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Abstract

This paper presents some techniques in text categorization. New
algorithms, in particular a new SVM kernel for text categorization,
are developed and compared to usual techniques. This kernel leads
to a more natural space for elaborating separations than the euclid-
ian space of frequencies or even inverse frequencies, as the distance
in this space is the most usual distance between distributions. We
give an application to the recognition of the author of a text, show-
ing that text-categorization, after projection in this space, can be
applied to quite subtle categorizations, and put into relief that our
kernel could be used for any classification of distributions. We dis-
cuss the efficiency of our algorithms, depending upon the precision
of the estimation of frequencies.

1 Introduction

Being given @) classes of texts, we call text categorization the task of determining
the class of T', T being a text, after learning on a labelled training set. This can
include language recognition, or topic recognition. We have restricted our study to
algorithms using N-grams, because of their generality (they could be used for any
kind of sequences on a discrete alphabet - see for example applications in biology)
and their efficiency; we do not work on approaches based on dictionnaries. The
most usual methods are 1-NN with dissimilarity measures, and [8] or [12] conclude
(roughly) that the most efficient method is SVMs. We confirm these comparisons
and introduce new techniques, based upon a new kernel.

Definitions: A being an alphabet, a N-gram is a sequence of N elements of A.
For N =1, a N-gram is a letter; 2-grams are called bigrams, 3-grams are called
trigrams. The set of words is the set of all N-grams for any N. One calls N-
profile of a family of texts the sequence of the N-grams of this family of texts, in
decreasing order of frequency, with their frequencies.

2 Text categorization

2.1 With (dis)similarity measures

Many algorithms used for text categorization are based on distances or more gener-
ally on similarities and dissimilarities. All these methods rely in finding the closest



texts in the learning set from the one whose class is to be computed. The difficulty
in this k-nearest neighbours approach is the definition of a distance. Indeed, one
usually uses pseudo-distances. The simplest and oldest consists in building the pro-
files of each class and of the text, and then using the dissimilarity measure CT used
by Cavnar and Trenkle in [2]: The distance between the two profiles P, and P, is
defined as

CT(Py, P,) = > min(|Rp,(w) — Rp, (w)|, DM AX)
weP1,Rp, (W) <NMAX

where |z| denotes the absolute value of  and Rp(w), with w a N-gram and P a
N-profile, denotes the rank of w in the profile P, if w belongs to P, and DM AX
otherwise (e.g., NMAX = 500 and DM AX = 1000). Another possible ”distance”
is the Kullbach-Leibler (KL) ([10]) dissimilarity measure:

KL(Ty,T5) Zﬁ 2)log( ENQ;
g

)

where the sum is taken over all N-grams.

with 77 and 75 some texts, and f;(Ny) the frequency of the N-gram N in the
text T;, plus half of the frequency of a N gram which would occure once if NV, has
frequency 0 in T; (to avoid too much strong penalization of unseen N—grams).

Another possibility is the cosine dissimilarity measure ([7] uses a centered space on
the mean of the frequency vectors; we here do not use this translation). This is the
following:

ZNg fl(Ng)fZ(Ng)

COS(Ty,Ty) =1 —
Vo, Fi(Ng)2) % (T, F2(Ng)?)

We chose another dissimilarity measure, the y? dissimilarity. This is the following:

(T T =Y (fl(Ng;2(—]\£2)(Ng))

One can symmetrize this "distance” by using x*(71,72) = 2%. We do

this in our practical experiments. When f;(Ny) and f5(Ny) are 0, then we replace

% by 0 (which is its continuous extension).

2.2 Classification methodes based upon an encoding in R"

Another approach consists in encoding documents by vectors, in order to classify
points in R™. This allows the use of all classical methods: backpropagation neural
networks, support vector machines (SVMs), k nearest neighbours in R"™ (what can
be done directly with the previous dissimilarity measures, too), decision trees...
One has to choose an encoding, which can be used with both the training set and
the test set; eg, let wy,...,wq be a finite set of words, and let’s define z; as the
number of occurings of w; in T' (or its frequency). z will be the vector associated
with 7. The finite set of words can indeed be the set of all the words included in
the considered texts, or the set of all N-grams for a given N. This number o of
occurings can be replaced by different functions of «; [9] lists different possibilities.
It’s possible to consider only significant variables among all these ones. Different
solutions are possible, among which, for this kind of data, the most famous is likely
the information gain criterion (see [13]). Experimental results from [8] show that as
much as possible, we must keep all the variables - what will be done in the sequel.



3 A new positive definite kernel for SVM ?

Encoding in R™ allows the use of lots of training algorithms, and in partic-
ular SVMs (see [11]). But one can use SVMs in another way: we define
K(Th,Ts) = exp(—d(T1,Tz)), with d one of the dissimilarity measures suggested

above. We experimented K (71,7T3) = ea:p(—@).

x2(T1,T3)

—5—2) is a positive definite kernel.

Conjecture: The function k(71,7T3) = exp(—

We so have a new kernel at our disposal, which has the following advantages:

e distance is "natural”; whereas with linear SVMs distance is the euclidian
distance in the space of frequencies (or inverse frequencies), we look for
RBF separations in a space with a classical distance among distributions.

e we can learn on a compact representation of datas - a kernel matrix m x m,
with m the number of texts in the training set.

e the hyperparameter o is very easily chosen, as explained below.

4 How to use RBF networks for text categorization

As in the case of SVM, one can use an RBF network with the encoding of texts
in R™; but one can use the x? dissimilarity for example. As explained above, this
corresponds to a linear separation in a feature space. This method is successfully
tested below. The algorithm is summerized below, with (7;) the family of labelled
texts (used for training), (77) the family of texts to be classified:

1. Let O be a matrix such that O; ; = 1 if T; belongs to class j, —1 otherwise
else.

2. Let K be the matrix such that K; ; = emp(—%) and K; the matrix
resulting of K by adjunction of a column of 1’s at its right.

2mit
3. Let K’ be the matrices such that K; ; = e;l‘p(—%) and K| the matrix

resulting of K’ by adjunction of a column of 1’s at its right.
4. Let W be the weight matrix such that K1 x W =0, let O' = K] x W.
5. We classify T/ in class argmazy O'(i, k).

2
[8] explains (partly) the good behavior of SVMs on text categorization by its ca-
pacity to treat so many dimensions without having to select relevant variables. One
can notice that RBF, with this particular kernel, verifies the same property: the
training set is translated into a kernel matrix of size m x m, taking into account all
the information, with m the number of texts in the learning set.

The difference with the previous SVM algorithm is that with RBF there’s no reason
for W to be sparse. In the case of text-categorization, as the training set, whenever
it is very big, leads to a little number of examples, one can suppose that this is
not really a problem. SVM have the advantage of maximizing the margin, but they
have one more hyperparameter, the constant C' of penalization of errors.

5 Writer recognition: working on large samples

The success rate is evaluated by leave-one-out in the case of author recognition, as
the training set is small (28 classes (= authors), 130 texts).



We use a set of french books (130), written by well known writers, like Balzac,
Bloy, Corneille, Diderot, Engels, Flaubert, Fourier, France, Gaberel, Gautier, Gob-
ineau, Hugo, Huysmans, Lamartine, Leibnitz, Maistre, Maupassant, Moliere, Pas-
cal, Racine, Renard, Rostand, Rousseau, Sand, Stendhal, Verne, Voltaire, Zola.
Some of this writers are translated from other languages. The complete list of titles
is too much long for beeing listed here, but the used files can be asked by email to
the authors. The fact that texts are not all formatted the same way hasn’t been
corrected, and is considered as a supplementary difficulty for the algorithm. Most
of these texts come from the ABU site, cedric.cnam.fr/ABU/, the others from the
Bibliotheque Nationale de France, www.bnf.fr/. The experimental results are the
following ones (with 3-grams):

| Algorithm | Success Rate |

RBF with (x?)? kernel for p= 3, %,..5; 87.69 %
RBF with y? kernel 86.15 %

Multiclass svm with y? kernel 86.15 %
Multiclass linear svm 78.462 %

SVM with x? kernel 72.3077 %

1-NN with y? dissimilarity 70.77 %

linear SVM 67.69 %

1-NN with KL dissimilarity 52.31 %

All our tests are made with implementations in  Octave (see
www.che.wisc.edu/octave for a description of this very interesting free clone
of Matlab). All the source codes can be asked by email to the authors. We call
“multiclass SVM” a SVM designed for multiclass categorization, defined in [6].
It is worth puting into relief that in this case (high dimensionality, 28 classes)
this SVM is significantly better than the usual method consisting in combining
SVMs one-against-all as suggested in [11]. We have both SVM multiclass with
x? significantly better than SVM with y? and linear SVM multiclass significantly
better than linear SVM.

Our experiments gives the following results, with >> denoting a difference with
confidence 5 %, > a difference with confidence 15 %:

{ RBF - SVM Multiclass (x?) } >> SVM Multiclass > SVM x? - SVM - 1-NN

One can notice that our experiments, as the ones of [12], concern sequences large
enough for a nice approximation of frequencies. The following experiments will be
done on another case.

6 Language recognition: working on small samples

In this case the success rate is evaluated by validation on a disjoint part of the
dataset. After the previous benchmark, one could conclude (too quickly) that RBF
with x? kernel seems to be the ultimate algorithm for text categorization. The
multiclass version of SVMs looks as powerfull as it, but RBF are much faster and
simpler to implement. In our following experiments, we will focus on two algo-
rithms: RBF, because of their efficiency shown in the previous benchmark, and
1-NN, because of its simplicity, efficiency in the following case as we will see in the
experiments below, and because it’s widely used in practical applications. The fol-
lowing experiments are made with Java implementations, based on the Jama matrix
package. All java source codes can be asked by email to the authors, or found at
URL eric.univ-lyon2.fr/~ jalam/java/devineur. The task consists in recognizing in



which language is written a given text. We work on five languages: french, arabic,
english, spanish and german. As this is known a very easy task, we complicate it by
using very small parts of texts. We detail a comparison on a particular set of 250
samples of 100 bytes, then 500 samples of 50 bytes, then 1250 samples of 20 bytes
(20 bytes on average). We have 5 big texts of 5 Ko used to define profiles (come from
G. van Noord’s page), and short samples from 5 languages (arabic ones built with
html pages, german ones from ”Stochastic Language Identifier” (www.dougb.com),
french ones from a book at www.alyon.org, english and spanish ones from the corpus
of [4]). All the used datasets can be asked by email to the authors. With a testing
set made of samples of 100, 50 or 20 bytes, SR meaning ”success rate”:

| Algorithm | SR (100 bytes) | SR (50 bytes) | SR (20 bytes) |

I-NN (KL) 100 % 994 % 928 %
1-NN (x?) 98.8 % 96.6 % 87.92 %
RBF (62 = 10) | 37.6 % (100 %)
RBF (02 = 100) 98.8 % 93 % 71.04 %

The result between parenthesis is got with profiles computed on 50 subparts of the
training set instead of one profile computed on the whole training set (per class).
This leads to better results for some RBF learnings - this trick doesn’t work as well
for the experiments with shorter samples. We now work with 250 samples of 100
bytes as learning set, to study more precisely the influence of ”gathering” learning
texts for RBF or k-NN :

| Algorithm | Hyperparameters | SR (100) | SR (50) | SR (20) |
RBF o2 =10 99.2 % 848 % | 31.52%
o? =100 98 % 93.2 % 71 %
RBF (2-gathered prof.) o2 =100 97.2 % 88 % | 68.56 %
RBF (5-gathered prof.) o? = 1000 98.8 % 94 % | 80.88 %
RBF (10-gathered prof.) o? = 1000 99.2% | 95.2% | 76.72%
RBF (25-gathered prof.) o = 1000 988 % | 948% | 824 %
RBF (gathered prof.) o2 =100 88.4% | 80.6 %
o? = 100000 87.6% 774 % | 61.36 %
1-NN X2 99.2 % 96.6 % | 88.4%
1-NN KL 47.2 %
1-NN (2-gathered prof.) X2 99.6 % 96.8% | 88.8%
1-NN (5-gathered prof.) X2 100 % 97.6 % 90 %
1-NN (10-gathered prof.) X2 99.2 % 97.2 % | 88.56 %
1-NN (10-gathered prof.) KL 89.84 %
1-NN (25-gathered prof.) X2 100 % 96.8% | 87.2%
1-NN (gathered prof.) X2 100 % 93 % | 84.56 %
1-NN (gathered prof.) KL 9.7% | 974% | 894 %

”m-gathered profiles” means that the training texts have been gathered m by m;
7gathered” | that all texts of a class in the training set have been gathered. Keeping
m small preserves the variability of the training set, m larger leads to more well
defined profiles. The fact that m larger increases the efficiency of RBF in the case
of very short texts, suggests that RBF could work here only as an approximation
of nearest neighbours. In the case of small testing samples, KL remains better than
x?, but KL seems to be unable to work with short learning samples, as illustrated
by the case of non-gathered learning samples - this could be a problem for other
tasks.



The hyperparameter o2 for RBF-learning was very easily chosen in the previous
benchmark (classification by authors), as the success rate was constant for a wide
range of o and as empirical success was closely related to generalization success; but
in the case of 20 bytes strings, the efficiency was very depending on ¢ and on the
gathering; this leads to two difficult hyperparameters.

7 Conclusion

On datasets for which all frequencies are well defined (what doesn’t mean that they
only depend upon the class - they depend upon the author, the language, the topic,
the time of the writing...), one can finally sum up previous results ([12], [8]) and
our results by:

RBF > SVM Mc (x?) > SVM Mc > SVM (x?) > SVM > 1-NN
> LLSF, C4.5, NNets > NB

With SVM Mc the multiclass SVM from [6], SVM being a classical one-against-all
SVM, LLSF as described in [12], NNets being neural nets other than SVM, C4.5
being the most famous algorithm of induction trees (see [3] for a use in text cat-
egorization) and NB being the Naive Bayes algorithm (see [5]). Notice that RBF
> SVM Mec is not significant in terms of performance; we keep this comparison
as RBF have the advantage of being much faster for learning and much easier to
implement. The good results resulting from linear separations in the Reproducing
Kernel Hilbert Space associated to our symmetrized x? distance suggests that this
space is the natural place where one can study separations between classes of dis-
tributions.

In the case of less-well defined frequencies (with very small parts of text in the test-
ing set), I-NN becomes better than RBF, with KL > x? provided that the learning
set is large enough to well define frequencies. The results of [4] with Markov Mod-
els, with two languages instead of five here, compared with our results, suggest that
Markov Models trained with 25K o per language have nearly the same error rate than
1-NN with 5K o per language - random error rate being 20% with 5 languages and
50% with 2 languages, 1-NN seem to be more adapted to this task than Markov
Models. Our tested version of 1-NN uses 3-grams, as Markov models of order 2
(which are often the most efficient according to [4]); 1-NN do not require computa-
tions of bigger profiles than Markov Models. Moreover, k-NN can efficiently work
only keeping one profile per class, what is not always true with RBF; k-NN have the
advantage of robustness (any gathering of profiles, no hyperparameter) - so we make
the assumption that 1-NN and more generally k-NN are the most efficient solution
to classify small samples of texts. The choice of the distance is an interesting ques-
tion; because the dissimilarity CT isn’t mathematically justified, and because the
KL measure has difficulties for small learning samples (it implies particular cases
for unseen N-grams and has an experimental bad behaviour on small samples...) we
prefer the y? dissimilarity, which didn’t give significantly worst results than other
distances (KL, CT or cosine) with well-defined probabilities and sometimes much
better ones; but we recall that for small testing sets KL gave the best results. The
experiments of [10] confirm this point. Finally, we underline that a detailed study
shows that for most of our algorithms errors come from unbalanced classifiers (ie
one class is ”invading” the others). This suggests that algorithms ”helping” handi-
caped classes (typically boosting) could give good results. Perhaps in a future paper
boosted RBF/SVM > RBF/SVM...

We thank André Elisseeff for the multiclass SVM and for fruitfull discussions, re-
gretting that he considered his contribution to this work too small for being author.



References

(1]

C. BERG, J.-P.-R. CHRISTENSEN, P. RESSEL, Harmonic Analysis on Semigroups, Theory of Positive
Definite and Related Functions, Springer, 1984

W.-B. CAvNAR, J.-M. TRENKLE, N-gram Based text categorization. In 1994 Symposium on Doc-
ument Analysis and Information Retrieval in Las Vegas, 199

S.-L. CrawrorD, R.-M. Fung, L.-A. AprpELBAUM, R.-M. TonG, Classification trees for informa-
tion retrieval, in Machine Learning: proceedings of the eighth International Workshop (1991),
Morgan Kaufmann, pp 245-249

T. DUNNING, Statistical Identification of languages, Computing Research Laboratory Technical
Memo MCCS 94-273, New Mexico State University, Las Cruces, New Mexico, 1994

I.-J. GooD, The estimation of probabilities: An Essay on Modern Bayesian Methods, MIT Press,
1965

Y. GUERMEUR, A. ELISSEEFF, H. PAuGAM-MoIsy, A new multiclass SVM based on a uniform con-
vergence result. accepted at IJCNN’2000

S. HUFFMAN, Acquaintance: Language-Independent Document Categorization by N-Grams, in
TREC 4 Proceedings, 1996

T. JoacHIMS, Text Categorization with Support Vector Machines: Learning with Many Relevant
Features, in Machine Learning: ECML-98, Tenth European Conference on Machine Learning,
pp. 187-142, 1998

MEHRAN SAHAMI, Thesis:Using Machine Learning to Improve Information Access, Ph.D. in Com-
puter Science, Stanford University, 1999

P. SiBUN, J.C. REYNAR, Language tdentification: Examining the issues. In Symposium on Docu-
ment Analysis and Information Retrieval, pp. 125-135, Las Vegas, 1996

V.N. VAPNIK, The Nature of Statistical Learning, Springer, 1995

Y. Yang, X. Liu, SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, August 15-19, 1999, Berkeley,
CA, USA. ACM, 1999

Y. YaNnG, J. PEDERSEN, A comparative study on feature selection in text categorization, in Inter-
national Conference on Machine Learning (ICML), 1997



