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Abstract

There are numerous text documents available in electronic form. More
and more are becoming available every day. Such documents repre-
sent a massive amount of information that is easily accessible. Seeking
value in this huge collection requires organization; much of the work
of organizing documents can be automated through text classification.
The accuracy and our understanding of such systems greatly influences
their usefulness. In this paper, we seek 1) to advance the understanding
of commonly used text classification techniques, and 2) through that
understanding, improve the tools that are available for text classifica-
tion. We begin by clarifying the assumptions made in the derivation of
Naive Bayes, noting basic properties and proposing ways for its exten-
sion and improvement. Next, we investigate the quality of Naive Bayes
parameter estimates and their impact on classification. Our analysis
leads to a theorem which gives an explanation for the improvements
that can be found in multiclass classification with Naive Bayes using
Error-Correcting Output Codes. We use experimental evidence on two
commonly-used data sets to exhibit an application of the theorem. Fi-
nally, we show fundamental flaws in a commonly-used feature selection
algorithm and develop a statistics-based framework for text feature se-
lection. Greater understanding of Naive Bayes and the properties of
text allows us to make better use of it in text classification.

Thesis Supervisor: Tommi Jaakkola
Title: Assistant Professor of Electrical Engineering and Computer Sci-
ence
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Chapter 1

Introduction

There are numerous text documents available in electronic form. More
are becoming available constantly. The Web itself contains over a bil-
lion documents. Millions of people send e-mail every day. Academic
publications and journals are becoming available in electronic form.
These collections and many others represent a massive amount of in-
formation that is easily accessible. However, seeking value in this huge
collection requires organization. Many web sites offer a hierarchically-
organized view of the Web. E-mail clients offer a system for filter-
ing e-mail. Academic communities often have a Web site that allows
searching on papers and shows an organization of papers. However, or-
ganizing documents by hand or creating rules for filtering is painstaking
and labor-intensive. This can be greatly aided by automated classifier
systems. The accuracy and our understanding of such systems greatly
influences their usefulness. We aim 1) to advance the understanding
of commonly used text classification techniques, and 2) through that
understanding, to improve upon the tools that are available for text
classification.

Naive Bayes is the de-facto standard text classifier. It is com-
monly used in practice and is a focus of research in text classification.
Chakrabarti et al. use Naive Bayes for organizing documents into a
hierarchy for better navigation and understanding of what a text cor-
pus has to offer [1997]. Frietag and McCallum use a Naive Bayes-like
model to estimate the word distribution of each node of an HMM to
extract information from documents [1999]. Dumais et al. use Naive
Bayes and other text classifiers to automate the process of text classi-
fication [1998]. That Naive Bayes is so commonly used is an important
reason to gain a better understanding of it. Naive Bayes is a tool that
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works well in particular cases, but it is important to be able to identify
when it is effective and when other techniques are more appropriate. A
thorough understanding of Naive Bayes also makes it easier to extend
Naive Bayes and/or tune it to a particular application.

There has been much work on Naive Bayes and text classification.
Lewis gives a review of the use of Naive Bayes in information retrieval
[Lewis, 1998]. Unlike text classification, information retrieval practi-
tioners usually assume independence between features and ignore word
frequency and document-length information. The multinomial model
used for text classification is different and must be treated as such.
Domingos and Pazzani discuss conditions for when Naive Bayes is opti-
mal for classification even when its probability assessments are incorrect
[Domingos and Pazzani, 1996]. Domingos and Pazzani clarify this point
and show simple cases of when Naive Bayes is optimal for classification.
Analysis of Naive Bayes like the work of Domingos and Pazzani is im-
portant, but little such work exists. Berger and Ghani individually ran
experiments using ECOC with Naive Bayes. Both found that they were
able to improve performance over regular Naive Bayes [Berger, 1999;
Ghani, 2000]. But, neither adequately explains why regular Naive
Bayes performs poorly compared to ECOC. Yang and Pedersen conduct
an empirical study of feature selection methods for text classification
[Yang and Pedersen, 1997]. They give an evaluation of five different
feature selection techniques and provide some analysis of their differ-
ences. But, there is still need for better understanding of what makes
a good feature selection method. Yang and Pedersen say that common
terms are informative for text classification, but there are certainly
other factors at work.

The application of Naive Bayes to multiclass text classification is
still not well understood. An important factor affecting the perfor-
mance of Naive Bayes is the quality of the parameter estimates. Text
is special since there is a large number of features (usually 10,000 or
more) and many features that provide information for classification will
occur only a handful of times. Also, poor estimates due to insufficient
examples in one class can affect the classifier as a whole. We approach
this problem by analyzing the bias and variance of Naive Bayes param-
eter estimates.

Naive Bayes is suited to perform multiclass text classification, but
there is reason to believe that other schemes (such as ECOC and mul-
ticlass boosting) can yield improved performance using Naive Bayes as
a component. Regular Naive Bayes can be more efficient than these
schemes, so it is important to understand when they improve perfor-
mance and when they merely add inefficient baggage to the multiclass
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system. We show how ECOC can yield improved performance over reg-
ular Naive Bayes and give experimental evidence to back our claims.

The multitude of words that can be found in English (and other
languages) often drives practitioners to reduce their number through
feature selection. Feature selection can also improve generalization er-
ror by eliminating features with poor parameter estimates. But, the
interaction between feature selection algorithms and Naive Bayes is
not well understood. Also, commonly used algorithms have properties
that are not appropriate for multiclass text classification. We point out
these flaws and suggest a new framework for text feature selection.
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Chapter 2

Naive Bayes

When someone says “Naive Bayes,” it is not always clear what is meant.
McCallum and Nigam clarify the picture by defining two different Naive
Bayes “event models” and provide empirical evidence that the multino-
mial event model should be preferred for text classification. But, there
are multiple methods for obtaining the parameter estimates. In the
interest of clarity, we carefully step through the multinomial derivation
of Naive Bayes and distinguish between variations within that model.
We also present a fully Bayesian derivation of Naive Bayes, that, while
not new, has yet to be advertised as an algorithm for text classification.
Through a careful presentation, we hope to clarify the basis of Naive
Bayes and to give insight into how it can be extended and improved.

To simplify our work, we assume that for each class, c ∈ {1, . . . ,m},
there is an (unknown) parameter vector, θc, which generates documents
independently. Some documents are observed as being part of a par-
ticular class (known as training documents and designated with Dc);
others are test documents. This model is depicted in figure 2.1. We
further assume that the generation model is a multinomial and ignore
document length concerns.

2.1 ML Naive Bayes

One formulation of Naive Bayes is to choose the parameters that pro-
duce the largest likelihood for the training data. One then makes pre-
dictions using the estimated parameter vector, θ̂c. This method has
obvious flaws and includes strong assumptions about the generation of
data. For example, any feature that does not occur in the training data
for a class is assumed to not occur in any document generated by that
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Figure 2.1: A graph of the independence relations between variables in
classification. θ is the class multinomial parameter vector. Dc is the set
of training documents for class c. d is test document to be classified.

class. However, this method, known as Maximum Likelihood (ML) can
be effective in practice and is efficient to implement. It is used regularly
in other domains. We call the multinomial version of this ML Naive
Bayes.

The ML parameter for class c is

θ̂c = argmaxθ p(D
c|θ). (2.1)

Dc is the training data for class c and θc is the class c parameter vector
for a multinomial model. p(Dc|θ) is a multinomial likelihood,

p(Dc|θ) = N c!
∏

k N
c
k !

∏

k

θ
Nc

k

k . (2.2)

We use N c
k to notate the number of times word wk occurs in the class c

training data (N c =
∑

k N
c
k). θk is the kth component of the multino-

mial parameter vector and is the probability that word wk will appear
as a single event of a multinomial trial. The ML estimate based on Dc

(the θ̂c that maximizes p(Dc|θ̂c)) is θ̂c
k =

Nc
k

Nc ∀k.
For ML Naive Bayes, we assume that our estimated parameter vec-

tor, θ̂c, is the vector that generated Dc; we use θ̂c to assess whether
a test document, d, was generated from class c. Since we infer a pa-
rameter vector, any prediction made about a test document, d, only
implicitly depends on the training data, Dc; the setting of θc in fig-
ure 2.1 bottlenecks information that Dc may provide about d.

The Bayes optimal decision rule for classification is

Ĥ(d) = argmaxc p(c|D, d) = argmaxc p(d|θ̂c)p(c). (2.3)
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D = {D1, . . . , Dm} is the set of all training data. If our class prior, p(c),
is uniform, our classification rule simply chooses the class for which the
test document is most likely,

Ĥ(d) = argmaxc p(d|θ̂c) = argmaxc

∏

k

(

N c
k

N c

)fk

. (2.4)

fk notates the number of times word wk occurs in d. This decision rule
is augmented for text classification because p(d|θ̂c) = 0 when fk > 0
and N c

k = 0. To ensure that this cannot happen, the training data
counts are supplanted with fictitious counts. The rationale for adding
these counts varies. Using a fictitious count of ak for word wk (a =
∑

k ak), we arrive at the modified decision rule,

Ĥ(d) = argmaxc

∏

k

(

N c
k + ak

N c + a

)fk

. (2.5)

Uniform fictitious counts (ai = aj ∀i, j) across all words are often used.
A common choice is ak = 1.

2.2 MAP Naive Bayes

ML Naive Bayes leaves something to be desired because it does not
include the framework to explain the fictitious counts. As a result, we
do not know what the fictitious counts represent. We would like to
know what assumptions about parameter estimation underpins their
inclusion in the decision rule. For this, we turn to a generalization
of ML estimation, Maximum A Posteriori (MAP) estimation. MAP
estimation produces the “fictitious counts” thorough a particular choice
of parameter prior distribution. Except for the change in the way we
estimate parameters, MAP Naive Bayes is identical to ML Naive Bayes.
We still select a “best” parameter vector, θ̂c and use that vector for
classification.

For MAP estimation, we estimate the parameter vector according
to

θ̂c = argmaxθ p(θ|Dc) = argmaxθ p(D
c|θ)p(θ), (2.6)

where p(θ) is the parameter prior term. MAP estimation is a gen-
eralization of ML estimation; ML is MAP with p(θ) = C (C is the
appropriate constant). We choose the Dirichlet as the general form of
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the prior. It has hyper-parameters{αk}, αk > 0 (α =
∑

k αk). The
density of the Dirichlet is

p(θ) = Dir(θ|{αk}) =
Γ(α)

∏

k Γ(αk)

∏

k

θαk−1
k . (2.7)

Γ(x) is the Gamma function. It satisfies Γ(x + 1) = (x)Γ(x) and
Γ(1) = 1. A valuable property of the Dirichlet is that it is the the
conjugate prior to the multinomial distribution. This makes the poste-
rior distribution Dirichlet,

p(θ|Dc) =
p(Dc|θ)p(θ)

p(Dc)
= Dir(θ|{N c

k + αk}). (2.8)

Setting θk =
Nc

k+αk−1
Nc+α−V

maximizes this expression (for αk ≥ 1). V is
the size of the vocabulary. Setting αk = ak + 1 gives us the “ficti-
tious counts” in equation 2.5 without any ad hoc reasoning. The MAP
derivation makes clear that the fictitious counts represent a particular
prior distribution on the parameter space. In particular, the common
choice of ak = 1 ∀i represents a prior distribution in which more uni-
form parameters (e.g. θk = 1

V
∀i) are preferred.

2.3 Expected Naive Bayes

The MAP NB decision rule is commonly used, but it is sometimes
derived in a different way [Chakrabarti et al., 1997] [Ristad, 1995].
Instead of maximizing some aspect of the data, an expected value of
the parameter is used,

θ̂c
k = E[θc

k|N c
k ] =

∫

θp(θ|N c
k)dθ =

∫

θ
p(N c

k |θ)p(θ)
p(N c

k)
dθ. (2.9)

θ̂c
k is the estimate of the parameter θc

k. N
c
k is the number of times word

wk appears in class c training documents. With a uniform prior, we
get the MAP NB decision rule with ak = 1 ∀k,

E[θc
k|N c

k] =
N c

k + 1

N c + V
. (2.10)

V is the size of the vocabulary. Maximizing the posterior with a prior
that prefers uniform parameters (αk = 2 ∀k) gives us the same pa-
rameter estimates as when a uniform prior and expected values are
used.
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2.4 Bayesian Naive Bayes

MAP Naive Bayes chooses a particular parameter vector, θ̂c, for clas-
sification. This simplifies the derivation, but bottlenecks information
about the training data for classification. An alternative approach is to
use a distribution of parameters based on the data. This complicates
the derivation somewhat since we don’t evaluate p(d|c,D) as p(d|θ̂c).
Instead, we integrate over all possible parameters, using p(θ|Dc) as our
belief that a particular set of parameters generated Dc.

As in ML & MAP Naive Bayes, we start with the Bayes optimal
decision rule,

Ĥ(d) = argmaxc p(c|D, d) = argmaxc p(d|c,D)p(c). (2.11)

We expand p(d|c,D) to

p(d|c,D) =

∫

p(d|θ)p(θ|Dc)dθ. (2.12)

p(d|θ) = f !
∏

k fk!

∏

k θ
fk

k is the multinomial likelihood. We expand the

posterior via Bayes’ Law, p(θ|Dc) = p(Dc|θ)p(θ)
p(Dc) and use the Dirichlet

prior, as we did with MAP Naive Bayes. This gives us a Dirichlet
posterior,

p(θ|Dc) = Dir(θ|{αi +N c
i }) =

Γ(α+N c)
∏

i Γ(αi +N c
i )

∏

i

θ
Nc

i +αi−1
i . (2.13)

Substituting this into equation 2.11 and selecting p(c) = 1
m
, we get

Ĥ(d) = argmaxc

Γ(α+N c)
∏

i Γ(αi +N c
i )

∏

i Γ(N
c
i + αi + fi)

Γ(N c + α+ f)
. (2.14)

This fully Bayesian derivation is distinct from the MAP and ML
derivations, but it shares similarities. In particular, if we make the
approximations

Γ(α+N c)

Γ(α+N c + f)
≈ 1

(α+N c)f
and

∏

i Γ(αi +N c
i + fi)

∏

i Γ(αi +N c
i )

≈
∏

i

(αi +N c
i )

fi ,

(2.15)

we get a decision rule very similar to that of MAP Naive Bayes,

Ĥ(d) = argmaxc∈C

∏

k

(

αk +N c
k

α+N c

)fk

. (2.16)
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The lone difference is that MAP Naive Bayes uses different Dirichlet
hyper-parameters to achieve this rule.

Bayesian Naive Bayes is distinct from MAP Naive Bayes in its de-
cision rule. As shown above, modifications can be made to make the
two identical, but those modifications are not generally appropriate.
In fact, the modifications exhibit the differences between MAP and
Bayesian Naive Bayes. Compared to MAP, Bayesian Naive Bayes over-
emphasizes words that appear more than once in a test document.
Consider binary (+1,−1) classification with N+1 = N−1. Let d be a
test document in which the word wk appears twice. The contribution
for wk in MAP Naive Bayes is (ak +N c

k)
2; the similar contribution for

wk in Bayesian Naive Bayes is (αk +N c
k)(αk +N c

k + 1). The Bayesian
term is larger even though other terms are identical. The difference is
greater for a word that occurs more frequently.

2.5 Bayesian Naive Bayes Performs Worse

In Practice

On one of the two data sets that we tried, we found that Bayesian NB
(with a Dirichlet prior and αk = 1 ∀k) performed worse than MAP
NB (using a Dirichlet prior and αk = 2 ∀k). This is not a sign that
the Bayesian derivation is bad—far from it. The poor empirical perfor-
mance is rather an indication that the Dirichlet prior is a poor choice
or that our the Dirichlet hyper-parameter settings are not well cho-
sen. Well estimated hyper-parameters, or a different prior, such as the
Dirichlet process, may yield better performance for Bayesian NB. We
show the empirical difference and give statistics exhibiting the condi-
tions where classification differences occur.

We conducted classification experiments on the 20 Newsgroups and
Industry Sector data sets. Table 2.1 shows empirical test error aver-
aged over 10 test/train splits. See appendix A for a full description of
the data sets and the preparations used for each. The techniques per-
form equally well on the 20 Newsgroups data set. Although there are
differences in the way each technique classifies documents, those differ-
ences do not result in large differences in error. Also neither technique
consistently outperforms the other as we vary the amount of training
data.

This is not the case for the Industry Sector data set. The differences
in error between MAP and Bayesian NB are larger and one-sided; MAP
NB has lower error at all levels of training data. Additional analysis
shows that in cases where Bayesian and MAP NB don’t agree, there

14



Industry Sector Training examples per class
52 20 10 3 1

MAP 0.434 0.642 0.781 0.910 0.959
Bayesian 0.486 0.696 0.825 0.932 0.970

20 Newsgroups Training examples per class
800 250 100 30 5

MAP 0.153 0.213 0.305 0.491 0.723
Bayesian 0.154 0.211 0.302 0.490 0.726

Table 2.1: Shown are results of Naive Bayes multi-class classification
using Bayesian and MAP NB on the 20 Newsgroups and Industry Sec-
tor data sets. Errors are the average of 10 trials. The differences in the
20 Newsgroups results are not statistically significant. Bayesian NB
has higher error rates on the Industry Sector data set.

Industry Sector Correct label
Bayesian MAP

Max. term freq. 19.4 29.3

20 Newsgroups Correct label
Bayesian MAP

Max. term freq. 6.43 17.0

Table 2.2: Shown are maximum term frequencies of test documents
when the two classification algorithms disagree. The “Bayesian” col-
umn gives the maximum frequency, averaged over the test documents,
when Bayesian NB gives the correct label and MAP NB does not.
“MAP” gives the statistic for the case that the MAP NB label is cor-
rect and the Bayesian NB label is wrong. Of the disagreements, MAP
is correct when the most frequent word occurs often; Bayesian is correct
when the most frequent word occurs less often.
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is a distinct difference in the frequency of words in the test document.
When MAP produces the correct label, the word with the largest term
frequency occurs more often than the word with the largest term fre-
quency in documents that Bayesian labels correctly. The same trend is
seen in the 20 Newsgroup results, but it does correlate with difference
in error. Table 2.2 summarizes these statistics.

Since we use αk = 1 ∀k for Bayesian NB, any word that does not
occur often in a class of training data will be over-emphasized in the
classification output (compared to MAP NB). But, our choice of {αk}
corresponds to a prior. αk = 1 corresponds to a preference for uniform
parameter vectors—vectors where all words have the same probability.
This isn’t a reasonable prior for English or other languages. A more
appropriate prior would cause only novel words to be over-emphasized.

The poor performance by Bayesian NB is not a fault of the classi-
fication algorithm, but rather a sign that our choice of prior or model
is poor. The Bayesian derivation provides us with a classification rule
that directly incorporates information from the training data and may
be more sensitive to our choice of prior. Future work to better our
choice of model and prior should improve the performance of Bayesian
NB.

2.6 Naive Bayes is a Linear Classifier

MAP Naive Bayes is known to be a linear classifier. In the case of two
classes, +1 and −1, the classification output is

h(d) = log
p(d|θ̂+1)p(+1)

p(d|θ̂−1)p(−1)
(2.17)

= log
p(+1)

p(−1) +
∑

k

fk

(

log
ak +N+1

k

a+N+1
− log

ak +N−1
k

a+N−1

)

= b+
∑

k

wkfk,

(2.18)

where h(d) > 0 corresponds to a +1 classification and h(d) < 0 corre-
sponds to a −1 classification. We use wk to represent the linear weight
for the kth word in the vocabulary. This is identical in manner to
the way in which logistic regression and linear SVMs score documents.
Logistic regression classifies according to

p(y = +1|x,w) = g(b+
∑

k

wkxk), (2.19)
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where p(y = +1|x,w) > 0.5 is a +1 classification and p(y = +1|x,w) <
0.5 is a −1 classification. g(z) = (1+ exp(−z))−1. Similarly, the linear
SVM classifies according to h(x) = b+

∑

k wkxk, assigning class +1 for
h(x) > 0 and class −1 for h(x) < 0. Hence, all three algorithms are
operationally identical in terms of how they classify documents. The
only difference is in the way in which their weights are trained.

This similarity extends to multi-class linear classifiers. Softmax is
the standard extension of logistic regression to the linear case. Given
a multi-class problem with classes {1, . . . ,m}, Softmax computes

zi = bi +
∑

k

wi
kxk (2.20)

for each class and assigns probabilities p(y = i|x,w) = exp(zi)
∑

j exp(zj)
. The

class with the largest zi and hence the largest probability is declared
the label for example x. Similarly the MAP Naive Bayes decision rule
is

Ĥ(d) = argmaxi p(d|θ̂ci) (2.21)

= argmaxi

∑

k

log p(ci) + fk log
ak +N i

k

a+N i
= argmaxi

(

bi +
∑

k

wi
kfk

)

.

(2.22)

Hence, Naive Bayes and Softmax are operationally identical. The ex-
tension of the linear SVM to multi-class also shares this form. The
only distinction between these algorithms is in the way their weights
are trained.

2.7 Naive Bayes Outputs Are Often Over-

confident

Consider a pair of unfair coins. Each comes up heads 60% of the time.
When we count only the times that both coins show the same side,
heads appears 69% of the time. Coins which marginally show heads
90% of the time are heads 99% of the time when both coins show the
same side. Consider casting a spell over our 90% heads coins so that
the second coin always lands on the same side as the first. If we now
model the two coins as being independent and observe a large number
of flips, we would estimate that when both coins land on the same side,
heads shows 99% of the time. In fact, the probability of such an event
is only 90%. The same effect occurs in MAP Naive Bayes.
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(a)

percentile min. posterior
0% 0.05012
11% 0.96486
22% 0.99987
33% 1.00000
44% 1.00000
55% 1.00000
66% 1.00000
77% 1.00000
88% 1.00000
99% 1.00000

(b)

percentile # digits
11% 1
16% 2
20% 3
24% 4
28% 5
31% 6
35% 7
38% 8
40% 9

Table 2.3: Shown are maxcp(c|D, d) values produced by MAP Naive
Bayes on 20 Newsgroup data. (a) shows the smallest value at each of
11 percentile levels. Naive Bayes produced a value of 1 on a majority of
the test data. (b) shows the percentile at which rounding any posterior
to the given number of digits would produce a value of 1. The posteriors
tend to 1 rapidly.

It is rare that words serve as exact duplicates of each other, such
as in our coin example. However, distinguishing between 20 classes
requires a mere 2 word vocabulary and 5 terms per document for cor-
rect classification; all remaining information about the class variable
is either noisy or redundant. Text databases frequently have 10,000
to 100,000 distinct vocabulary words; documents often contain 100 or
more terms. Hence, there is great opportunity for duplication.

To get a sense of how much duplication there is, we trained a MAP
Naive Bayes model with 80% of the 20 Newsgroups documents. We
produced p(c|d,D) (posterior) values on the remaining 20% of the data
and show statistics on maxc p(c|d,D) in table 2.3. The values are highly
overconfident. 60% of the test documents are assigned a posterior of
1 when rounded to 9 decimal digits. Unlike logistic regression, Naive
Bayes is not optimized to produce reasonable probability values. Lo-
gistic regression performs joint optimization of the linear coefficients,
converging to the appropriate probability values with sufficient training
data. Naive Bayes optimizes the coefficients one-by-one. It produces
realistic outputs only when the independence assumption holds true.
When the features include significant duplicate information (as is usu-
ally the case with text), the posteriors provided by Naive Bayes are
highly overconfident.
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Chapter 3

Analysis of Naive Bayes

Parameter Estimates

Having an understanding of how MAP Naive Bayes parameter esti-
mates affect classification is important. The quality of the parameter
estimates directly affects performance. We show that Naive Bayes esti-
mates are consistent; we then investigate their behavior for finite train-
ing data by analyzing their bias and variance. The bias in the estimate
is a direct product of the prior and tends monotonically toward zero
with more training data. The variance peaks when a word is expected
to occur 1-2 times in the training data and falls off thereafter. This
analysis shows that insufficient training examples in one class can neg-
atively affect overall performance. The variance as a whole is the sum
of the variances of the individual components. If a single class variance
is large, the overall variance is also high.

3.1 Consistency

MAP Naive Bayes estimates a vector of parameters, θ̂c for the multino-
mial model. Each individual parameter, θ̂c

k, is the estimated probability
of word wk appearing in a particular position of a class c document. Let
{αk} be the parameters of the Dirichlet prior (α =

∑

k αk), ak = αk−1
(a =

∑

k ak) and let N c
k be the number of occurrences of word wk in

the training documents (N c =
∑

k N
c
k). Then the MAP estimate for

wk is

θ̂c
k =

ak +N c
k

a+N c
. (3.1)
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A basic desirable property of parameter estimates is consistency, or
the convergence of the estimates to the true values when the amount
of data used to make the estimates grows large. Cover and Thomas
describe the method of types as a way to describe properties of empir-
ical distributions [Cover and Thomas, 1991]. Let X be a multinomial
random variable with parameters {θc

k}. Let pX represent the distri-
bution of the parameters. Let pY represent the empirical distribution
when N c samples are taken from X resulting in counts of {N c

k}. Then,
our MAP estimates are θ̂c

k =
ak+Nc

k

a+Nc . The probability of observing such
counts and hence the probability of making such estimates is

p(θ̂c|θc) =
N c!

∏

k N
c
k!

∏

k

(θc
k)

Nk =
N c!

∏

k N
c
k !
2−N(H(pY )+D(pY ||pX)), (3.2)

The mean of our estimate is

θ̂c
k =

ak +N cθc
k

a+N c
, (3.3)

which goes to θc
k as N c → ∞. The variance of our estimate is

σ2
c,k =

N cθk(1 − θc
k)

(a+N c)2
, (3.4)

which goes to zero as N c → ∞. Hence, MAP estimates are consistent;
in the limit, they are unbiased and have zero variance. So, as the size
of the observed data grows large, our estimates converge to the true
parameters.

3.2 Bias

Since we never have infinite training data in practice, it is more impor-
tant to understand the behavior of estimates for finite training data.
For a particular number of observed words, N c, the bias in the estimate
for word wk is

bias(θ̂c
k) =

ak +N cθc
k

a+N c
− θc

k =
ak − aθc

k

a+N c
(3.5)

Hence, for words where θc
k > ak

a
, the expected estimate is smaller and

for θc
k < ak

a
, the expected estimate is larger than the true value. This

is a natural consequence of the choice of a Dirichlet prior. Also, bias
lessens as the amount of training data grows large.
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3.3 Variance

The variance of a parameter estimate yields little insight into the effect
estimates have on classification. Since Naive Bayes is a linear classifier,
a more useful variance quantity to examine is the variance of each
individual term in the classification output. Let fk be the frequency of
word k in the test document (f =

∑

k fk). Then

zc = −f log(a+N c) +
∑

k

fk log(ak +N c
k) (3.6)

is the classification score for class c. The assigned class is the one with
the largest score. The individual terms of the sum are independent
(assuming N c to not be fixed), so

var(zi) =
∑

k

f2
kvar(log(ak +N i

k)). (3.7)

We assume the {fk} to be fixed and that the {N c
k} may vary. The

variance of an individual term is

var(log(ak +N i
k)) = E[(log(ak +N i

k)
2]− E[log(ak +N i

k)]
2. (3.8)

Treating each Nk as a binomial with parameter θc
k, we get

E[log(ak +N i
k)] =

∑

n

log(ak + n)

(

N

n

)

(θc
k)

n
(1− θc

k)
(N−n). (3.9)

Although equation 3.9 is not difficult to compute, we approximate Nk

as a Poisson with λ = θc
k and use Stirling’s formula for n! to arrive at

E[log(ak +N i
k)] =

Nθc
k log(2)

exp(Nθc
k)

+

N
∑

n=2

log(ak + n)√
2πn

exp(n(1 + log(Nθc
k)− logn)−Nθc

k).

(3.10)

We use this formula for the graphs that we present. The Poisson ap-
proximation is good for θc

k << 1, which is generally the case in text.
Figure 3.1 shows plots of the the pmf and variance for a word with

θc
k = 0.0002. var(log(1 + Nk)) is maximized when wk is expected to
occur 1-2 times in the training data. This does not incorporate fk; a
word that occurs 1-2 times in the training data for class c is unlikely
to occur in test documents generated from class c. However, figure 3.1
does give us the ability to compare variances across classes. Let θ+1

k =
0.02 and θ−1

k = 0.0002 be the true parameters for wk for the classes +1
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Figure 3.1: (a) is a plot of the pmf of log(1+Nk) for θ
c
k = 0.0002 where

N = 10000. (b) plots the variance of log(1 + Nk) for θ
c
k = 0.0002 as

we vary N . Note the x-axis log scale. var(log(1+Nk)) peaks when the
word is expected to occur 1-2 times. (b) is representative of all θc

ks.
The plot of var(log(1 + Nk)) peaks near θ

c
k = 1/N and has the same

shape as the one shown.

and −1. If the training data for both classes consists of 10,000 words,
N+1 = N−1 = 10, 000 then the wk contribution to the variance of the
classification output will be much greater for class −1 than for class
+1.

Figure 3.2 shows the variance contribution of individual tokens as-
suming that fk = fθc

k. Words with the largest θc
k contribute the largest

variance to the classification output. fk ≈ fθc
k is only reasonable for

class-independent words and for test documents drawn from class c.
Words with large θc

k values often contribute the greatest amount of
variance to classification outputs, but, a word with small θc

k can easily
contribute a great deal of variance if wk occurs frequently in the test
document.

We can glean from figure 3.1 the effect of additional training data
on classification. It is widely believed that additional training data im-
proves classification. The plot of the variance of log(1+Nk) shows that
for every word, there is a point after which the variance contribution for
that word diminishes with additional training data. Once that point is
passed for most words, the overall variance in the classification output
decreases monotonically. Before this point, output variance may in-
crease with additional training data, but when the amount of training
data is relatively small, bias is a significant factor. For N = 1000 and
a word with θc

k = 0.00002, the estimate may be θ̂c
k = 0.0001, five times

the actual parameter value. When the amount of training data is very
small, bias plays a greater role in affecting classification performance.
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Figure 3.2: Shown is the per-word variance contribution to the clas-
sification output for N = 1000000, f = 300 and various values of θc

k

. We assume that fk = fθc
k. Although var(log(1 + Nk)) is largest

for θc
k = 0.000001, larger values of θc

k yield larger per-word variance
contributions.

Our analysis of variance shows that after a point variance decreases
monotonically for each word. This lessening of variance contributes to
improved classification as the number of training examples increases.

3.4 The Danger of Imbalanced Class Train-

ing Data

An observation we can make from figure 3.1 is that classes with little
observed training data (e.g. 5 documents of 200 words each, N = 1000)
yield high-variance outputs. Few words that are useful for classification
have θc

k > 0.01. Table 3.1 gives a list of frequent, class-predictive words
for the 20 Newsgroups data set. It gives a sense of the frequency with
which words occur. The table shows the word with the greatest log-
odds ratio for each class in the 20 Newsgroups data set. We define a
log-odds ratio as

LogOdds(wk|ci) = p(wk|ci) log
p(wk|ci)
p(wk|¬ci)

= θi
k log

θi
k

∑

j �=i θ
j
k

. (3.11)

Words with high log-odds ratio occur unusually frequently in class i
and occur often within that class.

ForN = 1000, words with θc
k ∈ (0.01, 0.0001) correspond to var(log(1+

Nk)) ≥ 0.05, all relatively large variances. In contrast, when N =
10000, var(log(1 + Nk)) < 0.01 for θc

k = 0.01. Larger amounts of ob-
served data yield even smaller variances for words that occur frequently.
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category word log-odds ratio θ̂k

alt.atheism atheism 0.013 0.0040
comp.graphics jpeg 0.037 0.0073
comp.os.ms-windows.misc windows 0.043 0.020
comp.sys.ibm.pc.hardware scsi 0.033 0.012
comp.sys.mac.hardware mac 0.024 0.012
comp.windows.x window 0.024 0.0091
misc.forsale sale 0.018 0.0076
rec.autos car 0.043 0.017
rec.motorcycles bike 0.045 0.010
rec.sport.baseball baseball 0.016 0.0057
rec.sport.hockey hockey 0.037 0.0078
sci.crypt clipper 0.033 0.0058
sci.electronics circuit 0.010 0.0031
sci.med patients 0.011 0.0029
sci.space space 0.035 0.013
soc.religion.christian god 0.035 0.018
talk.politics.guns gun 0.028 0.0094
talk.politics.mideast armenian 0.039 0.0057
talk.politics.misc stephanopoulos 0.024 0.0034
talk.religion.misc god 0.011 0.011

Table 3.1: For each category in the 20 Newsgroups dataset, the word
with the highest log odds ratio. A larger score indicates a word which
is commonly found in the specified category, but rarely found in other
categories. Words with high log odds ratios are good discriminants for
the one vs. all problem.
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Hence, if one class has little training data, its variance may be much
greater than other classes.

Theorem 3.4.1 Consider a two-class (+1, −1) classification problem.
Let
z+1(d) = log p(d|θ̂+1)p(+1) and z−1(d) = log p(d|θ̂−1)p(−1). Assume
that var(z+1(d)) > var(z−1(d)). Then 2var(z+1(d)) > var(h(d)) >
var(z+1(d)).

Proof: h(d) = log p(d|θ̂+1)p(+1) − log p(d|θ̂−1)p(−1) (as given in
equation 2.18). Since the two terms are independent, the variance of
h(d) is the sum of the variances of the two terms. �

If one class has much higher variance than other classes, that vari-
ance will dominate the variance of the overall classification outputs.
Ample training data will yield estimates that contribute little variance
to the overall output; a dearth of examples in one class will contribute
great variance. Hence, the performance of a Naive Bayes classifier can
easily be dictated by the class with the smallest number of examples.
The benefit that Naive Bayes receives from additional training data is
marginal if the data is not distributed evenly across the classes.
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Chapter 4

Error-correcting Output

Coding

Error-correcting output coding (ECOC) is an approach for solving mul-
ticlass categorization problems originally introduced by Dietterich and
Bakiri [1991]. It reduces the multiclass problem to a group of binary
classification tasks and combines the binary classification results to pre-
dict multiclass labels. Others have experimentally shown that ECOC
can improve text classification with Naive Bayes [Ghani, 2000] [Berger,
1999]. Here, we give detailed results on the 20 Newsgroups and Indus-
try Sector data sets. We explain how our parameter estimate analysis
predicts the success and failure of (MAP) Naive Bayes and its use in
conjunction with ECOC. Certain ECOC classifiers outperform Naive
Bayes. The performance of the binary classifiers in the ECOC scheme
has a great impact on multiclass performance. Those that perform well
do not suffer from too few examples and have relatively good binary
performance. Additionally, we experiment with a linear loss function
and find that it yields performance comparable to that of the best non-
linear loss function that we tried. This is evidence that text classifica-
tion using a bag-of-words representation is a linear problem. Note that
throughout this section when we say “Naive Bayes,” we are referring
to MAP Naive Bayes with Dirichlet hyper-parameters αk = 2 ∀k.

4.1 Introduction

R is the code matrix. It defines the data splits which the binary classifier
is to learn. Ri· is the ith row of the matrix and defines the code for
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class i. R·j is the jth column of the matrix and defines a split for
the classifier to learn. R ∈ {−1,+1}m × {−1,+1}l where m is the
number of classes and l is the number of partitionings (or length of
each code). In a particular column, R·j , −1 and +1 represent the
assignment of the classes to one of two partitions. For this work, we
use three different matrices, the one-vs-all (OVA) matrix, where each
column has one +1 and is otherwise filled with −1 entries, the Dense
matrix, where entries are independently determined by flipping a fair
coin, assigning +1 for heads and −1 for tails and BCH codes, a matrix
construction technique that yields high column- and row-separation
[Ghani, 2000]. We use the BCH codes that Ghani has made available
on-line at http://www.cs.cmu.edu/∼rayid/ecoc.

Let (f1, . . . , fl) be the classifiers trained on the partitionings indi-
cated in the code matrix. Furthermore, let g : � → � be the chosen
loss function. Then, the multiclass classification of a new example, x is

argminc∈{1,...,m}

l
∑

i=1

g(fi(x)Rci). (4.1)

Allwein et al. give a full description of the code matrix classification
framework and give loss functions for various models [2000]. We use
“hinge” loss, g(z) = (1−z)+, for the SVM, since that is the loss function
for which the SVM is optimized. Unlike the SVM, Naive Bayes does not
optimize a loss function. However, we find that the hinge loss function
yields lower error than the 0/1 and logistic loss functions, so we use the
hinge loss for our Naive Bayes ECOC classifier as well.

4.2 Additive Models

ECOC resides within a greater class of models known as additive mod-
els. An additive model for classification has the form

argminc∈{1,...,m}

l
∑

i=1

wific(x), (4.2)

where fic(x) is an arbitrary function of the data and the wi are weights.
ECOC uses uniform (wi = 1 ∀i) weights. The name comes from the fact
that the final output is determined by a (weighted) summing of outputs
of possibly non-linear functions. All algorithms which determine their
final output by voting fall into this class of algorithms. In fact, an
effective way to make use of a collection of experts is to have them
vote. This is very similar to how ECOC works. It creates a handful
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of experts, each of which specializes at partitioning the set of classes
in a particular way. ECOC allows each expert to vote for the set of
classes within which it believes the example to lie. With non-binary
loss functions, these votes are weighted by the confidence of the expert.
The additive aspect imposes a linear constraint on the final output.
This restricts the expressiveness of the output (as a function of the
experts), but also tempers the final output. However, there is no overall
constraint on the expressiveness of the classifier (so long as the experts
are sufficiently expressive).

4.2.1 The relation to boosting

Some algorithms, such as logistic regression, softmax, the linear SVM,
its multiclass extension and MAP Naive Bayes are trivially additive
models because they are linear classifiers. The loss function in ECOC
may make it non-linear even when the individual classifiers are linear.
Another model which is a non-linear additive model is boosting. Boost-
ing shares a similarity with ECOC: it is composed of separately-trained
binary classifiers. The original formulation of boosting, AdaBoost, was
designed to perform only binary classification [Freund and Schapire,
1999]. AdaBoost composes binary classifiers which are experts at differ-
ent parts of the example space by training each classifier with a different
weighted set of examples. In the multiclass case, the creation of experts
can be done by partitioning according to class and/or weighting the in-
dividual examples. ECOC only specifies a partitioning according to
class, whereas multiclass boosting schemes (such as AdaBoost.OC and
AdaBoost.ECC) specify partitionings of both the classes and the ex-
ample space [Freund and Schapire, 1996] [Guruswami and Sahal, 1999].
Multiclass boosting and ECOC are closely related: multiclass boost-
ing is an extension of ECOC. Multiclass boosting specifies a particular
binary learner (although the underlying weak learner is unspecified)
and imposes weights on the loss output of each binary learner. Also,
multiclass boosting algorithms train binary classifiers as a function of
previous classifiers. This is not usually done with ECOC. However, a
main thrust of Boosting is its creation of various meaningful binary
sub-problems. In the multiclass case, ECOC does this by partition-
ing examples according to class. The classes give meaningful locations
in which to draw boundaries. It is not clear that multiclass boosting
schemes offer any advantage over a strong binary classifier being used
with ECOC.
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4.3 The Support Vector Machine

The Support Vector Machine is a classifier, originally proposed by Vap-
nik, that finds a maximal margin separating hyperplane between two
classes of data [1995]. There are non-linear extensions to the SVM, but
Yang found the linear kernel to outperform non-linear kernels in text
classification. In our own informal experiments, we also found that
linear performs at least as well as non-linear kernels. Hence, we only
present linear SVM results. We use the SMART ‘ltc’ transform and
use the SvmFu package for running experiments [Rifkin, 2000].

We introduce the SVM and show results on the SVM to contrast the
Naive Bayes performance. The SVM is known to perform well in the
case of imbalanced training data, whereas theorem 3.4.1 gives us reason
to believe that Naive Bayes does not handle imbalanced training data
well. The SVM results give us a baseline with which to grade Naive
Bayes’ performance.

4.4 Experiments

Table 4.1 shows the results of our ECOC experiments. Appendix A
describes the preparations we used for each data set. All of our results
are averaged over 10 random train/test splits of the data. The SVM
consistently performs better than Naive Bayes as the binary classifier
of an ECOC scheme. But, the degree of difference depends both on the
matrix type and the data set.

4.4.1 The success and failure of Naive Bayes

Figure 4.1 compares the performance of ECOC/OVA with regular NB
and ECOC/BCH. Note that across both data sets, the performance of
ECOC/OVA and regular NB follows a consistent pattern across differ-
ent train set sizes: regular NB consistently performs slightly worse than
ECOC/OVA. This harkens back to Berger’s claim that ECOC/OVA
classification with Naive Bayes is very similar to regular Naive Bayes
classification [Berger, 1999]. In fact, the “one” components of the bi-
nary classifiers are simply the individual components of the regular
Naive Bayes classifier. OVA adds outputs to compare against (the
“all”). This additional information allows OVA to outperform NB
somewhat. OVA is innately tied to the performance of regular Naive
Bayes. But, what causes regular Naive Bayes to perform poorly?

To understand the performance of regular Naive Bayes, we return
to theorem 3.4.1. Theorem 3.4.1 gives us the intuition that a regular
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20 News 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA 0.131 0.146 0.167 0.199 0.214 0.277 0.311 0.445
Dense 15 0.142 0.176 0.193 0.222 0.251 0.282 0.366 0.431
BCH 15 0.145 0.169 0.196 0.225 0.262 0.311 0.415 0.520
Dense 31 0.135 0.168 0.180 0.214 0.233 0.276 0.348 0.428
BCH 31 0.131 0.153 0.173 0.198 0.224 0.259 0.333 0.438
Dense 63 0.129 0.154 0.171 0.198 0.222 0.256 0.326 0.407
BCH 63 0.125 0.145 0.164 0.188 0.213 0.245 0.312 0.390

Ind. Sec. 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA 0.072 0.357 0.176 0.568 0.341 0.725 0.650 0.885
Dense 15 0.119 0.191 0.283 0.363 0.461 0.542 0.738 0.805
BCH 15 0.106 0.182 0.261 0.352 0.438 0.518 0.717 0.771
Dense 31 0.083 0.145 0.216 0.301 0.394 0.482 0.701 0.769
BCH 31 0.076 0.140 0.198 0.292 0.371 0.462 0.676 0.743
Dense 63 0.072 0.135 0.189 0.279 0.363 0.453 0.674 0.745
BCH 63 0.067 0.128 0.176 0.272 0.343 0.443 0.653 0.734

Table 4.1: Above are results of multiclass classification experiments on
the 20 Newsgroups (top) and Industry Sector (bottom) data sets. The
top row of each table indicates the number of documents/class used
for training. The second row indicates the binary classifier. The far
left column indicates the multiclass technique. Entries in the table are
classification error. We thank Ryan Rifkin for providing us with the
SVM results.
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Figure 4.1: Shown are multiclass errors for three different classification
algorithms. OVA refers to ECOC with the one-vs-all matrix. BCH
refers to ECOC with the BCH-63 matrix. Naive Bayes is used as the
binary classifier for both OVA and BCH in this plot. NB refers to
regular Naive Bayes. Note that OVA and NB follow similar trends;
OVA outperforms NB by a small margin. BCH greatly outperforms
OVA and NB on Industry Sector but only marginally outperforms them
on 20 Newsgroups. Note the log scale on both axes.

Naive Bayes classifier is only good as its worst component. Also, since
additional training examples reduce variance in a Naive Bayes classifier,
the class with the fewest examples is likely to dictate the performance
of the overall classifier. Unlike 20 Newsgroups, the training data in
Industry Sector is not even across classes. The class with the fewest
training examples has 12. The class with the most has 52 training
examples. For the “52” and “20” training levels, some classes use fewer
than 52 and 20 training examples, respectively. This correlates well
with the improved performance of ECOC/BCH in figure 4.1. The BCH
matrix shows the greatest gains over OVA and NB when the largest
number of training examples is used. This is the case where there is
the largest disparity in number of training examples used for different
classes and is also the case where theorem 3.4.1 is most applicable.

4.4.2 Multiclass error is a function of binary per-

formance

The performance of an ECOC classifier is affected by a number of fac-
tors: (1) binary classifier performance, (2) independence of the binary
classifiers, and (3) the loss function. Of these, we find binary perfor-
mance to be the most influential in multiclass text classification. We
use error to measure multiclass performance. However, we avoid binary
error as a measure of binary performance. Figure 4.2 shows why. Ad-
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Figure 4.2: Multiclass error improves as the number of training exam-
ples increases, but binary error improves marginally for Industry Sector
and degrades for 20 Newsgroups. Shown is the performance of ECOC
with OVA and Naive Bayes as the binary classifier. Since the OVA bi-
nary classifiers have a lop-sided example distribution, guessing achieves
a binary error of 0.05 for 20 Newsgroups and 0.01 for Industry Sector.
Binary error is only loosely tied to binary classifier strength. Note the
log scale on both axes.

Guess
+1 −1

True +1 tp fn
Label −1 fp tn

Table 4.2: The performance of a binary classifier can be described with
a 2x2 confusion matrix, as shown. Two letters describe each entry. “t”
stands for true. “f” is false. “p” is positive. “n” is negative. The
detection rate is tp/(tp+fn). The false alarm rate is fn/(tp+fn). The
miss rate is fp/(tn+fp). ROC breakeven is the average of the alarm
and miss rates when the difference between them is minimized.
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Figure 4.3: Shown is a comparison between ROC breakeven and mul-
ticlass error of ECOC using a BCH-63 matrix and the SVM and Naive
Bayes as the binary classifier. We see that ROC breakeven largely
dictates multiclass error. Trends in the ROC breakeven curves are
reflected in the multiclass error curves. The maximum number of ex-
amples/class is used. Note the log scale on both axes.

ditional training examples yields improved multiclass error, but binary
error rises and then falls using 800 training examples/class on the 20
Newsgroups data set. The OVA matrix partitions examples very un-
evenly, assigning most examples to a single class. Hence, error mainly
judges the classifiers performance on examples of that class. A better
measure is one that evenly weights performance on the two classes. We
propose ROC breakeven as such a measure. Table 4.2 shows terms used
to describe the output of a classifier. We define the ROC breakeven
as the average of the miss and false alarm rates at the point where
the difference between false alarm rate and the miss rate is minimum.
Note that unlike precision-recall breakeven, the ROC breakeven is al-
ways achievable. We achieve different rates by modifying the bias term
of the classifier. ROC breakeven selects the bias such that the clas-
sifier performs as well on examples of class +1 as examples of class
−1. ROC breakeven allows us to better judge the strength of a binary
classifier when the example distribution is uneven. When the example
distribution is even, ROC breakeven is nearly identical to binary error.

Figure 4.3 gives a comparison between multiclass error and ROC
breakeven for ECOC classification with a BCH-63 matrix. The SVM
achieves lower ROC breakeven on both data set and correspondingly
achieves lower multiclass error. The figure makes the relationship be-
tween ROC breakeven and multiclass error clear. On 20 Newsgroups,
there is a relatively consistent relationship between SVM and NB ROC
breakeven. The gap between the two remains constant as the number
of training examples increases. This is mirrored in the multiclass error.
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Figure 4.4: Shown is ROC breakeven and multiclass error for ECOC
with the OVA matrix. Changes in ROC breakeven are directly re-
flected in multiclass error. Multiclass error changes gradually for 20
Newsgroups, but trends in ROC breakeven are evident in the multi-
class error. The maximum number of examples/class is used. Note the
log scale on both axes.

The SVM outperforms NB by a consistent margin. On Industry Sec-
tor, ROC breakeven is close at 3 training examples/class, but quickly
diverges. Multiclass error shows the same pattern. SVM and NB mul-
ticlass errors are close at 3 examples/class, but at 52 examples/class,
the SVM multiclass error is just over half that of the NB multiclass
error. The performance of the binary classifier has great impact on the
multiclass performance.

The trends seen in ECOC classification with a BCH-63 matrix are
repeated in the OVA matrix results. Figure 4.4 shows these results. On
Industry Sector, SVM ROC breakeven improves more quickly than NB
ROC breakeven as the number of training examples increases. Multi-
class error follows in suit, decreasing to an error of 0.072 at a binary
ROC breakeven of 0.036. Naive Bayes lags behind with a multiclass
error of 0.357 at a binary ROC breakeven of 0.282. The results on
20 Newsgroups are similar, although large differences in binary ROC
have less of an effect on multiclass error. Lower ROC breakeven yields
lower multiclass error and as the ROC breakevens of the SVM and NB
converge, so do their multiclass errors.

The plots in figure 4.4 show that there are clearly factors other than
binary performance at work. For example, an ROC breakeven of 0.282
for Naive Bayes on the Industry Sector data set (52 examples/class)
yields a multiclass error of 0.357, while an ROC breakeven of 0.264 for
the SVM (3 examples) yields multiclass error of 0.650. The SVM has
higher multiclass error even though its ROC breakeven is lower. This
is due to correlation between binary classifiers. When there are only 3
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20 News 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.015 0.039 0.021 0.027 0.030 0.042 0.044 0.049
OVA/ROC 0.043 0.059 0.059 0.146 0.078 0.262 0.118 0.375
BCH/Error 0.079 0.101 0.105 0.121 0.135 0.151 0.194 0.224
BCH/ROC 0.081 0.101 0.108 0.127 0.138 0.163 0.193 0.237

Ind. Sec. 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.003 0.008 0.005 0.009 0.007 0.009 0.009 0.010
OVA/ROC 0.036 0.282 0.075 0.378 0.141 0.428 0.264 0.473
BCH/Error 0.062 0.100 0.137 0.176 0.218 0.253 0.347 0.376
BCH/ROC 0.063 0.099 0.137 0.175 0.219 0.253 0.348 0.378

Table 4.3: Shown are binary errors and ROC breakeven points for the
binary classifiers trained according to the matrix columns. Results for
the Dense matrix are omitted since they are nearly identical to the
BCH results. Table entries are averaged over all matrix columns and
10 train/test splits. Error is a poor judge of classifier strength for the
OVA matrix. Error increases with more examples on 20 Newsgroups.
Note that error and ROC breakeven numbers are very similar for the
BCH matrix.
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20 Newsgroups Hinge Linear
OVA/SVM 0.131 0.131
OVA/NB 0.146 0.146
BCH 63/SVM 0.125 0.126
BCH 63/NB 0.145 0.144

Industry Sector Hinge Linear
OVA/SVM 0.072 0.072
OVA/NB 0.357 0.357
BCH 63/SVM 0.067 0.067
BCH 63/NB 0.128 0.127

Table 4.4: Shown are multiclass errors on two data sets and a variety
of ECOC classifiers. Errors are nearly identical between the hinge and
linear loss functions. Although ECOC provides opportunity for non-
linear decision rules through the loss function, the use of a non-linear
loss function provides no practical benefit.

examples/class, the SVM classifiers produce identical labels more often
than when more training data is available. For example, on average, a
pair of 3 example SVM binary classifiers (trained using an OVA split of
the data) produce the same label 99.77% of the time. The average pair
of NB binary classifiers trained with 52 examples produce the same
label 99.54% of the time. Greater independence between classifiers
allows lower multiclass error in an ECOC scheme when the binary
classifiers show higher ROC breakeven scores.

The full binary error and ROC breakeven results can be found in
table 4.3. As we have seen in the figures and as can be seen in the
table, ROC breakeven is well correlated with multiclass error. Other
factors are at work—identical NB and SVM ROC breakevens does not
yield identical multiclass errors. However, trends in ROC breakeven are
clearly reflected in multiclass error. This is not the case with binary
error, at least for the OVA matrix (where ROC breakeven and binary
error differ). ROC breakeven is clearly a good indicator of multiclass
performance as it better judges the strength of the classifier when the
example distribution is skewed.
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4.4.3 Non-linear loss does not affect ECOC perfor-

mance

Another factor which can greatly impact ECOC multiclass error is
the loss function. We use the hinge function for our experiments,
g(z) = (1 − z)+, which exhibits a non-linearity at z = 1. Using this
loss function allows ECOC to express functions that linear classifiers,
such as Naive Bayes and the linear SVM, cannot express. However,
the fact that ECOC is non-linear does not provide empirical benefit,
at least in our experiments. Table 4.4 shows results of experiments
that we ran to compare the hinge loss function to a trivial linear loss
function, g(z) = −z. We find practically no difference in multiclass
error compared to using the hinge loss function. The results we show
use the maximum number of training examples (up to 52/class for In-
dustry Sector and 800/class for 20 Newsgroups), but results are similar
when fewer training examples are used. The confidence information
contributed by the loss function is important for text classification, but
non-linearity provides no practical benefit. The linear loss function
yields a completely linear system (since both our NB and SVM classi-
fiers are linear). This contributes evidence that text classification with
bag-of-words representation is a linear problem.
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Chapter 5

Feature Selection

Feature selection is an essential part of text classification. Document
collections have 10,000 to 100,000 or more unique words. Many words
are not useful for classification. Restricting the set of words that are
used for classification makes classification more efficient and can im-
prove generalization error. We describe how the application of Infor-
mation Gain to feature selection for multiclass text classification is
fundamentally flawed and compare it to a statistics-based algorithm
which exhibits similar difficulties. A text feature selection algorithm
should select features that are likely to be drawn from a distribution
which is distant from a class-neutral distribution. Neither of the two
algorithms do this. We describe a framework for feature selection that
encapsulates this notion and exposes the free parameters which are in-
herent in text feature selection. Our framework provides a basis for
new feature selection algorithms and clarifies the intent and design of
such algorithms.

5.1 Information Gain

Information gain (IG) is a commonly used score for selecting words
for text classification [Joachims, 1997; McCallum and Nigam, 1998;
Yang and Pedersen, 1997; Mitchell, 1997]. It is derived from informa-
tion theoretic notions. For each word, IG measures the entropy differ-
ence between the unconditioned class variable and the class variable
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conditioned on the presence or absence of the word,

IG = H(C)−H(C|Wk) =
∑

c∈C

∑

wk∈{0,1}

p(c, wk) log
p(c|wk)

p(c)
. (5.1)

This score is equivalent to the mutual information between the class and
word variables, IG = I(C;Wk). Hence, this score is sometimes called
mutual information. The probabilities correspond to individual word
occurrences. wk = 1 corresponds to the occurrence of word wk. wk = 0
corresponds to the occurrence of some other word. We treat every
token in the data as a binomial event and estimate the probabilities
in equation 5.1 via maximum likelihood. Let f c

k be the number of
occurrences of word wk in class c (fk =

∑

c f
c
k). Let N c =

∑

k f
c
k

(N =
∑

c N
c). Then

IG =
∑

c∈C

f c
k/N log

f c
k/fk

N c/N
+ (N c − f c

k)/N log
(N c − f c

k)/(N − fk)

N c/N
.

(5.2)

For feature selection, IG is computed for every word and words with
larger scores are retained.

5.2 Hypothesis Testing

A desirable property of a feature is for its distribution to be highly
dependent on the class. Words that occur independent of the class give
no information for classification. A natural approach to developing a
metric for filtering features is to determine whether each word has a
class-independent distribution and to eliminate the word if it has such a
distribution. In statistics, the problem of determining whether data is
generated from a particular distribution is known as hypothesis testing.
One proposes a model and parameters and ranks data according to its
likelihood.

For text feature selection, we call this feature selection score HT. We
consider a single word, wk, and treat its fk appearances in the training
data as fk draws from a multinomial where each event is a class label.
Our hypothesized parameters are p̃ = {N c/N}. These parameters
correspond to word occurrence being irrelevant of class, i.e. θ1

k = · · · =
θm

k in the multinomial model. Our test statistic, which determines the
ordering of data, is the difference in log-likelihoods between a maximum
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likelihood estimate, p̂ = {f c
k/fk}, and the hypothesized parameters,

HT (p̂, p̃) = 2[l(p̂)− l(p̃)] = 2
∑

c

f c
k log

f c
k/fk

N c/N
. (5.3)

HT > 0 always and larger HT values correspond to data that is less
likely to have been generated by the proposed model. We keep words
with large HT values and discard words with small HT values. Note
that this score is similar to the IG score.

5.3 The Generalization Advantage of Sig-

nificance Level

It is common for feature selection to be performed in terms of the
number of features. For example, when using the IG score, one does
not usually select an IG cutoff and eliminate all words with IG score
less than that. Rather, one ranks words by their IG score and retains
the top N scoring words. However, the number of words that should be
retained for a particular application varies by data set. For example,
McCallum and Nigam found that the best multinomial classification
accuracy for the 20 Newsgroups data set was achieved using the entire
vocabulary (62,000+ words) [1998]. In contrast, they found that the
best multinomial performance on the “interest” category of the Reuters
data set was achieved using about 50 words. An advantage of the HT
score is that the number of words to be selected can be specified in
terms of a significance level. Let HTcut be the chosen cutoff HT score.
The significance level corresponding to HTcut is

SL = Pr{HT (p̂, p̃) ≥ HTcut| p̂ is a sample estimate of p̃}. (5.4)

p̃ is fixed; p̂ is variable. SL = 0.10 selects words with empirical distribu-
tions that occur in only 10% of draws from the hypothesis distribution;
selected words are atypical of the class-neutral distribution. This is
more intuitive than simply selecting an HT or IG cutoff and may allow
generalization across different data sets and conditions. Using signifi-
cance level to choose a number of words for feature selection gives an
easy-to-interpret understanding of what words are retained.
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5.4 The Undesirable Properties of IG and

HT

The application of IG and HT to text classification ignores critical
aspects of text. Most words occur sparsely and only provide informa-
tion when they occur. IG expects a word to provide information when
it does not occur. Both IG and HT have a tendency to give higher
scores to words that occur more often. For example, if p̃ = {1/2, 1/2},
p̂ = {2/5, 3/5} and fk = 10000, HT ≈ 201.3. More than 99.9% of
draws from p̃ have a HT score less than 201.3. However, words which
are devoid of class information have such empirical distributions. They
are given a high score by IG and HT because they provide a significant
reduction in entropy and there is little chance that they could have been
drawn from the hypothesis distribution. The fact that the true distri-
bution is probably very close to the hypothesized distribution is ignored
by IG and HT. A word that occurs just a few times (e.g. fk = 7) can
never have a high IG or HT score because its non-occurrences provide
little information and since the most extreme empirical distribution is
a relatively common draw from the hypothesis distribution. For exam-
ple, the chance of observing p̂ = {1, 0} or p̂ = {0, 1} from 7 draws of a
multinomial with parameters p̃ = {1/2, 1/2} is 2/27 ≈ 0.0156.

The appearance of a single word can sometimes be used to predict
the class (e.g. “Garciaparra” in a “baseball” document). However, a
non-appearance is rarely informative (e.g. “Garciaparra” won’t appear
in all “baseball” documents). A text feature selection algorithm should
retain words whose appearance is probably highly predictive of the
class. In this sense, we want words that are discriminative.

5.5 Simple Discriminative Feature Selec-

tion

A simple score for selecting discriminative features is

S = argmaxc p(c|wk), (5.5)

where p(c|wk) is the probability of the class being c given the appear-
ance of word wk. This gives the largest score to words which only
appear in a single class. If such a word appears in a document, we
know without a doubt what class that document belongs to. We can-
not find p(c|wk), but we can make an estimate of it based on p̂. A
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p = {1/2,1/2}

p = {1,0}

ε
p = {2/3,1/3}

p = {8/9,1/9}

p = {5/6,1/6}

Figure 5.1: Our new feature selection framework views text feature
selection as a problem of finding words (their empirical distribution
represented by p̂) which are unlikely to have a true distribution, p,
within ε of the class independent distribution, p̃. The dashed arrows
point to distributions from which p̂ could have been drawn.

MAP estimate with Dirichlet {αc = 2} prior gives us

S = argmaxc

f c
k + 1

fk +m
. (5.6)

The setting of these hyper-parameters encode a preference for the uni-
form distribution, but there is no reason to believe that other choices
are not more appropriate. The choice of prior is important as it serves
as a measure of confidence for the empirical distribution. If the prior
is a Dirichlet that prefers the class-neutral distribution over all others,
{αc = cN c/N}, the estimate of p for a word lies on the line connecting
p̂ and p̃. The prior dictates how close to p̃ the estimate is for a given
number of draws.

5.6 A New Feature Selection Framework

The simple score we describe selects discriminative features, but is lim-
iting as it imposes a specific distance metric. We describe a framework
for text feature selection that exposes parameters of a feature selection
method which are not always made explicit.

Figure 5.1 gives a visual description of this framework. To develop
the framework, we extend HT in two important ways. First, we intro-
duce an ε-ball around the hypothesis distribution. This serves to define
distributions that are nearly class-independent. Second, we define a
metric for measuring distances between distributions. This is used to
determine the distribution in the ε-ball which is nearest to the empir-
ical distribution. Let pnear be the distribution within the ε-ball which
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is nearest to p̂. HT judges the possibility of p̂ being drawn from p̃. In
the new framework, we evaluate the probability of p̂ being drawn from
pnear. We select words that are likely to have distributions outside of
the ε-ball—distributions which are far from the class-independent dis-
tribution. So, the new feature selection framework has as parameters

• ε, to define a set of distributions close to p̃,

• a metric, d(p, q), to determine pnear, and

• a significance level, SL, for comparing empirical and true distri-
butions.

As before, we use a hypothesis test score to define significance level,

NHT (p̂, pnear) = 2[l(p̂)− l(pnear)]. (5.7)

Given a cutoff choice for NHT, the significance level is defined as

SL = Pr{NHT (p̂, pnear) > NHTcut| p̂ is a sample estimate of pnear}.
(5.8)

A word (p̂) is selected iff NHT (p̂, pnear) > NHTcut where NHTcut is
defined by the chosen significance level and pnear is the distribution
in the ε-ball that is closest to p̂ (defined by d(p̃, pnear)). Since words
with empirical distributions near p̃ are discarded, a smaller cutoff and
larger significance level can be used. Thus, NHT will include more
discriminative words than IG or HT for the same number of selected
features.

This new framework exposes the fundamental parameters variables
in a text feature selection scheme where only word appearances are
used. ε compensates for the fact that words are not truly drawn from a
multinomial by eliminating words that are close to the class-neutral dis-
tribution. SL allows the user to select the amount of evidence required
to show that a word is not drawn from a class-neutral distribution.
d(p, q) defines the closeness of two distributions and specifies (along
with ε) to which distribution empirical distributions should be com-
pared. This new framework selects words that are likely to be drawn
from a discriminative distribution. Unlike HT and IG, it accounts for
the fact that text is not a multinomial and empirical distributions that
are close to the class-neutral distribution are unlikely to be informative
with respect to the class variable.
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Chapter 6

Conclusion

The focus of this thesis has been the application of Naive Bayes to
multiclass text classification and has resulted in several new insights.
Our parameter estimate analysis shows that Naive Bayes performs
poorly when one class has relatively few examples. We also empirically
showed that ECOC performance is mainly a result of binary perfor-
mance. When the binary classifiers in ECOC have sufficient examples,
ECOC performs much better than regular Naive Bayes. Furthermore,
we showed that a commonly-used text feature selection algorithm is
not good for multiclass text classification because it judges words by
their non-appearances and has a bias to words that appear often. We
proposed to select features by whether or not their distribution is dis-
criminative and gave a framework which exposes the free parameters
in such a scheme.

In terms of future work, the choice of the prior can greatly affect
classification, especially for words with few observations, but its choice
is not well understood. Better selection of the prior may lead to im-
proved classification performance. Moreover, we along with others have
observed that linear classifiers perform as well or better than non-linear
classifiers on text classification with a bag-of-words representation. De-
termining whether this is generally true and understanding why this is
the case is important. In our ECOC experiments, the performance of a
particular matrix varied by data set and the amount of training data.
Additional gains may be possible by developing algorithms to succes-
sively tune the columns of the ECOC matrix to the specific problem.
We also envision to be able to use unlabeled data with EM to counter
the limiting effect of classes with only a few labeled examples.
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Appendix A

Data Sets

For our experiments, we use two different commonly used data sets
[Yang and Liu, 1999; Joachims, 1998; McCallum and Nigam, 1998;
Berger, 1999; Ghani, 2000].We use McCallum’s rainbow to pre-process
the documents [1996].

20 Newsgroups is a data set collected and originally used for text
classification by Lang [1995b] [Lang, 1995a]. It contains 19,974 non-
empty documents evenly distributed across 20 categories, each repre-
senting a newsgroup. We remove all headers, UU-encoded blocks and
words which occur only once in the data. The vocabulary size is 62061.
We randomly select 80% of documents per class for training and the
remaining 20% for testing. This is the same pre-processing and split-
ting as McCallum and Nigam used in their 20 Newsgroups experiments
[McCallum and Nigam, 1998].

The Industry Sector data is a collection of corporate web pages
organized into categories based on what a company produces or does
[Nigam, 2000]. There are 9619 non-empty documents and 105 cate-
gories. We remove headers, prune stoplist words and words that occur
only once. We include HTML for our experiments. However, we find
that regular Naive Bayes and ECOC with OVA and Naive Bayes do
better when HTML is first removed. The difference does not change our
conclusions, but is of note. Our vocabulary size is 55197. We randomly
select 50% of documents per class for training and the remaining 50%
for testing. We create subsets of the training set to observe the effects
of varying amounts of training data. This is the same pre-processing
and splitting as Ghani used in his Industry Sector experiments.

Text classification experiments often include a feature selection step
which may improve classification. McCallum and Nigam performed

45



feature selection experiments on a modified version of the Industry
Sector data set and the 20 Newsgroups data set; in neither case did
feature selection significantly improve classification [1998]. In our own
experiments, we found information gain feature selection to not improve
classification. We use the full vocabulary for all of our experiments.
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