choose the
optimal or nearly optimal value of k& on test documents
is not difficult[20, 21]. Optimizing % in event tracking,
however, is a problem if we use the kNN.sum formula
because the very small number of positive examples in
the training set. Using a large value of k will retrieve
many negative examples, whose sum could easily exceed
the sum of the positive examples, even if each negative
example is very dissimilar to the test document and thus
has a small similarity score. Using a small value of k
will cause the system to retrieve only negative examples
for a test document unless it is very close to a positive
training example. This will causes the system to lose
discriminatory power for most test documents.

To resolve this dilemma, we modified the scoring
function in Formula 2 using two alternatives we call
kNN.avgl and kNN.avg2 respectively:

FE Py
_ﬁ g@:k cos(i, ) (3)
r'"(Z,kp, kn, D) = |Lip| 42 cos(Z, §)
JEUkp
_ ﬁ GZVE cos(#, 2) (4)

where Uy, consists of the kp nearest neighbors of &
among the positive documents in the training set; and
Vin consists of the kn nearest neighbors of # among the
negative documents in the training set.

kNN.avgl is almost the same as kNN.sum except us-
ing the score averages instead of the score sums. This
modification allows k& to be set to any large number
without allowing negative examples to dominate.
kNN.avg2 differs from the other two versions by using
two local zones (kp positive nearest neighbors and and
kn negative nearest neighbors) instead of one (k nearest
neighbors), allowing the sizes of the zones to be as small
as needed while guaranteeing that the system uses both
positive and negative instances to score a test docu-
ment. Thus the system will not lose any discriminatory
power when using small local zones. Our empirical re-
sults (Section 4) show that both of the new variants of
kNN can significantly improve the tracking performance

of the original kNN.

2.4 Parameter Tuning

As mentioned in the introduction, parameter tuning is
a tricky issue for event tracking. The kNN methods
need the values of k, kp and kn to be optimized, Roc-
chio needs the values of v and n to be optimized, and
all methods need the threshold for binary decisions to
be tuned for optimal results. To address the unavail-
ability of adequate validation sets for the TDT tracking



task, we propose a novel solution: combining the out-
put of a diverse set of classifiers and tuning parameters
for the combined system on a retrospective corpus in
which a larger number of positive examples are iden-
tified for some old events. The idea comes from the
well-known strategy of investing in a variety of funds in
the stock market to offset the volatility of any one of
them, yielding better returns on average over the long
run, and from then well-known practice in information
retrieval and speech recognition of combining the output
of a large number of systems to yield a better result on
average[17, 8, 9, 5]. In both cases, entities with large in-
dividual performance variances are averaged together to
produce a single entity whose variance is much reduced.
We leverage this idea in a novel application: effective
parameter tuning for event tracking. By combining the
output of multiple classifiers whose errors tend to be
uncorrelated, we hypothesize that the cross-collection
performance variance of the combined system will be
much less than those of the individual classifiers. In
other words, the combined system is likely to yield bet-
ter results on a new test collection after optimization on
a given validation set than the individual systems would
do after being optimized on the same validation set.

Ideally, we would like to test our hypothesis with
at least a few dozen systems. However, such a large
number of systems is not currently available, so we limit
our empirical validation to the two new variants of kNN
and the Rocchio method, with more careful analysis on
the behavior of these methods and the conditions we
combine them. We designed the following experiments
to verify the effectiveness of our approach:

1. Have two sets of data in disjoint time windows,
namely, Corpus A and Corpus B. Each corpus con-
tains a set of events with labelled positive docu-
ments for each of those events; the two sets of
events do not overlap. Use Corpus A for parame-
ter tuning and Corpus B for evaluation, and vice
versa.

2. For each event in each of the corpora, split the
corpus right after the N, labelled positive exam-
ples; use the first half of the corpus for training,
and the second half for testing.

3. Run kNN.avgl, kNN.avg2 and Rocchio on Cor-
pus A with different parameter settings. Select
the runs with the optimal DET curves, globally or
locally, including those optimal for low false alarm
(high precision), low miss (high recall), and/or for
balanced errors (optimal Cirx). Allow more than
one run to be selected for a classifier, if needed.

4. Normalize the scores for each of the selected runs
in step 3 by &’ = =%, where  is the original score,
u is the mean of the scores for the run, and s.d. is
their standard deviation. Sum together the nor-
malized scores for each run and renormalize the re-
sult in the same way, using the resulting scores as
the output of the combined system, which we have
named BORG.AA (Best Overall Results Genera-
tor tuned on Corpus A and evaluated on Corpus
A). Identify the threshold that yields the minimum
Cirr for the BORG.AA results.

5. For each selected run from step 3, create a paral-
lel run on Corpus B using the same parameters.

Combine the parallel runs to create parallel BORG
results (called BORG.AB) for Corpus B.

6. Evaluate each parallel run on Corpus B using the
optimal parameters from Corpus A and compare
the results of BORG.AB with the parallel runs of

the individual classifiers.

7. Swap the role of Corpus A and Corpus B, and
repeat Steps 3 to 6.

Results of the above experiments are describe in Sec-
tion 4.

3 Data and Evaluation Measures

3.1 Corpora

We chose the TDT'1 corpus of news stories covering July
1, 1994 to June 30, 1995 and the TDT3 dry-run cor-
pus covering January 1, 1998 to June 30, 1998 as our
temporally-disjoint corpora. We use both corpora as
they are and set the evaluation conditions as close as
possible to those used in the TDT1 and TDT3 bench-
mark evaluations to make our results comparable to the
published results on these evaluations.

The TD'T1 corpus, developed by the researchers in
the TDT Pilot Research Project, was the first bench-
mark evaluation corpus for TDT research.® It consists
of 15,863 chronologically-ordered news stories; roughly
half of these stories are randomly sampled Reuters ar-
ticles, and the other half are CNN broadcasts which
were manually transcribed by the Journal Graphics In-
stitute (JGI). Twenty five events were manually identi-
fied from the memories of the participants for the period
covered by this corpus or by scanning through the col-
lection, and then exhaustive relevance judgements were
made for each of those events for all stories in the cor-
pus. There are about 43 documents per event on aver-
age. Each story was assigned a label of YES (article fo-
cusses on event ), NO (article does not mention event) or
BRIEF* (article mentions event in passing) for each of
the 25 events. Note that this process resulted in only a
subset of the existing events in the corpus; however, for
each of those labelled events, complete relevance judg-
ments over all documents are available. For each event
and a particular N; value, the TDT'1 corpus was split at
the point right after the N;-th positive example of that
event; the stories before that split point were allowed
to be used for training, and the remaining stories were
used for testing. Fifteen of the 25 events have more than
16 YES stories, the maximum allowable N; in TDT1,
and thus were the ones used for event tracking evalua-
tion. In this paper, we fix N; at 4 to make the setting
consistent with the TDT3 evaluation.

The TDT3 dry-run corpus, developed at LDC, is a
larger and richer collection, consisting of 82,084 docu-
ments with 100 manually identified events. Each event
consists of 350 documents on average and comprises
about 0.4% of the corpus. Not all the events have
exhaustive relevance judgments over the entire corpus.

3TDT data collections are made available via the Linguistic
Data Consortium (LDC) — see www.ldc.upenn.edu/TDT

“In the official TDT evaluations, the stories judged as BRIEF
were allowed to be used for training but were excluded from
testing. We did the same in our evaluations to make our results
comparable with the results by others in the TDT benchmark
evaluations.



The documents were collected from 3 newswires, 3 ra-
dio programs and 4 television programs; some of these
documents are in both English and Mandarin, with a
machine-translated (via SYSTRAN at the LDC) version
of the Mandarin-language documents also available.®
The audio sources (TV or radio) were transcribed either
manually or by automatic speech recognition. Twenty
out of the 100 events were selected for the TD'T3 dry-run
evaluation on the basis that each event was bi-lingually
parallel in the corpus and had more than 4 positive in-
stances in both English and Mandarin. Each tracking
system could use up to 4 positive training instances per
event as training data for TDT3 dry runs. In the evalu-
ation, the corpus was split immediately after the fourth
positive example in the English sources or the fourth
positive example in the Mandarin sources, whichever
occurred later. The stories before that split point were
used for training, and those after for testing, implying
that, at the splitting point, there may be more than 4
positive training examples in one of the two languages
but only 4 are explicitly labelled.

3.2 Measures

To evaluate the effectiveness, a two-by-two contingency
table is used for each event:

Table 1. Contingency table

YES is true NO is true
System-predicted YES a b
System-predicted NO C d

Performance measures are defined as:

c

a+tc

o Miss m = if a 4+ ¢ > 0, otherwise undefined;

False Alarm f = b+Ld
fined;

Recall r = aic

if b+d > 0, otherwise unde-

if a 4+ ¢ > 0, otherwise undefined;
o Precision p = ﬁ if a+b > 0, otherwise undefined;

<
n

Tracking cost Cirx = oz1% 4+ az £ where n = a +

b+c+d.

Global performance over all events is evaluated using
two methods: the micro-average, obtained by first sum-
ming the corresponding cells in the contingency tables of
the individual events and computing the global perfor-
mance scores from the combined table, and the macro-
average, obtained by computing per-event performance
measures first and averaging them. The micro-average
introduces a scoring bias towards frequently-reported
events, and the macro-average towards less-reported
events; both are informative. Macro-averaged C},; have
been used as the primary measure (with a; = 0.1 and
g = 1) in benchmark TDT evaluations. We therefore
present our results using this measure and refer it as
Cri unless otherwise specified.

In addition to the above measures defined for classifi-
cation decisions, we also use the Detection-Error Trade-
off (DET) curve[11] to show how varying the threshold
would affect the trade-off between the miss and false-
alarm rates. The DET curve is obtained by sweeping

5Including Mandarin data is not important for our study;
however, we used this corpus as it is to make our results compa-
rable to other TDT benchmark evaluation results.
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Figure 2: BORG combining Rocchio and 2 kNN variants

the decision threshold over the range of scores gener-
ated by the tracking system, evaluating its performance
at small, consecutive intervals, and plotting the normal
deviates of the miss versus false alarm rate at each in-
terval.

4 Results

4.1 Primary results

We tested Rocchio and the variants of kNN on TDT1
and TDT3, with various parameter settings for v and
n in Rocchio, and for k, kp or kn in the kNN variants,
vielding a DET curve for each method and parameter
setting. Figure 1 show the “best” DET curve for each
method on TDT1, where “best” means that minimum
Cirr of that method lies on the curve. A reference line
for a system with random performance is also added as
a poor baseline. Because the DET curve plots normal
deviates of the miss and false alarm rates, rather than
the rates themselves, random performance generates a
straight line passing through the 50%-50% error point
with slope -1.0.

The DET curves of kNN.avgl and kNN.avg2 are
“complementary”: one is better in the low false alarm
(high precision) area and the low miss (high recall) area,
while the other is better for more balanced errors (high
Ctrk); both curves are significantly better than kNN.sum
(optimized at & = 3). BORG2 combining these two
new variants of kNN has an even better curve in the



balanced-error region (center of the graph), but not in
the high-precision or high-recall ends (recall larger than
90% or precision higher than 99.5%). Adding Rocchio
to this combination, shown in Figure 2, only yields a
marginal improvement. We interpret this to mean that
Rocchio (using one centroid for a large number of the
negative examples) and kNN.avg2 with kn = 0 (ig-
noring negative training examples entirely in the kNN
scoring) tend to make similar classification decisions,
emphasizing the influence of positive training examples
while discounting (or ignoring) the negative training ex-
amples. Combining such highly correlated methods is
not expected to produce very different results from those
by the individual systems.

The optimal Cy,r scores, obtained by thresholding
on the DET curves of these systems, are shown in Ta-
bles 2 and 3. When tuning these systems on TDT1
and evaluating them on the same corpus (the “AA” col-
umn in the table), Rocchio with ¥ = —2 and n = 200
had the lowest score among the individual methods.
The new variants of kNN had worse scores than Roc-
chio, but significantly better than the original kNN.sum
did. KNN.avgl reduced the Cirx score from .0056 of
kNN.sum to .0033 (a 41% reduction), while kNN.avg2
reduced the score to .0030 (a 46% reduction). When
tuning these systems on TDT3 and evaluating them
on the same corpus, the improvement by the new kNN
variants was event larger, i.e., from .0080 to .0023 (a
71% reduction). BORG3 combining Rocchio and the
two new kNN variants yielded an identical or somewhat
worse scores than the best scores found for the individ-
ual methods on these two corpora.

The results of tuning the systems on the TDT1 cor-
pus and evaluating them on the TD'T'3 corpus are shown
in the “AB” column in Table 3. Conversely, the results
of tuning the systems on the TDT3 corpus and evalu-
ating them on the TDT1 corpus are shown in the “BA”
column in Table 2. The threshold for optimal decision-
making in the evaluation runs was selected by one of
two strategies:

e use the exact threshold optimal for the system on
the corpus for tuning; or

e select the threshold that generates the same pro-
portion of YES decisions in both the tuning corpus
and the evaluation corpus.

The first strategy (“T'1”) allows a online decision for
each document upon it arrival, while the second strat-
egy (“T2”) sometimes yields better results. Both are
provided in these tables for a comparison.

4.2 Performance variance reduction

While the BORG combination of kNN and Rocchio had
performance scores as good or slightly worse than the
individual methods, this is not important, since our
point is not to use BORG as a fine tuning technique
for marginal improvement on a fixed corpus (i.e., the
validation corpus). Our goal is to improve the perfor-
mance consistency of our tracking system between dif-
ferent collections and on new events for which few track-
ing examples are available. We hypothesize that we can
achieve this goal by combining classifiers with different
learning strategies and have shown the BORG combi-
nation of Rocchio and the kNN variants as a convincing

Miss probability (in %)

Miss probability (in %)

example. We expect that multiple learning strategies
will fail more gracefully on new data or events than a
single-strategy classifier optimized on a validation cor-
pus because multiple learning strategies usually will not
produce the same kinds of errors simultaneously. As il-
lustrated in Tables 2 and 3, the best-performing single
method on TDT1 was Rocchio; however, it performed
poorly on TDT3 data with its TDT1-optimal parame-
ters. BORG tuned on TDT1, on the other hand, had
a much more consistent performance of TDT3, yielding
a 58% reduction from Cyr; of Rocchio when applying
the optimal threshold of BORG on the TDT1 corpus
to its scores on the TDT3 documents (“AB.T1” in Ta-
ble 3). Figures 3-6 illustrate the DET curves for each
method evaluated on TDT3 with TDT1-optimal and
TDT3-optimal parameters. Clearly, BORG has a much
smaller performance variance over any region in the er-
ror trade-off space compared to the individual meth-
ods. This explains why optimizing the decision thresh-
old through cross-validation is easier for BORG than
for the individual methods. These observations strongly
support our assertions in Sections 1 and 2.4 about the
difficulty of parameter tuning across different collections
and events, and likewise supports our rationale for com-
bining a diversity of classifiers to reduce performance
variance.
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Figure 4: Variance of kNN.avg2 between optimal parame-
ters for TDT1 and TDT3 on the TDt3 dry-run2 corpus
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Table 2. Results summary in Cyrx of classifiers evaluated on TDT1 Corpus

System AA 0 BA.T1 0 BA. T2 0
kNN.sum (k ) 0056 +50% .0080 1+64% .0081 1+63%
kNN.avgl (k ) .0033 +15% .0030 +3% .0027 -11%
kNN.avg?2 (k =4,kn = 0) .0030 +7% .0032 +9% .0028 -7%
Rocchio ('y =-2,n= 200) .0022  -36% .0033 +12% .0028 -7T%
BORG3 (Ro CCth + kNN.avgl + kNN.avg2) | .0028 +0% .0029 +0% .0030 +0%

Table 3. Results summary in Clirg

of classifiers evaluated on TDT3 Corpus

System BB 0 AB.T1 0 AB.T2 0

KNN.sum (k = 3) 0080 +71% | 0085 +68% | 0116 +78%
kNN.avgl (k = 2000) .0023 +0% .0063 +57% .0075 +67%
kNN.avg?2 (kp =4,kn = 2000) .0023 +0% .0076 +67% .0090 +72%
Rocchio (7 =-—-.25,n= 200) 0026 +12% .0060 +58% .0047 +47%
BORG3 (Rocchio + kNN.avgl + kNN.avg2) | .0023  +0% .0025 +0% .0025 +0%

AA: tuned on TDT1 and tested on TDT1; BA: tuned on TDT3 and tested on TDT1;
AB: tuned on TDT1 and tested on TDT3; BB: tuned on TDT3 and tested on TDT3;

&: Cy¢rr reduction by using BORG
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Figure 5: Variance of Rocchio between optimal parameters

for TDT1 and TDT3 on the TDT3 dry-run2 corpus

5 Summary and Future Research

This paper studied the effectiveness of kNN and Roc-
chio in event tracking. We addressed the open questions
of training classifiers on extremely small number of pos-
itive examples and cross-event parameter learning using
a validation corpus. We developed new variants of kNN
to overcome the specific problems of the original ver-
sion when applied to event tracking; the new versions
reduced the average cost (Ctrk, the sum of weighted er-
ror rates) by 71% on the TDT3-dryrun corpus, mading
kNN among the two top-ranking systems in the recent
TD'T'3 official evaluation (December 1999).

We also found a robust solution for cross-event pa-
rameter learning: combining the output of classifiers
with diverse learning strategies. Our cross-corpus eval-
uations on the TDT1 and TDT3 benchmark collections
showed up to a 58% reduction in Ciyx by combining
kNN variants and Rocchio instead of using the best sin-
gle method (kNN or Rocchio) on the validation corpus,
strongly supporting the effectiveness of our approach.
We believe this is also a powerful solution for problems
beyond event tracking, such as categorization of docu-
ments (web pages) on the World Wide Web where the
category spaces are typically fast growing and chang-

Miss probability (in %)

instead of the individual classifier.
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Figure 6: Variance of BORG3 between optimal parameters
for TDT1 and TDT3 on the TDT3 dry-run2 corpus

ing, or effective training for extremely rate categories in
conventional text categorization problems. We would
like to study this approach with a large number of di-
verse classifiers, including support vector machines, neu-
ral networks. etc.
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