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Abstract

Text Categorization (TC) and Information Extraction (IE) are two important goals
of Natural Language Processing. While handcrafting rules for both tasks has a long
tradition, learning approaches gained much interest in the past. In the present paper
we try to provide a solid basis for the application of ILP methods to these learning
problems. We propose to introduce three basic types (namely a type for text, one
for words and one for text positions) and three simple predicate definitions over these
types which enable to write text categorization and information extraction rules as
logic programs. Based on the proposed representation, we present the key concepts
of our approach to the problem of learning rules for TC and IE in terms of ILP. We
conclude the paper by comparing our approach of representing texts and rules as logic
programs to others.

1 Introduction

Classifying texts into content-defined categories and extracting pieces of information of a
document are important goals when dealing with documents. As a guiding example we
use our efforts in office automation [4, 5]. When a new business document comes in, one of
the first problems is document categorization, i.e., the filing of documents into categories
such as invoices, confirmation of order, etc. Afterwards, we are interested in extracting
the process relevant information from the document. In case of an invoice we want to
know the sender, the item we should pay for, the amount and similar information. This
information can then be used to automate the document handling by triggering the right
processes, e.g., by electronically remitting money to some bank account.

There are many more applications to document categorizations and information ex-
traction. While the more traditional approaches work with hand-crafted categorization
and extraction rules there is an increasing interest in applying learning approaches. The
idea is that a learning system only has to be provided with positive and negative examples
of some document category (or important text fragments, respectively) and then learns a
classifier (an extraction rule, respectively) by itself. In text categorization most approaches
use propositional learners with only a few exceptions [3, 9]. Approaches to learning rules
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for information extraction generally go beyond propositional learning but mostly rely on
proprietary formalisms (for a survey see [10] and [13]).

The tasks of learning rules for TC and IE are very closely related. In both cases, some
characteristic patterns for text fragments have to be found. Compared to text categoriza-
tion, in learning rules for information extraction an additional problem arises. While in
text categorization the boundary of the fragment is always given (which is the document
to be classified), information extraction rules have to locate the fragment boundaries by
themselves. Nevertheless both tasks are very similar and thus also rely on very similar
pattern languages. For this reason, it seems reasonable to treat both learning problems in
a single learning framework.

Before going into details, we first want to argue why we are interested in making
pattern learning for text categorization and information extraction an ILP problem. Our
experiences in both domains show that it is relatively easy to learn TC and IE rules
with some more or less reasonable effectiveness. But going beyond that effectiveness
seems pretty hard as results reported in literature also illustrate. Extensions in various
directions we made to learning algorithms only turned out to improve the results in some
rare cases (i.e., in some specific category in a domain or in some specific information type
to be extracted). Motivated by this observation, we concluded that at least one direction
of further improvement may be the combination of several of these extensions within a
single learning framework. For this framework, ILP seems to be the right choice, since it
allows a sound and communicable formulation of the problem and its solution approaches.

In the remainder of the paper we first briefly introduce common constructs of pattern
languages used for text categorization and information extraction. We then propose the
basic types (like word or text position) and predicate definitions we use in mapping the
functionalities of such pattern languages into logic programs. Having a means to formulate
TC and IE rules as logic programs, the next section demonstrates how we apply standard
ILP learning techniques to the problem of learning such programs.

2 Mapping Text Pattern Languages to Logic Programs

In this section we first describe some typical constructs of pattern languages for text
categorization and information extraction. We then propose a minimum set of three basic
predicates needed for both tasks. Additional constructs of text pattern languages can be
easily incorporated which we show only by example.

There are some obvious constructs a pattern language suited for TC and IE should
have, which include (for easier reference, we have marked the different constructs by A-E):

A Testing on the occurrence of specific words (does the word “invoice” occur in the
document to be classified?)

B Tests on words occurring in some order and/or some restricted distance range. A
special case of this kind of test is the test on word sequences.

C Boolean combinations of tests.
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D Tests on properties of words or word sequences (e.g.: Is a “word” a number? Is

it uppercase? Does it have a specific syntactic word category, such as noun? Is a
word/word sequence a noun phrase? Does it denote a person or company?)

E Tests whether some patterns occur within some specified environment (e.g.: Does
the pattern occur in one sentence? In the title?). These tests are particularly useful
when dealing with HTML or XML documents.

All of the above tests should be combinable in any reasonable way. For information
extraction there must be some additional means to specify some fragment within a pattern
which can be bound to the information to be extracted.

Our mapping of text pattern languages relies on the representation of a text
“wi we ... wy” as a word list or text [wy, wo, ..., wp]. Texts in this sense can be
used to represent a whole document, but they can also be used to describe information
in form of word sequences extracted from a document. A word is also a special type and
implemented as a list of characters. For easier readability, we do not write a word in form
of a comma separated list of characters. Another type we need is the type text position
which is used to locate single words within texts.

Our transformation of text patterns to logic programs relies on the predicates
wordpos (Text ,Word,Pos), fragment (Text,P1,P2,F) and next(P1,Min,Max,P2). The
predicate wordpos is used to describe words and their positions in a text. Note that these
texts are not necessarily documents, they can also describe some arbitrary word sequences
within a document. The predicate fragment provides locations of word sequences within
a larger text. A location of a word sequence F is given by its starting position P1 and its
ending position P2 within the larger text Text. Here too, the larger text is not necessarily
a whole document. In addition, we need some form of position arithmetics to describe the
relation between word positions. The predicate next (P1,Min,Max,P2) is true iff the two
positions P1 and P2 have a distance of at least Min words and at most Max words (i.e.,
Min<P2-P1<Max). For easier readability we also use the abbreviations next (P1,X,P2) and
next (P1,P2) with next (P1,X,P2)=next (P1,X,X,P2) and next (P1,P2)=next (P1,1,P2).
In the appendix we give a definition of the above predicates in PROLOG.

Using only these predicates, we are already able to write complex categorization and
extraction rules which map the constructs A, B, C, and partly E. For easier readability,
we write wordpos (Doc, Word, Pos) as Word@Doc:Pos. The following four rules describe
document categories:

invoice(Doc) :- invoice@Doc:P.
invoice(Doc) :- payment@Doc:P1, next(P1,P2), within@Doc:P2.

offer(Doc) :- thank@Doc:P1, you@Doc:P2, for@Doc:P3,
next(P1,P2), next(P2,1,3,P3).

The first rule assigns category invoice to a document if the word “invoice” occurs
somewhere in the document. The second rule indicates that category invoice is also
assigned if the words sequence “payment within” occurs. The next rule for the category
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offer tests on the word sequence “thank you” and the word “for” with up to two words
in between. This also allows the formulation “thank you very much for” and similar ones.

The following categorization rule for inquiry also returns some text fragment within
the input document:

inquiry(Doc, Interest) :- interested@Doc:P1, in@Doc:P2,
next (P1,P2), next(P2,P3),
fragment (Doc,P3,P3, Interest) .

The rule tests on “interested in” and extracts the following word, which indicates the
subject of interest. This capability of extracting word sequences from documents is the
basis for information extraction, as some more examples illustrate:

payment (Doc, Days) :- within@Doc:P1, days@Doc:P3,
next (P1,P2), next(P2,P3),
fragment (Doc,P2,P2,Days) .

cash_discount (Doc, Percent) :-
cash@Doc:P1, discount@Doc:P2, of@Doc:P3, ’%’@Doc:P6,
next (P1,P2), next(P2,P3), next(P3,P4),
next (P5,P6), next(P4,1,4,P5),
fragment (Doc,P4,P5, Percent).

cash_discount(Doc, Days, Percent) :-
days@Doc:P2, ’%’@Doc:P5,
next(P1,P2), next(P2,P3), next(P4,P5), next(P3,1,4,P4),
fragment (Doc,P1,P1,Days), fragment(Doc,P3,P4,Percent).

The rule for payment searches for “within” and “days” with exactly one word in be-
tween and returns exactly this word. The next rule for cash _discount tests on the word
sequence “cash discount” and the word “%” with a maximum distance of three words in
between and it extracts these words. The second rule for cash discount illustrates that
even so-called multi-slot rules can be expressed. The rule extracts corresponding pairs of
days and discounts.

It is very easy to extend the basic language given by the primitives wordpos, fragment,
and next. For instance, it is possible to introduce a unary predicate which tests whether
a “word” is a number or a binary predicate which tests whether two words have the same
stem. Another example for a built-in predicate is one that tests for a minimum syntactic
similarity of two words given by the Levenshtein distance [12]. Even more elaborated things
such as testing whether some or all words within a word sequence have some property is
pretty simple. By introducing these built-ins, we can map the constructs D.

To model word sequence features given by the structure of a document, it is possible
to introduce predicates which tell, for instance, whether some word occurs within the title.
This is the simple solution we currently pursue to map the constructs E. In parallel we
work on implementing a more sound mapping of document structures by extending the
notion of word positions.
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3 The Learning Algorithm

For learning text categorization and information extraction rules in form of logic programs
we have designed a learning algorithm which implements the widely used separate-and-
conquer strategy [7]: First a rule is searched which explains parts of the positive examples,
then the covered examples are separated, and the algorithm recursively conquers the
remaining positive examples. This repeats until no good rule for the remaining examples
can be found anymore. The set of negative examples remains unchanged during learning
and is used in the evaluation of rule hypotheses.

The algorithm can be seen an a special ILP learner with a focus on textual data.
Textual data is supported by providing the three fundamental predicates described in the
section before as built-ins. To achieve a reasonable efficency when evaluating the built-
ins, various indexing structures borrowed from work in information retrieval are used.
In addition to the basic predicates, many more built-ins for text handling are provided
such as predicates which test on word or word sequence properties or relations between
words/word sequences.

In addition to the support of text handling by built-ins, we also have support for learn-
ing text categorization and information extractions rules by providing special refinement
operators. We will only introduce some of these operators by example. The simplest re-
finement operator is one that adds a literal to a rule which directly tests on the occurrence
of some word word (the [; denote literals, we have omitted the head of the rules in our
representation):

byl
h,..,l,, word@Doc: Q)

For this type of refinement we do not allow all possible words for word, but only a
subset having a minimum positive correlation to the positive examples. The selection is
done to accelerate learning and does not —as experiments show— harm the effectiveness
of the learned rules too much. Two more refinement operators are used to test on word
occurrences to the left or to the right of some already given word.

L,..,word@Doc:Q,..,1,
l,..,word@Doc:P,next(P,1,1,Q),word’@Doc:Q,..,l,

Li,..,word@Doc:Q,..,l,
l,..,word@Doc:Q,next(Q,1,1,P),word’@Doc:P,..,l,

Note that in particular there are no refinement operators which replace position vari-
ables by constants. This reflects the heuristics that —at least in our experience— the
absolute position of a word within a text fragment is not important. While the above
refinement operators defined specializations of the current rule, we also have generaliza-
tion operators. These generalizations are initiated heuristically only by the current rule
hypothesis. An example is the following generalization operator, which increases the max-
imum distance required between two word occurrences:
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b,..,next(Q,1,x,P),..,l,
L,.,next(Q,1,y,P),...l,  with y=x+1

Another set of generalization operators replaces a test of some word occurrence by
a test requiring just a word with some specific property (e.g., the property of being a
number, or being uppercase).

L,..,word@Doc:P,..,l,
l,.., Word@Doc:P,some_property(Word),.. 1,

Generalization steps are initiated heuristically only by the current rule hypothesis.

In the current implementation, there is no declarative language to control the ap-
plication of the refinement operators. The search strategy is hard-wired in the learning
algorithm. Depending on the state of the learner, beams with various refinement operators
and of various widths are used to investigate the space of rule hypotheses. Implement-
ing and experimenting with a hard-wired strategy was a conscious decision, since we first
wanted to explore which kind of expressiveness of a declarative strategy definition is needed
for our purpose. To prevent from overfitting, we use standard pre-pruning techniques such
as the Laplace estimate as optimization criterion and the the likelihood estimate [2].

After having described the general features of our rule learner, we now turn to the con-
crete learning of text categorization and information extraction rules as we implemented
it.

For text categorization, the input to the learner is a set of positive and negative example
documents for each category as in the following example (+ indicates a positive example,
- a negative example, the dots “..” indicate more text):

offer+([.. thank, you, very, much, for, you, inquiry, ..]).
offer+([.. thank, you, for, your, letter, of, 10, February, ..]).
offer-([.. payment, within, 20, days, ..]).

offer-([.. we, are, interested, in, ..]).

Learning rules for text categorization is straight forward: In each conquer step we
successively refine the initial rule “offer+(Doc) :-” by applying our refinement operators.

In the case of information extraction, the positive examples are a set of text fragments
correctly extracted from some larger piece of text, typically a whole document.

cash_discount+([.. cash, discount, of, 2, %, ..]1,232,232,[2]).
cash_discount+([.. cash, discount, of, 2, ., 5, %, ..]1,143,145,[2, ., 5]).
cash_discount+([.. 2, %, for, cash, ..],198,198,[2]).

cash_discount+([.. 3, ., 5, %, for, cash, ..],101,103,[3, ., 5]).

In contrast to text categorization the negative examples are not given as ground facts.
Instead, we provide a set of text fragments which are guaranteed to not contain any
information to be extracted besides the informations given by the positive examples.

t-([.. we, offer, a, discount, of, 30, %, to, all, these, goods, ..]).
t-([.. is, 20, %, faster, .., we, offer, a, cash, discount, of, 2, %, ..1).
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Using these texts, we define the negative examples for cash_discount by:
cash discount-(Doc,X,Y,F) :- t-(Doc), A cash discount+(Doc,X,Y,F).

The way we introduced the negative examples reflects the typical situation when col-
lecting training material for an information extraction task: For a set of documents all
information of some type is extracted by hand. While these extracts serve as positive
examples, the remaining text implicitly defines the negative information.

We require information extraction rules to return the exact location and length of the
interesting text fragments. As a heuristics, we assume that for determining the beginning
of this information, either the word position just before the information or the first word
position within the information has to be located. Similarly, for determining the end of the
information, either the last word of the information or the first word after the information
has to be found. This heuristics results in four initial rules. Each of these rules is refined
separately and the best rule found is the result of the respective conquer step:

x+(Doc,Pos1,Pos2,Text) :- Wordl@Doc:Posl, Word2@Doc:Pos2,
fragment (Doc,Pos1,Pos2,Text).
x+(Doc,Pos1,Pos2,Text) :- Wordil@Doc:Posl’, Word2@Doc:Pos2,
next (Pos1’,Posl),
fragment (Doc,Pos1,Pos2,Text) .
x+(Doc,Pos1,Pos2,Text) :- Wordl@Doc:Posl, Word2@Doc:Pos2’,
next (Pos2,Pos2’),
fragment (Doc,Pos1,Pos2,Text) .
x+(Doc,Pos1,Pos2,Text) :- Wordl@Doc:Posl’, Word2@Doc:Pos2’,
next (Posl’,Pos), next(Pos2,Pos2’),
fragment (Doc,Pos1,Pos2,Text) .

It is important to note that in information extraction, we have additional refinement
operators. These allow to refine the initial extraction rules based on the occurring word
variables:

li,.., Word@Doc:P,..,l,
L,..,word@Doc:P,..,l,

L,..,Word@Doc:P,..,l,
ly,.., Word@Doc:P,some_property(Word),..,l,

4 Related Work

As already mentioned in the introduction, ILP has been rarely used for text categorization
and information extraction in its “pure” form. In [3] an ILP approach to the problem of
document categorization is described. Cohen represents a document by a set of facts of
the form word;(doc,pos). The predicate word; indicates that a word word; occurs in a
document doc at position pos with pos being a natural number. The main difference of
this document representation to our own representation is that in Cohen’s approach words
are predicates while we have an own type for words. This allows to test on word properties
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without leaving 1st order logic. Cohen’s approach also allows for phrases. This is done by
the predicates near1(pi,p2), near2(pi,p2), near3(pi,p2) which denote the maximum
difference between two word positions. For instance, neari (p;,p2) is true if |p;-ps| < 1.
An additional binary predicate after (p1,p2) is used to test whether a position p; is before
a position pe, i.e., it is true if po>p; holds. The problem of information extraction was
not addressed by Cohen.

In recent work Freitag proposes an ILP-like formalism for information extraction [6],
called SRV. Freitag informally describes the examples as a set of annotated documents.
Without going into the details of his rule language constructs, we just want to give a raw
impression of how Freitag’s information extraction rules look like. The example shows a
rule for extracting course numbers of a university’s web page:

coursenumber :- length(= 2),
every(in_title false),
some(7A [] all_upper_case true),
some (7B [] tripleton true).

The rule extracts every text fragment which satisfies the following conditions: the
fragment contains two words (length(= 2)), no word within the title is part of the frag-
ment (every(in_title false)), one word of the fragment consists only of upper-case
characters (some(7A [] all upper case true)), and the other word of the fragment
consists of three characters (some(?B [] tripleton true)). The relative positions of
words in Freitag’s approach are captured by two constructs. Using so-called relational
paths a position relative to the current one can be addressed. For instance, some(7A
[prev_token prev_token] capitalized true) requires a word within a fragment which
is preceeded by a capitalized word two tokens back. Similar to our predicate next, another
predicate relpos(Varl Var2 Relop N) allows to specify distances and ordering of word
occurrences. The variables Var1 and Var2 denote word occurrences, Relop is a comparison
operator and N is some natural number.

Freitag did not address the problem of text categorization explicitly. As potential
disadvantages of Freitag’s approach we see:

e Freitag’s rules are not represented in a standard logic language.

e There are no variables whose bindings provide the document the information was
found in, the position it was found at and the information itself.

e Only single value extraction rules can be formulated. This is because all predicates
implicitly relate to one text fragment.

There are a a number of other systems that learn information extractions rules and do
not use any logic programming formalism such as AutoSlog [11], LIEP [8], WHISK [13],
and RAPIER [1]. More complete and detailed overviews are given in [10] and in [13].
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5 Summary

We have proposed our mapping of typical text patterns to logic programs which is based
on types for text, words, and text positions and three fundamental predicates. Based
on this representation we presented the main concepts of our own rule learner for text
categorization and information extraction.

We see the contribution of this paper in the mapping of text pattern languages to
standard logic expressions. We think that this mapping may help to see TC and IE as
two interesting and stimulating ILP applications.

It was not the goal of the paper to compare the effectiveness of our learning algorithm to
the effectiveness of other algorithms. Nevertheless, first experiments with an initial version
of our rule learner indicate that results are comparable to those reported in literature for
standard problems.

Appendix - Predicate Definitions in PROLOG

wordpos ([Word | Rest], Word, 1).
wordpos([_ | Rest], Word, P) :- wordpos(Rest, Word, Q), P is Q + 1.

fragment([_ | Rest], P1, P2, F) :- P1 > 1, P11 is P1-1, P21 is P2-1,
fragment (Rest, P11, P21, F).

fragment (Text, 1, P2, F) :- fragment(Text, P2, F).

fragment([W | R], P, [W | F1) :- P > 0, Q is P-1, fragment(R, Q, F).

fragment (Text, 0, [1).

next(P, P1) :- next(P, 1, P1).

next(P, X, P1) :- number(P), number(X), P1 is P + X.

next(P, X, P1) :- var(P), number(X), number(P1), P is P1 - X.

next(P1, Min, Max, P2) :- number(P1), number(Min), number (Max), number (P2),
D is P2 - P1, D >= Min, D =< Max.

Note that not all of the above predicates are completely invertible.
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