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Abstract

We introduce a novel kernel for comparing two text documents. The kernel
is an inner product in the feature space consisting of all subsequences of length
k. A subsequence is any ordered sequence of k characters occurring in the text
though not necessarily contiguously. The subsequences are weighted by an ex-
ponentially decaying factor of their full length in the text, hence emphasising
those occurrences which are close to contiguous. A direct computation of this
feature vector would involve a prohibitive amount of computation even for
modest values of k, since the dimension of the feature space grows exponen-
tially with k. The paper describes how despite this fact the inner product can
be efficiently evaluated by a dynamic programming technique. A preliminary
experimental comparison of the performance of the kernel compared with a
standard word feature space kernel [4] is made showing encouraging results.

Introduction

Standard learning systems (like neural networks or decision trees) operate on in-
put data after they have been transformed into feature vectors x4y, ..., z; € X from
an n dimensional space. There are cases, however, where the input data can not
be readily described by explicit feature vectors: for example biosequences, images,
graphs and text documents. For such datasets, the construction of a feature extrac-
tion module can be as complex and expensive as solving the entire problem. An
effective alternative to explicit feature extraction is provided by kernel methods.

Kernel-based learning methods use an implicit mapping of the input data into a
high dimensional feature space defined by a kernel function, i.e. a function returning
the inner product between the images of two data points in the feature space. The
learning then takes place in the feature space, provided the learning algorithm can
be entirely rewritten so that the data points only appear inside dot products with
other data points.

Several linear algorithms can be formulated in this way, for clustering, classi-
fication and regression. The most typical example of kernel-based systems is the
Support Vector Machine (SVM) [8] [1], that implements linear classification.

One interesting property of kernel-based systems is that, once a valid kernel
function has been selected, one can practically work in spaces of any dimension-
ality without paying any computational cost, since the feature mapping is never
effectively performed. In fact, one does not even need to know what features are
being used. In this paper we examine the use of a kernel method based on string
alignment for text categorization problems.

A standard approach [3] to text categorisation makes use of the so-called bag of
words (BOW) representation, mapping a document to a bag (i.e. a set that counts
repeated elements), hence losing all the word order information and only retaining
the frequency of the terms in the document. This is usually accompanied by the
removal of non-informative words (stop words) and by the replacing of words by
their stems, so losing inflection information. This simple technique has recently been
used very successfully in supervised learning tasks with Support Vector Machines
(SVM) [3].

In this paper we propose a radically different approach, that considers documents
simply as symbol sequences, and makes use of specific kernels. The approach is
entirely subsymbolic, in the sense that it considers the document just like a unique
long sequence, and still it is capable to capture topic information. We build on
recent advances [9, 2] that demonstrated how to build kernels over general structures
like sequences. The most remarkable property of such methods is that they map
documents to vectors without explicitly representing them, by means of sequence
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alignment techniques. A dynamic programming technique makes the computation
of the kernels very efficient (linear in the documents length).

It is surprising that such a radical strategy, only extracting allignment infor-
mation, delivers positive results in topic classification, comparable with the perfor-
mance of problem-specific strategies: it seems that in some sense the semantic of
the document can be at least partly captured by the presence of certain substrings
of symbols.

Support Vector Machines [1] are linear classifiers in a kernel defined feature
space. The kernel is a function which returns the dot product of the feature vectors
¢(z) and ¢(z') of two inputs = and 2’ K(z,z') = ¢(z)T ¢(2'). Choosing very high
dimensional feature spaces ensures that the required functionality can be obtained
using linear classifiers. The computational difficulties of working in such feature
spaces is avoided by using a dual representation of the linear functions in terms of
the training set S = {(z1, 1), (22, ¥2) -+, (Tm: ¥Ym) },

flz) = EaiyiK(m,mi) —b.
i=1

The danger of overfitting by resorting to such a high dimensional space is averted
by maximising the margin or a related soft version of this criterion, a strategy that
has been shown to ensure good generalisation despite the high dimensionality [6, 7].

A Kernel for Text Sequences

In this section we describe a kernel between two text documents. The idea is to
compare them by means of the substrings they contain: the more substrings in
common, the more similar they are. An important part is that such substrings do
not need to be contiguous, and the degree of contiguity of one such substring in a
document determines how much weight it will have in the comparison.

For example: the substring ’c-a-r’ is present both in the word ’card’ and in
the word ’custard’, but with different weighting. For each such substring there is
a dimension of the feature space, and the value of such coordinate depends on how
frequently and how compactly such string is embedded in the text. In order to deal
with non-contiguous substrings, it is necessary to introduce a decay factor A € (0, 1)
that can be used to weight the presence of a certain feature in a text (see Definition
1 for more details).

Example. Consider the words cat, car, bat, bar. If we consider only k=2, we
obtain an 8-dimensional feature space, where the words are mapped as follows:

ca ct at ba bt c¢r ar b-r
dlcat) A2 X3 AT 0 0 0 0 0
p(car) A% 0 0 0 0 A0
o(bat) 0 0 A2 X 0 0 0
¢(bar) 0 0 0 A2 0 0 A28

the unnormalized kernel between car and cat is K(car,cat) = A*, wherease the
normalized version is obtained as follows: K (car,car) = K (cat,cat) = 2A* + A\® and
hence K’(car,cat) = A*/(2X\* + X8) = 1/(2 + \?).

However, for interesting substring sizes (eg > 4) direct computation of all the
relevant features would be impractical even for moderately sized texts and hence
explicit use of such representation would be impossible. But it turns out that a
kernel using such features can be defined and calculated in a very efficient way by
using dynamic progamming techniques.
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We derive the kernel by starting from the features and working out their inner
product. In this case there is no need to prove that it satisfies Mercer’s conditions
(symmetry and positive semi-definiteness) since they will follow automatically from
its definition as an inner product. This kernel is based on work [9, 2] mostly mo-
tivated by bioinformatics applications. It maps strings to a feature vector indexed
by all k tuples of characters. A k-tuple will have a non-zero entry if it occurs as a
subsequence anywhere (not necessarily contiguously) in the string. The weighting
of the feature will be the sum over the occurrences of the k-tuple of a decaying
factor of the length of the occurrence.

Definition 1 (String subsequence kernel) Let ¥ be a finite alphabet. A string is a
finite sequence of characters from X, including the empty sequence. For strings s,t,
we denote by |s| the length of the string s = sy ...s),|, and by st the string obtained
by concatenating the strings s and t. The string s[i : j| is the substring s;...s; of
s. We say that u is a subsequence of s, if there exist indices i = (i1,... ,4y|), with
1 <iy <« < iy < |s|, such that u; = s;;, for j=1,...,|u|, or u = s[i] for short.
The length I(i) of the subsequence in s is i)y — i1 + 1. We denote by X" the set of
all finite strings of length n, and by X* the set of all strings

=Jz (1)

We now define feature spaces F, = R™". The feature mapping ¢ for a string s is
given by defining the u coordinate gbu(s) for each u € 3. We define

= > A0 (2)
i:u=s[i]

for some A < 1. These features measure the number of occurrences of subsequences
in the string s weighting them according to their lengths. Hence, the inner product of
the feature vectors for two strings s and t give a sum over all common subsequences
weighted according to their frequency of occurrence and lengths

I(Tl(sat) = Z <¢u( (Zsu E E A Z A = Z Z Z AL +()
ugeL™ u€X™ jru=s[i] Jru=t[j] ™ jru=s[i] jru=t[j]

In order to derive an effective procedure for computing such kernel, we introduce
an additional function which will aid in defining a recursive computation for this

kernel. Let
K! Z Z Z AlslHE=ia— ]1+2

u€ Xt iiu=s[i] jru=t[j]
i = 1,...,n—1,

that is counting the length to the end of the strings s and ¢ instead of just /(i) and
1(j). We can now define a recursive computation for K| and hence compute K,

Definition 2 Recursive computation of the subsequence kernel.

K{(s,t) = 1, for all s,t,

Ki(s,t) = 0, if min(|s], [t]) <,

Ki(s.) = 0,if min<|s| <

Kl(sz,t) = AXK[( E K!_ (s,t[1:j — 1])AlI=7+2
jitj=z

i=1,...,n—1,
K, (sz,t) = Z K!_ (s, 1[1: j —1])A2%
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The correctness of this recursion follows from observing how the length of the
strings has increased, incurring a factor of A for each extra character, until the
full length of n characters has been attained. If we wished to compute K, (s,1)
for a range of values of n, we would simply perform the computation of K/(s,1)
up to one less than the largest n required, and then apply the last recursion for
each K,(s,t) that is needed using the stored values of K/(s,t). We can of course
create a kernel K (s,t) that combines the different K, (s,t) giving different (positive)
weightings for each n. Once we have create such a kernel it is natural to normalise
to remove any bias introduced by document length. We can produce this effect
by normalising the feature vectors in the feature space. Hence, we create a new
embedding (;;(5) = %, which gives rise to the kernel

§ ~ . R é(s) o(t)
Rt = (36)-60)) = <||¢<s>|| ||¢<t>||>
4

Te@N 6@ ( )Ix (t,1)
The normalised kernel introduced above was implemented using the recursive for-
mulas described above. The next section gives some more details of the algorithmics
and this is followed by a section describing the results of applying the kernel in a
Support Vector Machine for text classification.

Algorithmics

In this section we describe how special design techniques provide a significant speed-
up of the procedure, by both accelerating the kernel evaluations and reducing their
number.

We used a simple gradient based implementation of SVMs (see [1]) with a
fixed threshold. In order to deal with large datasets, we used a form of chunking;:
beginning with a very small subset of the data and gradually building up the size
of the training set, while ensuring that only points which failed to meet margin 1
on the current hypothesis were included in the next chunk.

Since each evaluation of the kernel function requires not neglectable computa-
tional resources, we designed the system so to only calculate those entries of the
kernel matrix that are actually required by the training algorithm. This can sig-
nificantly reduce the training time, since only a relatively small part of the kernel
matrix is actually used by our implementation of SVM.

Special care in the implementation of the kernel described in Definition 1 can
significantly speed-up its evaluation. As can be seen from the description of the
recursion in Definition 2, its computation takes time proportional to nls||t|?, as
the outermost recursion is over the sequence length and for each length and each
additional character in s and ¢ a sum over the sequence ¢ must be evaluated.

The complexity of the computation can be reduced to O(n|s||t]), by first evalu-
ating
K/ (sz,1) Z K _{(syt[1:j— 1]))\|t|_j+2

jit;=x
and observing that we can then evaluate K/(s,t) with the O(]s||¢|) recursion,
K!(sz,t) = AK!(s,t) + K!'(sz,1).

Now observe that

K/ (sz,tu) = )\lullw(sx,t),
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provided x does not occur in u, while
K!'(sz,tx) = A (K/(s2,1) + AK/_1(s,1)) .

These observations together give an O(|s||t|) recursion for computing K/(s,t).
Hence, we can evaluate the overall kernel in O(n|s||t|) time.

Experimental Results

Our aim was to test the efficacy of this new approach to feature extraction for text
categorization, and to compare with a state—of-the-art system such as the one used
in [4]. Expecially, we wanted to see how the performance is affected by the tunable
parameter k (we have used values 5 and 5). As expected, using longer substrings
in the comparison of two documents gives an improved performance.

We used the same dataset as that reported in [4], namely the Reuters-21578 [5].
We performed all of our experiments on a subset of four categories, ‘earn’, ‘acq’,
‘crude’, and ‘corn’. We first made a comparison between our version of their ap-
proach for the training set sizes reported in that paper, in order to verify that we
could reproduce their performance. The results we obtained are given in Table 1
together with the breakeven points reported in [4] for the linear kernel applied to
the features. They indicate a very close match between the two results and confirm
that our program is giving virtually identical performance.

Given a test document to be classified in two classes (positive and negative),
there are 4 possible outcomes: False Positive (FP) if the systems labels it as a
positive while it is a negative; False Negative (FN) if the system labels it as a
negative while it is a positive; True Positive (TP) and True Negative (TN) if the
system correctly predicts the label. In the following we will use TP, TN, FP,
F'N to denote the number of true positives, true negatives, false positives and false
negatives, respectively. Note that with this notation the number of positive points in
the test set can be written as TP+ F N, the number of negative points as TN+ F P,
and the test set size as TP+ FP+ TN + FN.

A confusion matrix can be used to summarize the performance of the classifier:

Correct

P N
Predicted P | TP | FP
N | FN | TN

and thus a perfect predictor would have a diagonal confusion matrix. We now

define:

. TP TP
precision = ——— recall =

TP+ FP TP+ FN

And we define the F1 estimator as:

Fl— 2 - precision - recall

precision + recall

We applied the two different kernels to a smaller dataset of 380 training examples
and 90 test examples. The only difference in the experiments was the kernel used.
The splits of the data were identical with the sizes and numbers of positive examples
in training and test sets given in Table 1 for the four categories considered.

The initial experiments all used a sequence length of 5 for the string subsequences
kernel. We set A = 0.5. The results obtained are shown in Table 2 where the
precision, recall and F1 values are shown for both kernels.
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Precision | Recall | Comparison | Joachims
F1 | Breakeven
earn 97.98 | 97.98 0.98 0.982
acq 95.61 | 90.96 0.932 0.926
crude 85.95 | 84.13 0.850 0.86
corn 89.09 | 87.50 0.883 0.86

4t train 4 test

out of 370 | out of 90

earn 152 40

acq 114 25

crude 76 15

corn 38 10

Table 1 F1 and Class frequencies for the 4 categories

Precision Recall F1
W-K |5SK | W-K|5S5K | W-K | 585K
earn 1.0 | 0.318 0.35 | 0.525 | 0.518 | 0.396
acq 0.75 0.44 | 0.12 | 0.133 | 0.207 | 0.204
crude 1.0 | 0.167 | 0.133 | 0.133 | 0.235 | 0.148
corn 1.0 | 0.583 0.1 0.7 | 0.182 | 0.636

Table 2 Precision, Recall and F1 numbers for 4 categories for the two kernels: word

kernel (W-K) and subsequences kernel (5 S-K)

The results are much better in one category (‘corn’), similar for the ‘acq’ cate-
gory and much worse for the categories ‘earn’ and ‘crude’. They certainly indicate
that the new kernel can outperform the more classical approach, but equally the
performance is not reliably better. A further experiment was performed for one of
the categories on which the new kernel performed poorly. The subsequence length
was increased to 6 for the most frequent category ‘earn’. The results are presented
in Table 3. The increase in sequence length to 6 has made a significant improve-

Precision Recall F1
W-K|6SK | WK |6SK| WK | 6SK
earn 1.0 | 0.769 | 0.35 1.0 | 0.518 | 0.870

Table 3 Precision, Recall and F1 numbers for the ‘earn’ category for two kernels:
word kernel (W-K) and subsequences kernel (6 S-K)

ment in the performance of the subsequences kernel, which now outperforms the
word feature kernel.

We are aware that the experimental results presented in this section cover too
few runs for any definite conclusions to be drawn. They do, however, indicate
that the new kernel is certainly worthy of further investigation. Repeated runs on
random splits of the data will be performed to evaluate statistically the effects we
are observing, both in the length of sequences and kernel types tested.



Conclusions 7

5 Conclusions

The paper has presented a novel kernel for text analysis, and tested it on a catego-
rization task, which relies on evaluating an inner product in a very high dimensional
feature space. For a given sequence length k& (k = 5 was used in the experiments
reported) the features are indexed by all strings of length k. Direct computation of
all the relevant features would be impractical even for moderately sized texts. The
paper has presented a dynamic programming style computation for computing the
kernel directly from the input sequences without explicitly calculating the feature
vectors.

Further refinements of the algorithm have resulted in a practical alternative to
the more standard word feature based kernel used in previous SVM applications
to text classification [4]. We have presented an experimental comparison of the
word feature kernel with our subsequences kernel on a benchmark dataset with
encouraging results. The results reported here are very preliminary and many
questions remain to be resolved. First more extensive experiments ' are required
to gain a more reliable picture of the performance of the new kernel, including the
effect of varying the subsequence length and the parameter A. The evaluation of
the new kernel is still relatively time consuming and more research is needed to
investigate ways of expediting this phase of the computation.

The results also suggest that the choice of one value for the sequence length may
be too restrictive and a kernel composed of a weighted sum of the sequence kernels
for several different lengths would be more robust. This would not add significantly
to the computation since the final stage of computing K from K’ is relatively cheap.
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