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Abstract

Author: Paul N. Bennett
Title: Text Categorization Through Probabilistic Learning: Applications to Recommender Systems
Supervising Professor: Raymond J. Mooney, Ph.D.

With the growth of the World Wide Web, recommender systems have received an increasing amount
of attention. Many recommender systems in use today are based on collaborative �ltering. This
project has focused on LIBRA, a content-based book recommending system. By utilizing text
categorization methods and the information available for each book, the system determines a user
pro�le which is used as the basis of recommendations made to the user. Instead of the bag-

of-words approach used in many other statistical text categorization approaches, LIBRA parses
each text sample into a semi-structured representation. We have used standard Machine Learning
techniques to analyze the performance of several algorithms on this learning task. In addition,
we analyze the utility of several methods of feature construction and selection (i.e. methods of
choosing the representation of an item that the learning algorithm actually uses). After analyzing
the system we conclude that good recommendations are produced after a relatively small number of
training examples. We also conclude that the feature selection method tested does not improve the
performance of these algorithms in any systematic way, though the results indicate other feature
selection methods may prove useful. Feature construction, however, while not providing a large
increase in performance with the particular construction methods used here, holds promise of
providing performance improvements for the algorithms investigated. This text assumes only minor
familiarity with concepts of arti�cial intelligence and should be readable by the upper division
computer science undergraduate familiar with basic concepts of probability theory and set theory.
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1 Introduction

The growth of the World Wide Web has brought to nearly everyone's attention a trend that
has been steadily increasing in recent years; namely, a jump in the amount of digital information
available, but a lack of e�ective access to this information, has prompted an increase in development
of recommender systems. A recommender system is a system that suggests items (e.g. records,
books, news articles, pictures, etc.) of interest to the user (Maes, 1994; Resnik & Varian, 1997). The
majority of systems in existence are based on collaborative �ltering. These collaborative �ltering
systems make recommendations by matching users with other \like-minded" users where \like-
minded" is indicated by correlations among user ratings of items. This approach tends to break
down when (a) the system does not know of any similar users for a given user, (b) \marginal" items
fail to be rated by enough users, and (c) \new" items cannot be recommended until others have
rated them.

In contrast, a content-based recommender builds a pro�le of a user based on the content of
the items and the user's ratings (Balabanovic & Shoham, 1997). This allows the system to make
recommendations to a user based solely on that user's interests. Our prototype system applies text
categorization learning methods to items with semi-structured text descriptions in order to make
recommendations to the user. Other content-based recommenders that use text categorization have
been used to recommend web pages (Pazzani, Muramatsu, & Billsus, 1996) and Usenet messages
(Lang, 1995). The system developed for this research is dubbed LIBRA (Learning IntelligentBook
Recommending Agent) and was conceived as an interdisciplinary project between Ray Mooney of
the UT-Austin Department of Computer Sciences and Loriene Roy of UT-Austin Library and
Information Sciences. Currently LIBRA operates by building a database of books retrieved from
web pages at Amazon.com (the current recommender at Amazon.com appears to be based on
collaborative �ltering). These web pages contain semi-structured text descriptions of books. The
system, however, can be applied to any semi-structured samples of text. A user provides an integer-
rating in the range of 1 - 10. The system uses these ratings to generate a user pro�le.

Most other content-based systems that use text categorization do not exploit semi-structured
text that may appear in the data. It is common for many text-categorization approaches to use a
bag-of-words method which represents a text sample as an unordered set of all words appearing in
the text (regardless of position). LIBRA, however, uses a simple pattern-based extraction method
to identify values for various slots, e.g. Author, ISBN, Price, etc. The book is represented as a
group of set-valued features (Cohen, 1996a, 1996b) where each slot is a feature. The value of a slot
is the set of words that occur in the value portion of the pattern for the slot. Currently not all of
the slots extracted are used for learning. By taking advantage of a semi-structured representation,
the system is allowed the latitude to favor more informative types of information (e.g. An author's
name occurring in one slot, e.g. \AUTHOR: J.R.R. Tolkien", could theoretically carry more weight
than when it appears in a less meaningful slot, \REVIEW: Best books since J.R.R. Tolkien's ...").

Since most recommender systems output a ranked list of samples, it is more important to assess
the e�ectiveness of the ranking produced rather than a simple category prediction (such as \like"
or \dislike") or even strict scores. The performance metric used, Spearman's ranked correlation
coe�cient, actually evaluates the quality of the ranking. It accomplishes this by correlating the
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ranking of items by user scores to the ranking of items by system predictions.
The prototype system was developed previous to this research|that is, the software tools had

already been constructed for: downloading and extracting text from web pages; learning with
the Naive Bayes algorithm extended for set-valued features; and learning with the Weighted Bi-
nary Naive Bayes algorithm. The current research involved: constructing data sets appropriate
for performance evaluation; integrating the system into an external testing system; development
of the 10-Ratings learning algorithm (described below); addition of alternate feature construction
methods (described below); development of the distinction between rating accuracy and ranking
accuracy; investigation and software construction of a testing metric appropriate for evaluating
ranking accuracy; and systematic analysis of the learning algorithms' performance, feature con-
struction methods, and feature selection e�cacy.

The remainder of the paper is organized as follows: Section 2 provides general background
information needed to understand the methods applied in the research and the results reported
here; Section 3 gives a complete description of the system; Section 4 details the experimental
setting, the results obtained, and a discussion of the results; Section 5 discusses future work that
could extend the research, and section 6 summarizes the paper.

2 Background

2.1 Machine Learning

In general, learning is the use of experience in such a way that performance at a certain task is
greater with that experience than without it (Mitchell, 1997). Machine Learning seeks to construct
systems that have the ability to automatically generalize from their experience in a manner that
increases performance at a given task. However, in order to scienti�cally analyze a system's per-
formance, we seek to capture certain notions such as what it means for a system's performance
to increase, when it can be said that one system experimentally outperforms another, and how a
di�erence in performance is judged to be signi�cant. To this end, the �eld of Machine Learning

has standard tools to use when assessing a system.
Usually a learning system's experience comes in the form of training examples. Sometimes

these examples carry useful tags of information provided by a \teacher" (either the user or another
software system) such as a category associated with the example, an underlying concept with which
it corresponds, a score, or other information which the learner can possibly make use of during the
process of learning (also called training). In other cases, the examples come without any additional
information provided by an outside source. The former case is called supervised learning and the
latter unsupervised (Russell & Norvig, 1995).

In order to judge the performance of the system, a learning curve is plotted with the number of
training examples on the x-axis and some performance metric on the y-axis (where an increase in
performance is shown by an increase in the y value). Several features of this curve are indicative
of the system's properties. The �rst of these is the rate at which the curve climbs to a high
value. A very steep curve means that the system requires only a small number of values before its
ability to generalize from these examples leads to signi�cant performance gains. This is particularly
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important when obtaining examples is expensive (whether the resource expense is computational,
monetary, or user time), as it means the system will \cost" little to perform well. Another major
feature of a learning curve is the asymptotic height of the curve on the y-axis; typically this point
comes at the maximum number of training examples. This part of the curve is an indicator of the
best performance generally obtainable from a system.

In order to compensate for the random possibility that a system performed well because of
the particular kind or order of the training examples, the system is typically run n times and the
average of the performance criteria over the n times is used in constructing the learning curves. To
further ensure that this is not a skewed sampling, the choice of the training examples to use in these
n trial runs are usually chosen by randomly partitioning the x number of examples into n subsets
with x

n
examples in each partition; each subset is used as the \test" examples (the examples that

will be used to judge system performance) for exactly one of the trials and the remaining x � x
n

are used as the training examples during that trial. Thus each example is used as a test example
once and a training example n� 1 times. This process is termed n-fold cross-validation (Mitchell,
1997)|the standard choice of n in Machine Learning is 10.

As mentioned above, the average of all the trial runs on some metric(s) is used as an indicator
of the systems performance. In order to compare two such averages, a standard statistical tool,
Student's t, is used (Spatz & Johnston, 1984; Mitchell, 1997). Student's t (t-test) allows one to
judge whether the di�erence in two means is signi�cant at a certain con�dence level, p. A smaller p
corresponds to an increased con�dence that the di�erence is signi�cant; typically con�dence scores
of p > 0:05 (also referred to as below 95% con�dence) are considered insigni�cant. When choosing
the metric that will later be compared with the t-test, it is important that the metric measure an
aspect of the system relevant to the task performed.

2.2 Recommender Systems

A recommender system uses items rated by the user to suggest new items that the user will like.
While recommender systems have been used in AI for sometime, their widespread investigation and
use has come only recently with the explosion of electronic data which has inundated nearly every
computer user. Users seldom have enough time to review all of the information that is available to
them, therefore a recommender system can prove extremely useful in prioritizing and �ltering the
information at which users will look.

In order for a system to be usable as a recommender system, however, it must not only perform
well, but it should possess several other desirable properties. These are: (1) A user should be allowed
to change a rating|either to a di�erent value or completely withdrawing the rating. (2) The user
should be able to extend the current set of rated examples with new rated examples. (3) A user's
request for recommendations from the system would be processed within a reasonable (speci�c to
the task) amount of time. (4) The bene�ts the system provides should outweigh the cost of training
the system. (5) The user's role in training should be integrated seamlessly into the actions they
would normally be performing to accomplish the task. Preferably, all of these functions would be
performed in real-time; that is, the ideal system would allow the user to interact e�ortlessly with
it.
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There are two general categories of recommender systems, content-based and collaborative �l-
tering systems. A content-based system uses a representation of the item and the pro�le of the
user it has constructed to analyze whether it is likely that the user will like the item based on
its content. This is similar to a friend that might recommend an item to you because he knows
your preferences and has tried the item himself. A collaborative �ltering system uses the ratings of
other \similar" users to make a recommendation. These systems often judge similarity by overlap
in ratings among other items. This approach is like the friend who will recommend an item to you
because other friends, believed to be similar to you, liked the item. Some recommender systems
use a hybridization of these two approaches (Balabanovic & Shoham, 1997).

2.3 Text Categorization

Text categorization in general involves assigning a category (or categories) to a sample of text.
Sometimes the task is to determine the part-of-speech that a word has in some text; in other cases
it may involve classifying a sample into relevant subject categories. Typically the text is represented
using some set of features extracted from the sample. This ranges from using each single word as
a feature to using logical sentences built to correspond to the meaning of a segment of text.

Given a certain text sample, we would like to be able to determine the most probable category
for that sample given all of the information; this category is referred to as the maximum a posteriori

category (CatMAP ) (Mitchell, 1997). A classi�er system that, for each sample, can determine the
CatMAP and chooses the CatMAP as the predicted class, cannot on average be outperformed by
another system which uses the same information and hypothesis space. A classi�er that performs
this way is called a Bayes Optimal Classi�er (Mitchell, 1997).

2.4 Information Extraction

Information Extraction attempts to apply patterns (or templates) to text in order to extract infor-
mation relevant to certain areas (Lehnert & Sundheim, 1991; Cardie, 1997; Cali� & Mooney, 1998).
In essence, it attempts to take advantage of certain shallow regularities in language as a means to
extract information relevant to certain highly informative �elds. For instance, for text describing a
conference, we may want to automatically extract features for �elds such as date, place, price, etc.
Information Extraction can be helpful in breaking down free form text into meaningful segments.
For the interested reader, appendices A and B show a sample Amazon page and the information
extracted from it by LIBRA, respectively.

2.5 Naive Bayes Algorithm

The Naive Bayes algorithm is a simple algorithm but has performed quite well in most domains
(Mitchell, 1997). It is based on Bayes' \inversion" theorem which can be stated as:

Let Hypothesis and Evidence be any random variables;

P (Hypothesis j Evidence) =
P (Evidence j Hypothesis)P (Hypothesis)

P (Evidence)
(1)
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Assuming that we can represent an example, ", as a conjunction of n features fi 2 F with no loss
of information, then in order to construct a Bayes Optimal Classi�er that chooses the CatMAP of
a classi�cation space, Category, of j categories given an example, we have (where argmax returns
the index that maximizes the value of its argument):

CatMAP = argmax
Catk 2 Category

P (Catkj")

= argmax
Catk 2 Category

P (Catkjf1; f2; : : : ; fn)

From Bayes0 Theorem we have;

= argmax
Catk 2 Category

P (f1; f2; : : : ; fnjCatk)P (Catk)

P (f1; f2; : : : ; fn)

Since the denominator is independent of the argmax index Catk;

i:e: it is simply a normalization term

= argmax
Catk 2 Category

P (f1; f2; : : : ; fnjCatk)P (Catk) (2)

The Naive Bayes algorithm makes an approximation to this Bayes Optimal Classi�er by assuming
that each of the fi 2 F are independent of any subset of F � ffig given the category value. This
allows for the following simpli�cation:

CatMAP = argmax
Catk 2 Category

P (f1; f2; : : : ; fnjCatk)P (Catk)

From the Naive Bayes independence assumption

= argmax
Catk 2 Category

FY
fi

[P (fijCatk)P (Catk)] (3)

That the Naive Bayes algorithm is a Bayes Optimal Classi�er when the independence assump-
tion holds, is obvious, but what is less obvious is that the Naive Bayes algorithm sometimes performs
optimally even when this assumption doesn't hold. This results from the fact that under many
less restrictive conditions, even though the probability estimates are strictly incorrect, the actual
CatMAP is still the category with the maximal probability estimate (Domingos & Pazzani, 1996).

2.6 Feature Selection and Feature Construction

It is important to note that we have used the term features to refer both to the slots (set-valued
features) and when referring to the words that were extracted as the values of the slots. Unless
it is explicitly made clear, when we use word, feature, term, etc., we are referring to an attribute
that is an atom composed of Slot-name.token, e.g. AUTHOR.Lewis, REVIEWS.Lewis, etc. It
is atomic in the sense that, as far as the learning algorithm is concerned there is no connection
between AUTHOR.Lewis and REVIEWS.Lewis. Also, we would like to make it clear that a feature
is in no way limited to being simply an actual English word or proper name, etc. concatenated
to the slot name. There are various methods to construct features, and a system can apply these
to the text occurring in a slot. For example, if a system is using multiple word phrases, then we
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might have attributes such as TITLE.(Big Boy), REVIEWS.(Big Boy), TITLE.(Boy Big), etc.
All of which are distinct attributes. Even using the single word method, the construction of the
attributes depends on how the system represents a \single word". For instance, we might treat an
author's entire name as a \single word" which might yield, AUTHOR.\C.S.Lewis".

There are several problems with our feature representation of examples. The main problem is
that the number of features is quite large. There are about 30,000 in each of the two data sets,
and this is only with using each word slot pair. If one were to use multiple word phrases or other
construction, the number of features becomes much higher. As learning algorithms tend to have
a computational complexity proportional to the size of the feature set (Koller & Sahami, 1996),
large feature sets can be quite expensive. While Naive Bayes is one of the cheaper algorithms
in this respect, in order to apply other more sophisticated algorithms to this task, it would most
likely require feature selection in order to be computationally feasible. In addition, the probability
distribution function for the probability of a category given an example is often extremely complex in
problems with a large feature set (Koller & Sahami, 1996). When data is limited, it is very di�cult
to accurately estimate the numerous probabilistic parameters needed for this high dimensional
space; thus over�tting, estimating parameters that are overly speci�c to the training set and thus
don't generalize well to the test set, is likely (Koller & Sahami, 1996). In addition, the large number
of irrelevant and redundant features that tend to be present in large feature spaces often end up
misleading the learning system (Koller & Sahami, 1996).

Thus, the general goals of feature selection are more accurate results and reduced running time.
Feature selection generally tries to achieve its goals by: (1) reducing the feature set to a smaller
but highly informative subset; (2) and constructing higher order features whose higher relevance
(will hopefully) more than compensates for adding an additional feature (Yang & Pedersen, 1997).
The �rst we will always refer to as feature selection. The second of these we will refer to as feature
construction. One method of constructing higher order features we have tried uses both multiple
word phrases (pairs of adjacent words) and single words. Consider that using this method more
than doubles the number of features in the domain. It more than doubles because of duplicates
being identical as single words. That is, \Black Cat Black Dog" would be represented as [Black
Cat Dog] in a single word approach, but as [Black (Black Cat) Cat (Cat Black) (Black Dog) Dog]
in a multiple word phrase approach. Thus adding higher order features to the initial feature pool
sometimes increases the need for using feature selection to select only a subset to actually use|since
the much higher number of features may worsen those problems mentioned above. We experiment
with methods of both feature selection and feature construction.

2.7 Information Gain

If we are to perform feature selection over the data sets, intuitively we would like to choose the
optimal subset FG of F such that FG maintains the original relevant information available to us
in F . One way to approximate this optimal subset is to choose the n most \informative" features
of F according to some criterion for judging how informative a feature is. One standard way to
determine the amount of information a feature has is by applying standard ideas of information
theory, Entropy and Information Gain. Entropy is a measure of the homogeneity of a data sample.
That is, given a data set contains items from j categories, Entropy measures the extent to which
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these items are dispersed among the j categories. Information Gain measures the reduction in
Entropy when given the value of a certain feature. Thus, features that yield a large reduction
in Entropy are often helpful in classi�cation because their ability to divide the training set into
\purer" subsets than the other features, is a good indicator they will continue to do so over the
whole domain. The standard de�nitions for Entropy and Information Gain are (Mitchell, 1997):
Let E be the set of all training examples, fcig

j
i=1 be the set of j categories in the target space, � be

the set of all attributes, T be an attribute T 2 � , V alues(T ) be the set of values which T can take
on, and Ev(T ) denote fx 2 E j the value of T in x is v; where v 2 V alues(T )g. Since it will be
clear from context which T 2 � we mean we will abbreviate Ev(T ) as Ev. Then Entropy (Entropy)
and Information Gain (Gain) can be de�ned as:

Entropy(E) �
jX

i=1

[�P (ci j E) log2 P (ci j E)] (4)

Gain(E; T ) � Entropy(E)�
X

v2V alues(T )

�
j Ev j

j E j
Entropy(Ev)

�
(5)

It can easily be seen from the de�nition how Information Gain measures the reduction in Entropy
induced by partitioning a set according to the values of a given attribute.

3 System Description

3.1 Extracting Information and Building a Database

LIBRA currently has accumulated a database of 2,600 science �ction books and a database of 3,061
general literary �ction books. These databases were built by �rst performing a keyword/subject
search and then downloading and parsing the pages corresponding to the resulting URL's from
the search. Only the title, authors, synopsis, and subject slots are currently employed in learning;
however, values for URL, type, length, price, ISBN, etc. are also extracted.

The values for the slots are extracted with a pattern-based matcher that uses handwritten rules,
including pre-�ller, �ller, and post-�ller patterns (Cali� & Mooney, 1998), to extract information
from the text. The Amazon pages are fairly structured making it easy to design information
extraction rules. The values extracted for each slot are stored as an unordered set of words. The
collection of these set-valued features make up the complete representation for a book.

3.2 Book Representation

Each slot is treated as a vector of binary features; thus this di�ers from approaches which consider
only the words that occur in a given text sample (Mitchell, 1997; Joachims, 1997). Furthermore,
we have applied methods of feature construction and feature selection.

For feature construction, we have tried one type of higher order feature|the multiword method.
This makes a feature out of every word that occurs in a slot as in the normal method, and in
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addition, makes a feature out of every pair of sequential words. This acts as a higher order feature
since it is essentially weighting the fact that order and co-occurrence matters.

While Naive Bayes can work e�ciently with large dimensional spaces, it may be of help to
perform feature selection over the features prior to learning. One reason why this may be helpful is
that the sheer space required to store all of the probabilistic estimates can get expensive. We have
used the information gain criterion to choose the N most informative features to be used during
training and prediction. N was varied to be 500; 1000; 2000; 4000; 8000; and 16000. However, it
must be noted here that because Naive Bayes makes explicit independence assumptions about the
terms, it is thought to be less sensitive to changes in context caused by feature selection. Thus,
it may make a poor indicator as to the superiority of a given feature selection method (Yang &
Pedersen, 1997).

3.3 Learning a Pro�le

A Naive Bayes (NB) Classi�er which has been extended to e�ciently deal with set-valued features
is used for the text categorization task. The probability estimates are smoothed using Laplace
estimates as described in Kohavi, Becker, and Sommer�eld (1997). The smoothing includes near-
zero estimates for novel words encountered in test samples but not encountered in training examples.
The 1 - 10 user rating for an item is treated as the category of that item. So, in order to calculate
the posterior probabilities of the categories, the probabilities of a feature given a category (rating)
are computed. The probabilities are mapped into a logarithmic space to avoid underow. In order
to be able to e�ciently compute a probability estimate for a sample at testing time, the posterior
probability of each category given the empty set is precomputed (i.e. the probability of a category
given no words occur in the example). These estimates can then be adjusted for the actual words
that occur in a sample.

In fact, revising the posterior probabilities estimates is quite easy with the Naive Bayes ap-
proach. Naive Bayes (and Bayesian methods in general) estimates can be incrementally updated|
both adding and retracting information (Pearl, 1988). Thus, Naive Bayes allows us to achieve
several of the criteria for a useful recommender system enumerated in section 2.2. Namely, the
user can retract ratings, extend the set of examples rated, and obtain recommendations, all fairly
e�ciently. Currently the system is not constructed in a way to fully exploit all of the incremental
attributes of the algorithm.

3.4 Producing, Explaining and Revising Recommendations

In order to produce recommendations, LIBRA learns a pro�le, predicts scores for the non-rated
samples, and �nally ranks the samples by their scores. Currently LIBRA uses one of three methods
to learn a user pro�le. The �rst method is simply a binary NB classi�er. It treats items rated 1 - 5
as negative instances, and those rated 6 - 10 as positive instances. The scores are ranked based on

the natural log of the posterior odds of positive, ln
�

P (PositivejExample)
P (:PositivejExample)

�
(Pearl, 1988). A second

method treats the 10 ratings as 10 distinct categories. When predicting for a test sample, the
system �rst computes the posterior probability of each category given the test sample. Then the
expected value of the posterior probability distribution for the categories is computed and used as
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the predicted score,
P10

i=1 iP (i), where P (i) is the posterior probability for category i. We use the
expected value rather than simply choosing the most probable category in order to better represent
the continuity of scores. Consider the case where P (3) = 0:35, P (9) = 0:32, and P (10) = 0:33;
Even though 3 is the most probable category, the \closeness" of the other categories makes it more
likely that the example would fall toward the high end. Using the expected value of 7.23 addresses
this issue. When using this 10-category model to predict a binary category (positive: rating > 5;
negative: rating � 5), we classify an example as positive if and only if

P10
i=6 P (i) >

P5
i=1 P (i). The

�nal method used is a weighted binary model that maps the user's 1 - 10 rating r into a weight,
wr, in the closed interval [0,1], where wr =

r�1
9 . The general formula for this is wr =

r�min
max�min

,
where 0 � min � r � max and max 6= min. Then, if a word occurs in n training examples given
a rating of r, it is counted as occurring nwr times in positive examples and n(1� wr) in negative
examples. The ranked predictions are once again produced by ordering based on posterior odds of
positive.

Both the Binary and the Weighted Binary approach have a limited explanatory capability. The
explanations consist of the top features that most contributed to the score, e.g.

The Gods Themselves by Issac Asimov classi�ed as POSITIVE because:
words:award(4.20), words:earth(4.20), words:terrify(4.20), words:truth(3.71),
words:Nebula(2.96), words:Hugo(2.96), words:alien(2.96), words:die(2.96),
words:scientist(1.25), author:Asimov(1.08).

The weight given for each feature f is log(P (f j P )=P (f j N)) where P and N represent the positive
and negative class respectively.

After examining the rankings produced by the system, the user can choose examples (the user
would probably want to choose ones where there is disagreement with the system) to rate. Then
allow the system to use these new ratings to revise its recommendations. As with the use of
relevance feedback (Salton & Buckley, 1990), this can be repeated in order to further improve
recommendations.

3.5 System Details

This section relates details of the algorithms used that would be necessary for reproducing the
results reported here.

3.5.1 Estimating Probabilities

This section relates the estimations and smoothing factors used for estimating the probability
parameters needed to make a prediction.

Let ECatk denote fx 2 E j the category of x is Catk; where Catk 2 Categoryg and assume
the notation used earlier in the paper. Then the following are the probability estimates we would
use prior to smoothing.

P (Catk) =
j ECatk j

j E j
(6)
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P (fi = t j Catk) =
P (fi = t

T
Catk)

P (Catk)

By de�nition of conditional probability;

=

jEt

T
ECatk

j

jEj

jECatk
j

jEj

=
j Et

T
ECatk j

j ECatk j
(7)

Of course, P (fi = �t j Catk) = 1 � P (fi = t j Catk). The weighted binary estimates according
to the same estimations above. However, the matter of weighting makes how the form looks in the
end slightly di�erent; they can be estimated as follows (where wr is the function of r mentioned
above:

P (Positive) =
j EPositive j

j E j

=

P
r [wr j Er j]

j E j

P (fi = t j Positive) =
j Et

T
EPositive j

j EPositive j

=

P
r [wr j Et

T
Er j]P

r [wr j Er j]

In order to estimate for Negative for the weighted binary classi�er, simply substitute 1�wr for
wr. When one of the probabilities in equation 3 is zero, it will dominate the whole computation by
making the whole value from going to zero. It could easily happen that the true probability was
not zero, but the rarity of the term or category compared to the relatively small number of input
examples caused the item not to appear in the training examples. In order to account for these
issues, we use smoothing methods reported in (Kohavi et al., 1997). Namely, we use a Laplace-m
estimate where m is the number of training examples. In general the Laplace-m estimate is:

For N matches out of n instances for a k�valued problem;

N + 1
m

n+ k
m

So, for our problem we have

P (Catk) =
j ECatk j +

1
jEj

j E j + jCategoryj
jEj

(8)

10



P (fi = t j Catk) =
j Et

T
ECatk j +

1
jEj

j ECatk j +
2
jEj

(9)

Notice that both of these estimates approach a uniform distribution as the number of examples
goes to zero and they approach the original estimates as the number of examples goes to in�nity.
Thus the weighting reects the fact that we are more con�dent in the original estimates according
to how many training examples we have.

Each novel word is given a small estimate as well which is 1
jEjjECati

j+2 . Note that this formula

weights a novel word toward a less likely a priori category. The reason for this is that the more
occurrences of a category in the training examples, the less likely it is that a word associated with
that category has been left out because of a skewed sample.

3.5.2 Real Valued Scores

In order to produce rankings, we need to obtain values that can be partially ordered. In addition,
it is important that these values are normalized probability estimates. That is, we dropped the
normalization term during the derivation of equation 2 as it was irrelevant when comparing prob-
abilities for the same example since they each were weighted by that same normalization term.
However since the normalization term (P (")) may di�er across several examples, in order to com-
pare probability estimates across examples, we must have comparable values. As mentioned above,
we use the natural log of the posterior odds of positive to rank the predictions for the Weighted
Binary and Binary Classi�er. We show in the following derivation that the normalization factor
drops out of the estimation of the posterior odds as follows:

By de�nition (Pearl; 1988);

O(Positive j ") =
P (Positive j ")

P (:Positive j ")

Since Positive and Negative are mutually disjoint exhaustive subsets of the domain;

=
P (Positive j ")

P (Negative j ")

Substitution of Bayes Theorem yields;

=

P ("jPositive)P (Positive)
P (")

P ("jNegative)P (Negative)
P (")

=
P (" j Positive)P (Positive)

P (" j Negative)P (Negative)
(10)

Note that the numerator and the denominator of the �nal line in derivation 10 are exactly those
needed to compute the Naive Bayes prediction derived in 3. Since the probabilities have already
been mapped into a logarithmic space, continuing to work in the logarithmic space is easiest when
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possible. So, computing the log of the �nal line of 10 is equivalent to simply subtracting (since
they are logs) the estimate used in prediction for negative from that of positive.

In order to rank the predictions for the 10-Category Classi�er, we can simply use the expected
value as mentioned above. However in order to produce the expected value, we must normalize
the 10 di�erent estimates we have at this point of ln [P (" j Cati)P (Cati)]. This presents a minor
problem. We began working with logarithms in the �rst place in order to avoid underow, but we
would like to normalize the actual estimates. If we tried to map the logarithms directly back into
the exponential space, we would have underow in some cases (this was experimentally con�rmed).
However, if we were to add some term � to each of the logarithmic estimates that enabled us to
exponentiate them without underow, the addition of this factor, since it is equivalent to multipli-
cation in the regular space, would be naturally accounted for in the normalization process. In order
to choose an appropriate �, we simply use the maximum of the logarithmic estimates. Thus, it is
guaranteed that we will not have underow for the CatMAP estimate, and it is only if a category
has magnitudes lower a posteriori probability, that it might underow. If this were the case, the
underow term's correct value would be so low that the computation of the expected value would
have remained relatively unchanged even with the correct value.

3.5.3 Feature Selection

The de�nition we use for Information Gain is similar to that used in general in text categorization
problems for j-category problems (Yang & Pedersen, 1997) and can easily be derived from the
standard de�nitions of Information gain and Entropy as follows:
Assume we have the de�nitions used for equations 4 and 5. Furthermore, let T be a binary attribute
whose values are ft; �tg denoting the presence or absence of a term, respectively. Let P (ci j D = �)
denote the probability of randomly choosing x 2 � such that the category of x is ci (D and �
can be thought of as a random variable over the domain of examples and some instantiation of
the variable, respectively). We will abbreviate this as P (ci j �). Let P (t j D = �) denote the
probability of randomly choosing x 2 � such that v(T ) = t, and let P (�t j D = �) be de�ned
similarly. We abbreviate these P (t j �) and P (�t j �) respectively.

Gain(E; T ) � Entropy(E)�
X

v2V alues(T )

�
j Ev j

j E j
Entropy(Ev)

�

=
jX

i=1

[�P (ci j E) log2 P (ci j E)]�
j Et j

j E j
Entropy(Et)�

j E�t j

j E j
Entropy(E�t)

Substitution of the de�nition of Entropy yields

=
jX

i=1

[�P (ci j E) log2 P (ci j E)]�
j Et j

j E j

jX
i=1

[�P (ci j Et) log2 P (ci j Et)]

�
j E�t j

j E j

jX
i=1

[�P (ci j E�t) log2 P (ci j E�t)]
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=
jX

i=1

[�P (ci j E) log2 P (ci j E)] +
j Et j

j E j

jX
i=1

[P (ci j Et) log2 P (ci j Et)]

+
j E�t j

j E j

jX
i=1

[P (ci j E�t) log2 P (ci j E�t)]

Since P (t j E) =
j Et j

j E j
and P (�t j E) =

j E�t j

j E j
;

=
jX

i=1

[�P (ci j E) log2 P (ci j E)] + P (t j E)
jX

i=1

[P (ci j Et) log2 P (ci j Et)]

+P (�t j E)
jX

i=1

[P (ci j E�t) log2 P (ci j E�t)] (11)

Though the computation of some of the terms here could be done at the same time as compu-
tation of estimates needed for the Naive Bayes algorithm, we have kept them separate in order to
preserve abstraction. Furthermore, since the feature selection is completely done as a preprocessing
phase, any features that are encountered during testing that have been feature selected out of the
set are treated as novel features.

4 Experimental Results

4.1 Methodology

4.1.1 Data Collection

The �rst 5500 URL's returned from the keyword search \literature �ction" were downloaded from
the Amazon web site and parsed into a book representation. During the processing of these 5500
URL's, there were 28 errors. These URL's were discarded. Of the remaining 5,472, 2,409 were
classi�ed as inadequate information pages and 3,063 were classi�ed as adequate information pages.
A page was deemed to have inadequate information if it did not contain an instance of at least
one of the following slots: comments, reviews, or synopses. These pages were written to a separate
�le for possible use in the future as they do contain information such as title, author, subject, etc.
that could be of use to the learning system. In many cases however, these pages lack so much
information that it would be di�cult for a user who was unfamiliar with the book to rate it and
would be likewise pragmatically useless for a similar user of the recommending system. Of the
3,063 adequate information pages, two pages duplicated the ISBN's and exact features of other
titles present in the data, and as a result, these two were discarded. The remaining 3,061 titles
have unique ISBN's and form the corpus of our general �ction database. The database does contain
duplicates in the sense that some titles are present as a \hardcover edition" and a \cassette edition";
while LIBRA does possess heuristics for associating related instances, they were left distinct at
this time. This was done for two reasons: (1) some users may express regularities in interests such
as audio vs. written, but more importantly (2) obtaining user ratings for very similar items will
allow the testers to evaluate, to at least some degree, the consistency in user ratings.
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Two sets of 1,000 titles were chosen randomly from the 3,061 titles, and one user rated each.
The two data sets shared 589 titles in common. Each user used two windows when rating the
examples. One window contained the LISP process which prompted for the user's rating; another
window was a web browser in which the LISP process loaded the current example to be rated.
Thus, both users had access to the full graphical presentation of the page as well as the textual
information. Each user was allowed to enter an integer rating from 1 - 10, inclusive. The ranking
correlation coe�cient between the users' ratings for the overlapping titles was 0.7510047. Data Set

1 contained 0.642 negative user ratings (i.e. � 5), and Data Set 2 contained 0.596 negatively rated
examples. The distribution over the 1 - 10 ratings is given in Figure 1.
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Figure 1: Distribution of User Ratings for Both Data
Sets

The textual data obtained from Amazon has many real-world aspects. The users reported that
while rating the books, some pages (retrieved directly from Amazon) contained synopses that were
clearly intended for other books; there were also spelling errors which a simple approach such as
ours would treat as separate instances. In addition, the amount and quality of description of the
books tended to vary across a wide range.

4.1.2 Performance Measures

To evaluate performance, we ran 10-fold cross-validation and examined two performance measures,
binary classi�cation accuracy and Spearman's rank correlation coe�cient (rs). Learning curves
were generated by training on increasingly larger subsets of the data reserved for training. The
statistical signi�cance of di�erences in average performance was evaluated using a 2-tailed paired
t-test. We distinguish throughout this paper between a rating and a ranking, where a rating is a
real number assigned to an example by the user or system; whereas, a ranking is the ordinal place
an example occupies in the ordering of examples by their ratings. Using a ranking coe�cient as
a general performance measure in recommender systems instead of a ratings coe�cient has two
bene�ts: (1) The system need not provide a mapping into the user's interval of ratings (i.e. 1{10).
(2) By translating the ratings to rankings, we essentially linearize the data with respect to the
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dimension we are analyzing. These bene�ts make it likely that the generality of this measure will
be useful in evaluating many types of systems, in addition to accurately judging non-linear but
correlated ratings. By using rs, we are able to capture the extent to which the ranked user scores
and ranked system predictions covary. As with other correlation coe�cients, rs ranges from -1 to
1 (inclusive), where -1 is perfectly inversely correlated, 0 denotes no correlation, and 1 signi�es
perfect direct correlation. In order to compute rs when there are ties in the data, the median of the
rankings each example in the tie would have been given had they been sequential, is assigned as the
rank of each (Anderson & Finn, 1996). Also, the square of the correlation coe�cient is interpreted
as the percentage of performance change from using the system predictions as an estimate of user
preference rather than guessing the mode; in more technical terms, the percentage reduction in the
sum of squared deviations when using the system predictions instead of the mode of the data as
the basis for prediction (Anderson & Finn, 1996). Since this metric is simply the square of the
correlation coe�cient, we have not reported it separately. When there are no ties, this reduces to
the form given in most introductory statistics texts (Spatz & Johnston, 1984).

4.1.3 Systems and Hypotheses

Our current experiments compare a simple Binary Classi�er and a 10-Ratings classi�er which uses
the expected value to predict ratings (hereafter referred to as Binary and 10-Ratings, respectively).
We then compare the performance of the Weighted Binary Classi�er (hereafter Weighted Binary)
to the �rst two. We expected that with su�cient training data the 10-Ratings method would
outperform the Binary classi�er on the rank correlation measure since it exploits a user's actual 1{10
rating. However, we expected that the Binary method would perform better on binary classi�cation
accuracy since it is speci�cally designed for that task. Finally, the Weighted Binary method should
outperform the Binary method since the Weighted Binary method has at least some representation
of the user's real-valued ratings, but it seems reasonable to hypothesize that the 10-Ratings method
will outperform the Weighted Binary method since the heuristic employed by the Weighted Binary
is probably losing information in its compression of 1{10 ratings into a binary space.

Currently, we have run experiments for two types of feature construction. The �rst of these,
the standard treatment, just treats each word in a slot as a distinct feature, (Singleword). The
second method is the method of extracting multiple words as mentioned above, (Multiword). Since
the Multiword feature construction method more than slightly doubles the number of features, we
expect that the increased noise will negatively e�ect the performance of the Multiword approach.

We also test feature selection using information gain on all three classi�ers as well as both
methods of feature construction. In general, we expect that feature selection will lead to an increase
in performance because of the reduction in noise terms present in the data and the elimination of
spurious correlations. Furthermore, since the Multiword approach contains many more features
than the Singleword approach, we expect its performance to increase the most. The expectation is
that once the extra noise introduced by the Multiword approach has been disposed of via feature
selection, its more expressive model will lead to better performance than the Singleword.
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4.2 Results

The graphs below are presented as they are for one of several reasons: (1) the presentation of the
graphs follow the development of research, thus making the line of experimentation clearer to the
reader; (2) Some of the graphs that could be collapsed into one graph were separated in order
to lessen the clutter of the graphs. Figures 2 and 3 show the results for running the Binary and
10-Ratings systems on Data Set 1. The results for running the Binary and 10-Ratings systems on
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Figure 2: Binary Prediction Accuracy for Data Set 1 Figure 3: Rank Correlation Coe�cient for Data Set 1
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Figure 4: Binary Prediction Accuracy for Data Set 2 Figure 5: Rank Correlation Coe�cient for Data Set 2

Data Set 2 are given in �gures 4 and 5. Figures 6 and 7 show the results for running all the systems
on Data Set 1 while those for Data Set 2 are displayed in �gures 8 and 9. Overall, the predictions
are reasonably accurate even given relatively small training sets. A correlation coe�cient of 0.3 to
0.6 is generally considered \moderate" and above 0.6 is considered \strong." Therefore, moderate
correlations are produced after about 20 examples and strong correlations after about 60 examples.

While the Binary model outperformed both the 10-Ratings model and the Weighted Binary
model for binary prediction on Data Set 1, the di�erence between any of the models is not sta-

16



45

50

55

60

65

70

75

80

85

0 100 200 300 400 500 600 700 800 900

T
es

tin
g 

%
 C

or
re

ct

Training Examples

Binary Classifier
10-Ratings

Weighted Binary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800 900

T
es

t R
an

k 
C

or
re

la
tio

n

Training Examples

Binary Classifier
10-Ratings

Weighted Binary

Figure 6: Binary Prediction Accuracy for Data Set 1
- All Systems

Figure 7: Rank Correlation Coe�cient for Data Set 1
- All Systems
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Figure 8: Binary Prediction Accuracy for Data Set 2
- All Systems

Figure 9: Rank Correlation Coe�cient for Data Set 2
- All Systems

tistically signi�cant. Though from about 55 examples to about 150 examples, the Binary model
outperforms both others by a statistically signi�cant amount. Although even in this early region,
the statistical signi�cance wavers at various points. On Data Set 2 the Binary model once again
outperformed the 10-Ratings model for binary prediction but not by a signi�cant amount. The
Binary model's superior performance to the Weighted Binary model for binary prediction on Data

Set 2 was, however, signi�cant at the 0.05 level. The di�erence between the Weighted Binary and
10-Ratings model was not signi�cant for binary prediction on Data Set 2.

The 10-Ratings model outperformed the Binary method over both data sets on the rs measure
after 900 training examples (signi�cant for Data Set 1 and Data Set 2 at the 0.01 and 0.02 level,
respectively). However, it is interesting to note that the correlation curves crossover on both data
sets (this can be clearly seen on �gures 3 and 5), indicating that binary categorization is preferable
for smaller training sets. The Weighted Binary model also outperformed the Binary method over
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both data sets on the rs measure (signi�cant at the 0.01 level for both). There is, however, no
signi�cant crossover point between the Weighted Binary classi�er and the Binary classi�er as the
Weighted Binary model was not noticeably outperformed with few training examples. In both data
sets the Weighted Binary outperforms the 10-Ratings model early in the learning curve, though
only Data Set 2 contained several sequential points where the di�erence was signi�cant. At the
point with 900 training examples, the di�erence in the rs measure between the Weighted Binary
and the 10-Ratings model is not signi�cant.

The results for running each system with information gain based feature selection are given as
follows: results for both data sets for the Binary Classi�er are given in �gures 10, 11, 12, and 13;
the results for both data sets using the 10-Ratings Classi�er and for the Weighted Binary classi�er
are not presented here as the results obtained do not di�er signi�cantly from those obtained for the
Binary Classi�er. The numbers in the legends represent how many features were used. Note that
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Figure 10: Binary Prediction Accuracy for Data Set 1
- Feature Selection using Information Gain with Binary
Classi�er

Figure 11: Rank Correlation Coe�cient for Data Set 1
- Feature Selection using Information Gain with Binary
Classi�er
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Figure 12: Binary Prediction Accuracy for Data Set 2
- Feature Selection using Information Gain with Binary
Classi�er

Figure 13: Rank Correlation Coe�cient for Data Set 2
- Feature Selection using Information Gain with Binary
Classi�er
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in all of the feature selection results, the less features that were used the poorer the performance
that resulted. Although all of the graphs do not strictly show this type of correlation, they are all
consistent in one feature. Namely, each feature selection curve follows the curve with all features
until, it diverges. In addition, in all of the graphs, the fewer features that are being used the earlier
in the learning curve the divergence occurs.

Figures 14, 15, 16, 17, 18, and 19, compare the results of running the three systems on Data Set

1 with Singleword and Multiword feature construction. The results for Data Set 2 were similar 1

and so are not presented. While most of the same simulations were performed for feature selection
using Multiword feature construction as for Singleword, those results are not presented here since
the results were fairly similar.
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Figure 14: Binary Prediction Accuracy for Data Set 1
- Feature Construction Comparison for Binary Classi�er

Figure 15: Rank Correlation Coe�cient for Data Set 1
- Feature Construction Comparison for Binary Classi�er
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Figure 16: Binary Prediction Accuracy for Data Set 1
- Feature Construction Comparison for 10-Ratings Clas-
si�er

Figure 17: Rank Correlation Coe�cient for Data Set 1
- Feature Construction Comparison for 10-Ratings Clas-
si�er

1Results for feature construction on Data Set 2 using the 10-Ratings classi�er were not available at the time, so
we have presented Data Set 1.
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Figure 18: Binary Prediction Accuracy for Data Set 1
- Feature Construction Comparison for Weighted Binary
Classi�er

Figure 19: Rank Correlation Coe�cient for Data Set 1
- Feature Construction Comparison for Weighted Binary
Classi�er

For the Binary Classi�er the di�erence in Binary prediction accuracy using Singleword and
Multiword feature construction was not signi�cant, but according to the rank correlation coe�-
cient, the Multiword feature construction did outperform the Singleword method (signi�cant at
the 0.001 level) using the Binary Classi�er. For the Weighted Binary Classi�er, using Singleword
feature construction outperformed the Multiword feature construction for both performance met-
rics (signi�cant at the 0.001 level). While the Multiword method outperformed the Singleword
method using the 10-Ratings Classi�er according to both metrics, the di�erence is only signi�cant
for binary prediction (0.05 level). Though the Multiword feature construction method did about
as good (no signi�cant di�erence) or better than Singleword for both the Binary and 10-Ratings
Classi�er in the limit, one should note that the Multiword method learns more slowly initially.

4.3 Discussion

While the similarity of performance of the various methods on binary prediction is of some note, it
is more interesting that in both the binary accuracy curve and the rank correlation coe�cient curve,
the 10-Ratings model learned more slowly than the Binary model. This results from having more
parameters (10 times as many) to learn and relatively sparse, insu�cient data to accurately estimate
them when there are few training examples. As the Weighted Binary model has less parameters
than the 10-Ratings model, we see better performance early in the curve of the Weighted Binary
model.

By the end of the rank correlation coe�cient curve, there is a signi�cant gain in the use of
the 10-Ratings model over the Binary model for ranking. However, the crossover point (at least
where it becomes statistically signi�cant) for both data sets occurs after hundreds of training
examples. Therefore, since users will often be willing to rate only a relatively small number of
examples, obtaining enough ratings to produce good results from the 10-Ratings method could
often be impractical. However, as the Weighted Binary model performs comparable to the Binary
model early on and comparable to the 10-Ratings model later in the curve, this suggests that the
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Figure 20: Scatter plot of Ranking for Prediction on
the Training Data for One of the Ten Trial Runs Over
Data Set 1 Using Binary Classi�er (900 training exam-
ples)

Figure 21: Scatter plot of Ranking for Prediction on
The Training Data for One of the Ten Trial Runs Over
Data Set 1 Using 10-Ratings Classi�er (900 training ex-
amples)

Weighted Binary model may be the best choice. We also have indications that modi�cations to
the 10-Ratings approach or Weighted Binary model look most promising. In the scatter plots for
prediction on the training examples (Figures 20, 21, and 22), an obvious pattern emerges (we use
prediction over the training examples to demonstrate this point because of the greater number
of data points (900) and much higher correlations). Clearly, the binary method learns a binary
separator for those ratings above �ve and those at or below �ve with little order beyond the two-way
separator. In contrast, the more expressive 10-Ratings Classi�er and Weighted Binary Classi�er
learn a graduated separation. The ability of the 10-Ratings method and Weighted Binary method
to capture this richer model with su�cient training data is supported by the di�erence in the rank
correlation coe�cients over the test examples.

Thus, the results indicate that a model which uses fewer parameters is more likely to perform
well with fewer training examples, but a model will only perform better with a large number of
training examples if it also preserves the continuity of the user ratings. This is exactly what the
Weighted Binary model does. In fact, the way the Weighted Binary model outperforms the 10-
Ratings system when there are few training examples is almost de�nitely a result of having fewer
parameters to estimate. Since the Binary model performs similarly early on however, this alone
would be worth very little note. What is more interesting is that the Weighted Binary model
continues to perform at levels not signi�cantly di�erent than the 10-Ratings predictions after the
Binary - 10-Ratings crossover point. This does not support our earlier hypothesis that the Weighted
Binary model will lose information by compressing the 1 - 10 ratings into a binary model.

The scatter plots also raise another point of interest (speci�cally �gures 21 and 22). Note that
there appear to be far fewer datapoints in �gure 21. This is actually the result of having many
ties in the predictions the system is producing. There are actually 255 examples at the point
x = 772:5; y = 773 and one at x = 772:5; y = 645 in �gure 21. Note that most of the users' ratings
were ties since they had to choose an integer from 1 � 10. Thus, the 10-Ratings model actually
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Figure 22: Scatter plot of Ranking for Prediction on
the Training Data for One of the Ten Trial Runs Over
Data Set 1 Using Weighted Binary Classi�er (900 train-
ing examples)

has enough parameters to predict ties for scores that the user had as tied. There is a tendency for
systems with a larger number of parameters to over�t the training data, and this is strong evidence
that the 10-Ratings model is severely over�tting the training data. Note that the points in �gure
22 are more spread out. By compressing the information, the Weighted Binary model has actually
avoided over�tting the training data.

Feature selection has not led to improvements whatsoever. In all of the �gures for feature
selection, feature selection only led to degraded results. However, as pointed out above, all of the
graphs are consistent in one feature; the fewer features that are used, the earlier in the learning
curve that the curve diverges from the curve of the system using all features. This behavior is easily
explainable. Consider that we were going to use feature selection to try to select some subset of
features that approximate the relevant features in the entire set of features. If our approximation is
slightly incorrect, the more training examples (or information) that become available, the more our
approximation diverges from the actual distribution. Thus, the point at which the divergence occurs
indicates the number of training examples up to which it may be useful to use feature selection|
without our approximation diverging from the actual distribution by too great of a margin. As we
decrease the number of features, we increase the degree to which our approximation is incorrect.

Finally, the results for feature construction are somewhat mixed. The Multiword feature con-
struction method does not perform well at all using the Weighted Binary classi�er, but using both
the 10-Ratings and Binary Classi�er, better (or not signi�cantly di�erent) results are obtained in
the end by using it. Similar to the results above which compare the 10-Ratings Classi�er and the
Binary Classi�er, the much slower rate of improvement in the initial part of the learning curve for
the Multiword feature construction is attributable to the higher number of parameters that the
Multiword method has. For smaller training sets, there is not enough information to accurately
estimate the value of these parameters correctly, and thus, performance is low initially. This raises
a point of some interest. Document Frequency (DF) is a score assigned to a word based on the
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number of documents that it occurs in (Yang & Pedersen, 1997). This score, though often viewed
as ad hoc, has performed well when used for feature selection (Yang & Pedersen, 1997). In this
light, we can view DF as a somewhat principled method since it is partially a con�dence estimate
in the accuracy of a parameter's predicted value. That is, (similar to the discussion of smoothing
above) since the number of documents is at least as large as the number of documents that contain
any given term, then as the number of documents a term occurs in increases, we know two things:
(a) we have more information (examples) in general and can thus be more con�dent in our estimate;
(b) learning the value of this parameter in 1 more example will e�ect our estimate very little. This
suggests that a feature selection criterion that measures the proportion change in a parameter given
X more examples with a term versus X more examples without a term may perform well. X could
be chosen based on some measure of the average information supplied by an example. This method
could easily be designed to be task-free (independent of an example's category), like DF (Yang &
Pedersen, 1997), thus allowing feature selection to be statically done, independent of any single
user's ratings.

5 Future Work

Future improvements to the system include improving the user interface. Currently most interaction
is done via a LISP listener. Making the system completely browser based would greatly improve
usability for the common user. It would also be interesting to compare the performance of other
algorithms over this data. In order to do so, aggressive feature selection will most likely play a
large role since many other learning systems cannot handle the high dimensionality of this domain.
It would be interesting to investigate the feature selection method suggested above that selects
features based on a con�dence rating of the parameter's estimate. Extensions could be made for
the system to combine information from other sources; in general or upon detecting that a certain
example has low information content, an agent could be sent in search of information over the web.
Furthermore, the use of initial user pro�les (Pazzani & Billsus, 1997) could provide a boost in the
early part of the learning curve. A comparison of the performance of the bag-of-words approach to
the set-valued feature approach would be useful in evaluating the gain from using the information
extraction methods. It might also be of interest to evaluate a 10 category method that simply
chooses the most likely category and completely ignores the continuity of ratings. The system
can be extended to use e�cient methods of incremental updating as well. Finally, combinations
of collaborative �ltering with the current system could be investigated through such methods as
extending one user's set of training examples with a similar user's set.

6 Conclusions

In the above we have shown the applicability of a more meaningful metric for recommender systems.
Using that metric, we have demonstrated that we can obtain good rankings using only binary
ratings. When we have access to enough 1 - 10 ratings, we have shown that we can obtain better
results in the limit by exploiting the continuity of user scores with a classi�er based on the expected
value of the probability distribution generated by a ten-category Bayesian classi�er. By combining
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the features of the two di�erent systems into a weighted binary system (i.e. less parameters but
retaining the meaningfulness of 1 - 10 ratings), we have shown that we can produce fairly accurate
recommendations with only a small number of 1 - 10 ratings. In addition, we have shown that
feature selection using Information Gain does not lead to a performance increase in systems using
Naive Bayes algorithms. The feature construction methods tested here do show that a gain in
performance can be obtained by using higher order features. We feel that feature construction
methods hold the most potential for future improvement since they fundamentally change the
domain in which the learner is operating.

Finally, we feel the system, in general, has demonstrated a level of performance and possesses
enough other characters to be deemed a usable recommender system (as discussed in section 2.2).
Its potential for assisting a user seems fairly powerful. Furthermore, all of the methods discussed
here can be applied to other text based recommender systems.
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