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Abstract

For the past few years� text categorization has
emerged as an application domain to machine learn�
ing techniques� Several approaches have already been
proposed� This paper does not present yet another
technique� It is rather an attempt to unify the ap�
proaches encountered so far� Moreover this state�of�
the�art enables us to stress a shortcoming in earlier
research� the lack of evaluation of inductive learners
in the categorization process� We present a �rst at�
tempt to remedy this lack� We expose an experimental
framework� that �ts in with our uni�ed view of text
categorization methods� This framework allows us to
conduct a set of tentative experiments in order to as�
sess which characteristics allow a learner to perform
well on the text categorization task�

Introduction

Text categorization� which is often de�ned as the
content�based assignment of one or more prede�ned
categories to texts� has become important in two as�
pects
 On an information retrieval 
IR� point of view�
information processing needs have increased with the
rapid growth of textual information sources� such as
Internet
 Text categorization can be used to support
IR or to perform information extraction� document �l�
tering and routing to topic�speci�c processing mech�
anisms 
Hayes et al� ����� Rilo� � Lehnert �����

On a machine learning 
ML� point of view� recent re�
search has be concerned with scaling�up 
e
g
 data
mining 
Holsheimer � Siebes ������
 Text categoriza�
tion is a domain where large data sets are available
and which provides an application �eld to ML 
Lewis �
Catlett ����� Cohen �����
 Indeed� manual categoriza�
tion is known to be an expensive and time�consuming
task
 Hand�crafted knowledge engineered systems
such as CONSTRUE 
Hayes � Weinstein ����� also
have such drawbacks
 ML approaches to classi�cation

text categorization is a classi�cation task� suggest the
construction of categorization means using induction
over pre�classi�ed samples
 They have been rather

successfully applied in various studies� e
g
 
Lewis
� Ringuette ����� Apt�e� Damerau� � Weiss �����
Wiener� Pedersen� � Weigend �����

In this paper� we are primarily concerned with the
analysis of these earlier studies on text categoriza�
tion
 Our presentation is two�folded
 We �rst show
that� even though the nature of the inducer used in
each approach may di�er� most approaches have com�
mon characteristics in the whole categorization pro�
cess
 Then� we discuss the issue of choosing one
technique rather than another
 Actually� many ap�
proaches have been suggested� these include numeri�
cal learning such as Bayesian classi�cation 
Lewis �
Ringuette ������ or symbolic learning like in 
Moulin�
ier � Ganascia �����
 However� no assessment has be
conducted on whether a given learning technique was
superior to another on the text categorization task�
even though the sketch of an answer can be found in

Lewis � Ringuette �����
 We �rst design an experi�
mental framework which �ts in with our unifying view
of text categorization systems
 In that framework� we
compare several learners in order to try and extract
major characteristics of both data and learners� that
lead to good performances on the text categorization
task

In the next section� we present a unifying view of re�
search in text categorization
 An experimental frame�
work for comparison is given next� while preliminary
experiments are reported and discussed in the last sec�
tion


Text Categorization� a Unifying View

Text categorization is at the meeting point between
ML and IR� since it applies ML techniques for IR pur�
poses
 In the following� we adopt a ML point of view

Many existing text categorization systems share cer�
tain characteristics
 Namely� they all use induction as
the core of learning classi�ers
 Moreover� they require
a text representation step that turns textual data into
learning examples
 This step involves both IR and ML
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techniques
 Finally� additional knowledge may be pro�
vided to enhance the whole categorization task
 We
present these three aspects in the remainder of this
section
 Their relationships are summarized in Fig�
ure �


Text Representation

Text representation in categorization di�ers from its
homologue in IR
 It is more speci�c� as it requires
further processing
 In fact� we can distinguish two
steps when representing a text
 The �rst step is the
standard IR representation� for instance a boolean
model as in 
Lewis � Ringuette ����� Apt�e� Dam�
erau� � Weiss ����� Moulinier � Ganascia ����� or
a frequency model as in 
Fuhr et al� ����� Wiener�
Pedersen� � Weigend �����
 Nevertheless� this step
may not be su�cient to produce tractable data for
learners
 Indeed� the feature set that results from
such a representation can be numbered in hundreds of
thousands
 Even though some studies have reported
working with such a number of features 
Yang �����
Creecy et al� ������ few inductive learners can han�
dle such a number of features
 For instance� typical
experiments in ML hardly ever deal with more than a
hundred of features
 Therefore� a second step is un�
avoidable� it consists in the reduction of that original
feature set� commonly known as dimensionality reduc�

tion in pattern recognition


We can distinguish two axes for dimensionality re�
duction� its scope and its nature
 The scope of re�
duction is concerned with the universality of the re�
sulting feature set� whereas its nature describes how

the features are selected
 In 
Apt�e� Damerau� � Weiss
������ two alternatives to the scope of reduction are
suggested� category�oriented� or local� and overall� or
global� feature set reduction
 The so�called global re�
duction 
Maron ����� Apt�e� Damerau� � Weiss �����
provides an inductive learner with the same feature
set for each category� while local reduction selects
a speci�c feature set for each category 
see for in�
stance 
Apt�e� Damerau� � Weiss ����� Lewis �����
Wiener� Pedersen� � Weigend ������
 The nature
of reduction can also be quali�ed by two di�erent
means� �ltering and construction
 Filtering aims at
reducing the number of features by selecting the best
ones according to some criterion� such criteria in�
clude mutual information 
Lewis � Ringuette �����
Moulinier � Ganascia ������ frequency 
Apt�e� Dam�
erau� � Weiss ������ term ranking 
Fuhr et al� �����
Wiener� Pedersen� � Weigend ����� or expert�s judg�
ment 
Maron �����
 Construction has a lesser impact
in text categorization
 Instead of selecting a subset of
the original feature set� new features are constructed
as combinations of original features
 Latent Semantic
Indexing 
LSI� 
Deerwester et al� ������ as used in

Wiener� Pedersen� � Weigend ������ is such a con�
structive approach


Inductive Construction of Categorizers

Once texts are turned into learning examples� induc�
tive learners are used to induce categorizers
 Since the
ideas behind these learners are well known in ML� we
only review those used in text categorization experi�
ments




In most categorization systems� induction is per�
formed by a numerical learner
 Linear regression

Biebericher et al� ����� Fuhr et al� ������ Bayesian
classi�ers 
Maron ����� Lewis ������ k�nearest neigh�
bors 
Masand� Lino�� � Waltz ����� Yang ������ neu�
ral nets 
Wiener� Pedersen� � Weigend ����� and
threshold computation 
Liddy� Paik� � Yu ����� are
instances of such learners
 Recent studies have in�
troduced symbolic learners in order to build catego�
rizers� decision tree constructors 
Fuhr et al� �����
Lewis � Ringuette ������ relational k�DNF learners

Cohen ����� and production rule inducers 
Apt�e�
Damerau� � Weiss ����� Moulinier � Ganascia �����


We now outline a couple of di�erences between these
learners� that may be signi�cant for the text catego�
rization task
 First� numerical and symbolic learn�
ers di�er their abilities to handle structured features
and produce understandable classi�ers
 The instance
language� i
e
 the feature set issued from text rep�
resentation� is known to strongly bias the inductive
learner 
Michalski �����
 Symbolic learners usually
deal with a structured instance language but perform
rather poorly when they are confronted with numerical
data
 On the other hand� numerical learners can not
easily deal with structured features
 Moreover� sym�
bolic learners are often said to produce interpretable
classi�ers
 However� text categorization is a domain
where classi�ers are quite verbose� a categorization
system may include several thousands of rules 
Moulin�
ier � Ganascia ������ which can hardly be considered
as interpretable


Finally� we believe that resistance to noise may be
critical for the text categorization task� since textual
databases are usually rather large and are bound to be
noisy
 Some symbolic learners like ID� 
Quinlan �����
or Charade 
Ganascia ����� are said to construct
consistent descriptions of concepts� i
e
 a description is
generated when all examples covered by this descrip�
tion belong to the same concept
 Such learners are not
noise�resistant
 However� most ML techniques provide
some means to take noise into account


What Impact Has Knowledge �

Our third concern is the analysis of the use and impact
of knowledge during the whole categorization process

As shown in Figure �� additional knowledge may ap�
pear during any of the two major subtasks of catego�
rization� i
e
 text representation and induction


There is no single de�nition for knowledge
 We
therefore distinguish three facets to the term knowl�
edge
 In IR and numerical learning� knowledge is of�
ten extracted from data
 For instance� a frequency�
based model can be considered as adding knowledge

to a boolean model
 We call the second facet domain

knowledge
 Such a kind of knowledge is provided by
an external interaction and refers to a speci�c applica�
tion
 For example� machine�readable dictionaries are
sources of domain knowledge
 Lastly� an inductive bias
can be considered as a knowledge source for the learner
or the reduction method


These three facets of knowledge are mostly evoked
during the text representation step
 Local selection�
LSI or even the frequency based model can be con�
sidered as adding knowledge extracted from data to a
global text representation based on a boolean model

Domain knowledge has been used by 
Liddy� Paik� �
Yu ������ where a machine�readable dictionary was
employed to build the initial representation
 We also
consider the assignment of a greater weight to words
appearing in the headlines of a news�story 
Apt�e� Dam�
erau� � Weiss ����� as domain knowledge
 In 
Cohen
������ the expressive power of a relational formalism�
i
e
 language bias� enables the representation to take
into account the positions of words inside a document


There has been little research conducted on the use
of knowledge during the inductive phase of categoriza�
tion
 Nevertheless� a noticeable attempt is presented
in 
Wiener� Pedersen� � Weigend ������ where the au�
thors group categories according to semantic charac�
teristics and induce categorizers of these sub�domains

In 
Fuhr et al� ������ the authors used knowledge to
guide an indexing system� for instance� knowledge en�
abled the discrimination among candidate keywords is�
sued from the inductive step


Most experiments reported in text categorization�
which used additional knowledge in the representation
and induction steps� show that an enriched categoriza�
tion system outperforms a naive approach
 However�
few studies have reported experiments� where varying
amounts of knowledge were involved
 For instance�

Wiener� Pedersen� � Weigend ����� reported an en�
hancement of �� using LSI and a hierarchical net over
boolean features using a �at network
 Similarly� 
Apt�e�
Damerau� � Weiss ����� reported a increase of �� be�
tween a locally reduced representation based on fre�
quency and weight assignment� and a global boolean
representation


Limitations of this Unifying View

There remain some text categorization approaches that
do not �t into the preceding schema
 The process�
ing step between the initial representation and the ��
nal representation does not always imply dimensional�
ity reduction
 For instance� in 
Creecy et al� ������
the authors expand the initial representation and their
learner has to deal with over � million features
 Reduc�



tion of the training set� as opposed to dimensionality
reduction� has also been eluded in this schema
 Sam�
pling� as described in 
Lewis � Catlett ����� and used
by 
Cohen ������ is one such approach for reducing the
number of training examples


Finally� for the sake of simplicity� we have not in�
cluded feedback into the whole categorization sys�
tem
 Clearly� however� all systems perform hand�
driven feedback� when tuning parameters to optimize
some evaluation criterion
 We are not aware of auto�
matic feed�back in the context of text categorization


A Framework to Compare Learners

Very few studies have conducted a thorough compar�
ison between learners on the text categorization task

In 
Lewis � Ringuette ������ two learning approaches
are compared� Bayesian classi�cation and decision tree
construction� 
Wiener� Pedersen� � Weigend ����� ex�
perimented on several neural net models
 However�
most studies report some performance improvements of
a given approach over others
 Hence� there has been no
conjecture on the properties a learner ought to possess
so that it performs well on the text categorization task

Moreover� comparing existing approaches is inconclu�
sive to assess learners inasmuch as no clear distinction
can be made between the exact roles of text represen�
tation and inductive learning
 In this section� we pro�
pose an experimental framework in order to compare
individual learners� and not the whole categorization
system


Text Representation and Learning Scheme

Text representation is a two�stage process
 The �rst
stage is concerned with the initial text representation

We are confronted with an alternative� we can either
hold text representation constant or choose the text
representation that is best suited to each learner
 We
choose to have a unique representation for all learners
and use a naive boolean model


In a second stage� this boolean representation is re�
duced using local �ltering based on the mutual infor�
mation criterion
 For each category� we select the fea�
tures that obtain the n top�most scores using the mu�
tual information criterion between the given category
and a feature


To end up� we obtain the following learning scheme

Since learners are typically used for single�class predic�
tion� the assignment of n categories to a document is
transformed into n assignments decisions on each sin�
gle category
 The original text database is translated
in terms of locally selected features for each category


Evaluation Criteria

Evaluation criteria in IR and in ML di�er
 We choose
to assess our experiments with an IR criterion� since
accuracy� a measure commonly used in ML� is biased
by the high disproportion between the assignment and
the non�assignment of categories
 Thus� we consider
recall and precision as evaluation measures
 We use
micro�averaging 
Lewis ����� Sec
 �
�� as a means
of cumulating performances over all categories
 How�
ever� since recall usually goes up 
respectively down�
when precision goes down 
respectively up�� it is rather
tricky to assess performances on the basis of these two
measures
 Among several summarizing measures that
have been proposed� we choose the F��measure 
Lewis
����� as an evaluation criterion�

F� �

�� � ��PR

��P � R
�

where R denotes recall� P precision and � varies from
� to in�nity


Experimental Results

The Reuters Corpus

We carried out our experiments on the Reuters dataset
of �nancial newswire stories from the year ����� also
identi�ed as Reuters�������
 The original corpus is
composed of ����� manually indexed stories divided
into a learning set 
����� documents� and a testing
set 
���� documents�
 Among ��� subjects of interest�
including topics� places or company names� we worked
on a set of ��� categories that were provided together
with the formatted version of the corpus
 We decided
to overlook stories without category assignment� since
we could not possibly learn from them�
 This left
us with ���� learning and ���� testing examples de�
scribed by ����� words provided by Lewis� processing

Lewis ����� p
 ���


Which Learners �

Our experiments were conducted on four learners
which illustrate symbolic and numerical learning
 An
implementation of ID� 
Quinlan ����� and Charade

Ganascia ������ a production rule learner� represent
symbolic learners� while a k�nearest neighbors algo�
rithm called IB� and a Bayesian approach� NaiveBayes�
are instances of numerical learners
 The ID�� IB and
NaiveBayes are those implemented in the MLC�� li�
brary 
Kohavi et al� �����


�The Reuters dataset can be obtained by anonymous
ftp from �pub�reuters� on ciir�ftp�cs�umass�edu�

�Overlooking stories without category assignment was a
misunderstanding of the original corpus labels�



Learner � features F� Break�even point
ID� �� ��
�
Charade �� ��
�
IB �� ��
�
NaiveBayes �� ��
�
Neural Nets 
boolean model� � ��
�
Neural Nets 
enriched model� � ��
�
Swap�� 
local boolean model� � ��
�
Swap�� 
enriched model� � ��
�

Table �� Micro�averaged performances of learners on the Reuters testing set


Results

We ran several series of experiments� for each algo�
rithm� we used varying sizes of feature sets
 The eval�
uation was conducted on the set of ���� testing ex�
amples
 Results� reported in Table �� show the best
performances with regards to the F� criterion
 Results
from earlier experiments on the same corpus complete
this summary
 Neural nets refer to the experiments
presented by 
Wiener� Pedersen� � Weigend ������
while Swap�� is a production rule learner used in 
Apt�e�
Damerau� � Weiss �����
 In both cases� the enriched
model takes into account various kinds of knowledge
sources� while the 
local� boolean model is very close
to our naive framework

These earlier experiments were not evaluated using

the same criterion
 However� the break�even point and
the F� measure may be compared since F�
P �� P �� �
P �� where P � is the precision obtained at the break�
even point
 Finally� it is worth noticing that the per�
formances of four learners out of six 
ID�� Charade�
Swap�� and Neural Nets� are very close� when these
learners are given a similar text representation


Discussion

The di�erence between some learner�s microaveraged
performance is not really signi�cant
 Let us� for in�
stance� consider Charade and ID�
 The microaver�
aged F� is roughly the same� however� these two learn�
ers have distinct behavior� while Charade favors re�
call� ID� favors precision
 Moreover� the gap between
the values of recall and precision is wider using the
decision tree technique 
cf Table ��

Furthermore� to get a better insight� we looked at
the behavior of each learner on individual categories

Results on a subset of �� categories are reported Fig�
ure �
 This subset groups the most frequently assigned
categories on the training set� as well as some ran�
domly selected ones
 The number of positive training
examples is also given
 It is worth noticing that no
learner outperforms the others on all categories� even

though in most cases symbolic learners show better
performances


Table � may give rise to a unfortunate association
between rule learners and large feature sets� as op�
posed to statistical learners and small feature sets
 In
Table �� we show that this association does not hold�
ID� performs well with few feature and IB performs
equally well with �� features
 However� Charade per�
formances are greatly deteriorated by a small set of
features


An alternative hypothesis was that symbolic learn�
ers performed their own selection of features during
the learning phase� whereas numerical ones did not

In Table �� we report the number of features that ap�
pear in the descriptions 
either tree or rule set� learned
by ID� and Charade for each of the �� categories
 A
striking di�erence between these two learners can be
seen� while ID� does have some kind of feature selec�
tion� since it does not use all features 
even with only
ten features� in the decision tree
 Charade� on the
other hand� uses most of the available features� this
characteristics is emphasized by the use of redundancy
during learning


Another direction would need further investigation

In our framework� we learn to decide whether a cat�
egory can be assigned to a text or not
 Since text
categorization is more concerned with the assignment
than with the non�assignment� it would be interesting
to assess the ability of learners to learn a concept with
few positive examples
 At �rst view� numerical learn�
ers are less sensitive to irregular distributions
 For in�
stance� IB and NaiveBayes perform rather well on the
veg�oil and palm�oil categories� whereas Charade
does poorly


Finally� the poor performance of all learners on the
yen category is striking 
cf
 Figure ��
 Our belief
on this particular case is that induction is �awed by
representation
 Indeed� documents from category yen
and dlr often use a similar vocabulary
 However� there
are less examples labeled with category yen
 Thus� it
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Figure �� Comparison on a subset
 The criterion is F� expressed as a percentage


is rather hard to distinguish this category from the dlr
category
 This can be related to a kind of noisy data


Conclusion

In this paper� we have presented a review of current
research in text categorization and provided evidence
that the properties of learners should be taken into
account� in order to choose one particular learner to
induce categorizers


We argued that considering a single evaluation mea�
sure could not properly characterize the abilities of a
given learner to the text categorization task
 We also
outlined di�erences between numerical and symbolic
learners� in the language instance as well as in data
distribution
 Considering these two dimensions and
the results reported in the last section� we believe that
it would be interesting to study hybrid approaches to
text categorization� data characteristics could guide
the choice of a learner for each category


Moreover� as ML algorithms currently have di�cul�
ties to deal with both large feature and example sets�
future research should be dedicated to reducing these
sets
 One path has been pointed out by 
Lewis �
Catlett ����� and consists in reducing the sample set

We prefer another path� which includes designing spe�
ci�c algorithms for dimensionality reduction and en�
hancing the initial text representation� using for in�

stance linguistic knowledge


Finally� we have not addressed the in�uence of noisy
data on learning in a categorization context
 The ex�
periments we reported in this paper need to be further
analyzed and developped in order to assess wether re�
sistance to noise is important
 However� we can clearly
distinguish between two types of noise� noise may be
present in the original textual dataset 
i
e
 two iden�
tical texts with di�erent categories� as it appeared in
the Reuters dataset�� or it may be introduced by text
representation� especially during the reduction step
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