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Abstract

This paper empirically compares the perfor-
mance of four probabilistic models for text
classification - Poisson, Bernoulli, Multino-
mial and Negative Binomial. We examine the
“naive Bayes” assumption in the four models
and show that the multinomial model is a
modified naive Bayes Poisson model that as-
sumes independence of document length and
document class. Despite the fact that this
last assumption might not be correct in many
situations, we find that, in general, relaxing it
does not change the performance of the clas-
sifier. Finally we propose and evaluate an
ad-hoc method for incorporating document
length.

1 Introduction

The text classification literature describes many ap-
plications of the so-called naive Bayes classifier. Lewis
(1988), McCallum and Nigam (1998), and Yang and
Liu (1999), for example, present analyses and exten-
sive references. Two different versions of the model
exist - the binary independence model and the multi-
nomial model. A number of authors have provided pre-
cise descriptions of the binary independence modell.
In contrast, standard references have obscured the core
independence assumption implied by the multinomial
model.

The naive Bayes classifier makes the strong as-
sumption that the predictor variables (“features” or
“words”) are conditionally independent given the
class. Besides this assumption, probabilistic classifiers
adopt some assumed form for the conditional distribu-
tion of each feature given the class. The most popular

1Some authors refer to binary independence model as
the multivariate Bernoulli model.
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of these probabilistic models are the ones mentioned
above - the multinomial model and the binary indepen-
dence model, but the literature also discusses Poisson
models, Poisson mixture models and negative binomial
models.

In this paper we focus on three different aspects of
text classification. First, we provide precise descrip-
tions of the two most popular so-called naive Bayes
classifiers - the binary independence model and the
multinomial model. Second, we empirically compare
the classification performance of three different models
that take into account the frequency of appearance of
a word - negative binomial, multinomial and Poisson,
along with the binary independence model. Third, we
present an exploratory analysis that seeks to incorpo-
rate document length in the classification process.

2 The Models

Here we describe the different binary classification
models and how we estimate their parameters. We
represent documents by a set of random variables
Xo, X1, ..., Xa4. Xotakes valuesin {1,...,C} and rep-
resents the class of the document. X1, ..., X, take val-
ues in {0, 1} and represent the presence or absence of a
particular term or feature (“word”) in the document.
Later we will consider count-valued features.

We consider probabilistic models that compute the
probability of class membership for each test docu-
ment and we assign the document to the class with
the highest probability. We only consider binary clas-
sification (C' = 2) in this paper.

2.1 The Binary Independence Model

The classical naive Bayes model (see, for example,
Spiegelhalter and Knill-Jones, 1984 and Hand and Yu,
2002) imposes a conditional independence constraint
on the joint probability distribution of these d+1 vari-
ables, namely that X,..., X are conditionally inde-



pendent given Xg. Figure 1 presents this model as a
graphical Markov model (or Bayesian network).
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Figure 1: The binary independence naive Bayes model.

The probability of a document given its class is then
the product of the probabilities of the words given the
class:

p(X1 = :L'l,...,Xd :xd|X0 = 1)

p(X; = 24| Xo = 1)

|
=

1

.
I

I
o EN

P (1 —pij)' ="
1

.
I

We estimate the probabilities by p;; = %JFNA}} where
N;; is the number of documents in class ¢ with word j
and N; is the number of documents in class i. ¢; and ¢a
are constants that, in a Bayesian setting, correspond
to the parameters of a beta prior distribution for p;;.
In the experiments reported below, we set ¢; = 0.1

and ¢y = 0.04.

To classify a new document with a given feature vec-
tor x1,...,x4, this model uses Bayes rule to compute
class-specific probabilities:

p(Xo = i|Xy = z1,...
p(Xo = D) [y p(X; = 2j|1 X0 = i),i = 1,...,C.

We estimate the class probabilities p(Xo = 7) with the
MLE:

, Xaq = xq)

. of documentsinclassi
p(Xo =1i) = #0f

total # of documents

Typically, authors assign the document to the class
with highest probability, although more generally, the
classification could account for varying misclassifica-
tion costs.

2.2 The Multinomial Model

For the multinomial model, we now represent each doc-
ument by a set of random variables Xo, X7,..., XJ.
As before X takes values in {1,...,C} and represents
the class of the document. Xf,..., XJ take values in
{0,1,...} and represent the number of occurences of

particular words in the document. To classify a new
document with a given feature vector xzy,..., x4, this
model computes class-specific probabilities as:

p(Xo = ’L|Xf =X,. 7Xz(i: = xd)

x p(Xo =4)p(XT =21,..., X7 = za|Xo =14,2_; 7))
and assumes that p(3_; 2| Xo = 1) = p(3_, ;| Xo = k)
for all i,k € {1,...,C} (i.e., that document length
and document class are marginally independent). By
conditioning on 5 %j and by further assuming that
within each class the individual words in each doc-
ument are independent and identically distributed,
the model expresses p(X7 = z1,..., X5 = z4|Xo =
i,2_;x;) using the standard multinomial formula.

Note that we cannot represent this model as a graph-
ical Markov model involving Xg, X7, ..., X since the
core independence assumptions do not involve these
random variables. Figure 2 shows a graphical Markov
model representation where a single node represents a
document’s vector of counts. A square represents doc-
ument length to indicate that the model treats it as

fixed.

e

Figure 2: The multinomial model.

The probability of a document given its class is:
p(X§ =11, ...

i Py
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We estimate p;; by:

N c1 + Bi]'

Pig = ¢+ B;

where B;; is the number of time word j appears among
documents in class i, B; is the total number of words
in class 7, and, as before ¢; and ¢ are constants that,
in a Bayesian setting correspond to a Dirichlet prior
distribution. In the experiments reported below we set
€1 = E/ d and ¢o = L where L is the average document
length.

2.3 The Poisson Naive Bayes Model

A natural way to incorporate term frequency informa-
tion into the binary independence model of Section 2.1



is to represent the document features with Poisson-
distributed count-valued random variables (Lewis,
1998, §5.1). Denote by A;; the Poisson parameter for
the conditional distribution of XJ? given Xy = ¢. The
model assumes that X7, ..., X are conditionally inde-
pendent given X,. Figure 3 shows the corresponding

graphical Markov model.

Figure 3: The Poisson naive Bayes model.

For a new document with a feature vector xq,..., 24
the class-specific probabilities for i = 1,...,C are:

p(Xo = X7 =z1,..., X5 = x4)
d
o p(Xo = 1) H exp(—Aij)A;; -
j=1

We estimate the parameter \;; as:

5\”_ C1+Bij
A co+ B;

where B;; is the number of times word j appears
among documents in class ¢, B; is the total number
of documents in class 7 and ¢; and ¢y are constants,
corresponding in the Bayesian setting to the parame-
ters of a gamma prior distribution. In the experiments
reported below we set ¢; = 0.001 and ¢y = 1.

The Poisson distribution has a rich history in infor-
mation retrieval. The Poisson naive Bayes model has
generally not outperformed the binary independence
model. Lewis (1998), however, points out that most
evaluations have taken place in the context of text re-
trieval, using little or no training data, rather than text
classification. Further, ad hoc text retrieval formu-
las inspired by the Poisson model have outperformed
binary independence models (Robertson and Walker,

1994).

2.4 The Connection Between the Poisson
and Multinomial Models

Here we note that the multinomial model is equiva-
lent to the Poisson naive Bayes model with an extra
assumption concerning document length. We proceed
as follows. First augment the Poisson model of Sec-
tion 2.3 with a deterministic variable that is the docu-
ment length - see Figure 4. Next consider classifying a
new document with a given feature vector zf, ..., x5:

p(Xo =14 X7 =21,..., X5 =24)
= p(Xo=1iX;=21,...,X5= xd,ij)
J

x p(Xo=1i)p(>_ x| Xo = i) x
J

p(XT=x1,..., X5 =x4| X0 = i,ij)
J

Figure 4: The Augmented Poisson naive Bayes model.

The first equality follows from Figure 4 since > ;X7
is conditionally independent of Xp given X7,..., X§.
Note that conditional on Xy, X; through X  are inde-
pendent Poisson random variables. A standard result
in mathematical statistics (e.g., Santner and Duffy,
1989, p.17) states that conditional on their sum, inde-
pendent Poisson random variables have a multinomial
distribution. Hence, if in addition to the naive Bayes
assumption, we further assume that p(3_;z;|Xo =
i) = p(> ;2| X0 = k) for all 4,k € {1,...,C}
(i.e., that document length and document class are
marginally independent), the class-specific probability
becomes:

p(Xo =i|X{ ==1,..., X3 = Ta)

and the Poisson model reduces to the multinomial
model.

So the multinomial model is a naive Bayes model inso-
far as it assumes that document word frequencies are
conditionally independent given document class, but
it also imposes the further assumption that document
length and document class are independent. McCal-
lum and Nigam (1998) explicitly mention the indepen-
dence of document length and document class, but do
not explicate the connection with the Poisson model.

Adopting a Bayesian perspective, we note that the
Poisson model using conjugate gamma prior distri-
butions for the A;; will have more hyperparameters



(2x d) than the corresponding multinomial model with
a Dirichlet distribution for p;; and a gamma prior dis-
tribution for document length (d + 2). Consequently,
the two models can lead to different Bayesian predic-
tions. It is straightforward to derive hyperparameter
constraints that do lead to identical Bayesian predic-
tions and we will include these in the final version of
the paper if space permits.

2.5 The Multinomial Word Model

An alternative but equivalent description of the multi-
nomial model suggests that it is a generative model for
words rather than documents. The multinomial word
model represents each word as a pair of random vari-
ables (Yo, Y1), where Yj takes valuesin {1,...,C} and
represents the class of the word (which, in actuality,
derives from the class of the document in which the
word resides), and Y; takes values in 1,...,d, where
d, as before is the total number of words. A vector
of p probabilities summing to one describes the distri-
bution of Y; with a possibly different vector for each
value of Yj. Figure 5 shows the corresponding graphi-

cal Markov model.

Figure 5: The multinomial word model.

So, the multinomial word model assumes that the
words that belong to a particular class are indepen-
dent and identically distributed multinoulli random
variables. This model has no representation for docu-
ments per se.

To classify a new document comprising n words
Yi,...,y%, the multinomial word model treats n as
fixed and, fori = 1,..., C, calculates the class-specific
probability associated with n independent and identi-
cally distributed multinoulli variables:

p(YvO1 :iv"'vybn:iufll :y%vvyvln:yqll) X
[ (% = d)p(v7 = vl g = i).

Jj=1

The multinomial and Poisson models are richer than
the binary independence model in the sense that they
use word frequencies; a word that appears many times
in a particular class will have more influence on fu-
ture classifications than a word that makes few ap-

pearances. Note however that the models make no

distinction between a word that appears ten times in
one document and a word that appears once in each
of ten documents.

2.6 The Negative Binomial Naive Bayes
Model

The negative binomial distribution represents an al-
ternative to the Poisson distribution for word frequen-
cies, with two parameters per word instead of one.
Katz (1996) and others have observed over-dispersion
of word-count distributions in several document collec-
tions. Katz (1996) presents evidence that the negative
binomial provides a better fit than the Poisson. It is
interesting to note that Mosteller and Wallace (1984)
modeled word counts with the negative binomial in
their celebrated analysis of the Federalist Papers. The
negative binomial distribution generalizes the Poisson
distribution, insofar as the negative binomial is an infi-
nite gamma-mixture of Poisson distributions. Denote
by 7;; and p;; the negative binomial parameters for
the conditional distribution of XJ? given Xog = ¢. The
graphical Markov model is identical to that of Fig-
ure 3. The negative binomial model has almost twice
as many parameters as the Poisson model.

For a new document with a feature vector xq,..., x4
the class-specific probabilities for i = 1,...,C are:

p(Xo =1 X{ =2z1,..., X5 =x4)
d
ri; +x; —1)!
ij J p
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and we estimate the parameters r;; and p;; using a
modified method of moments that replaces all negative
values of p;; with zero (Mosteller and Wallace, 1984,
p-97).

3 Experimental Results

We evaluated the multinomial model, the negative bi-
nomial model, the Poisson model, and multiviariate
Bernoulli model in the context of three publicly avail-
able datasets. The multinomial model generally out-
performed the other models. The negative binomial
model, in particular, performed poorly.

We also show that the assumption, in the multinomial
model, that the length of the document is indepen-
dent of its class, even though in many cases might not
be true, does not harm the classifier. We use three
datasets in our analysis: MDR, Newsgroup and the
ModApte version of the Reuters—21578 which we now
describe.



3.1 Datasets

The MDR dataset contains information from CDRH’s
(Center for Devices and Radiological Health) device
experience reports on devices which may have malfun-
tioned or caused a death or serious injury. The reports
were received under both the mandatory Medical De-
vice Reporting Program (MDR) from 1984 —1996, and
the voluntary reports up to June 1993. The database
currently contains 620179 reports that are divided into
three disjoint classes: malfunction, death and serious
injury. We randomly split the dataset into 75% for
training and 25% for testing. The data are available
at: http://www.fda.gov/cdrh/mdrfile.html.

The Newsgroups dataset contains 18828 articles di-
vided into 20 disjoint categories. Again we randomly
split the dataset into 75% for training and 25% for
testing. We took this version of the dataset from
http://www.ai.mit.edu/people/jrennie/ 20Newsgroups/.

It differs from the original in that this one has du-
plicates and most headers removed.

We use the ModApte version of Reuters—21578
dataset. It contains 7769 documents in the training set
and 3019 in the testing set. The collection defines 135
categories corresponding to newswire article topics. A
document may belong to 0, 1, or many categories, but
we treat each category as a separate binary classifica-
tion problem. We provide results on two subsets of the
categories: (a) the 90 categories for which there is at
least one class member in both the training and test
set, and (b) the 10 categories with the highest number
of class members in the corpus. For experiments with
the latter set, we used only the 6775 training docu-
ments and 2258 test documents that belong to at least
one of the 10 categories. The Reuters data are avail-
able at: http://www.daviddlewis.com/resources/
testcollections/reuters21578/

We remove stopwords and punctuation marks before
we do the analyses.

3.2 Results

To evaluate the performance of the different distribu-
tion models we report micro and macro averaged re-
call, precision, and F' values (see, Lewis, 1991, and
Lewis, 1995, for definitions). In Table 1, Table 2,
Table 3 and Table 4 we show these values for the 4
different models. In all the datasets the multinomial
model has at least one highest value among the micro
and macro average of the F measures, and in two of
the datasets both of them are the highest. The Pois-
son model behaves similarly to the multinomial in the
Newsgroups dataset and a little weaker than this but
comparable with the Bernoulli model in the Reuters-

21578 with 10 categories. The Bernoulli performs sim-
ilarly to the multinomial in two of the datasets - MDR
and Reuters—21578. The negative binomial is by far
the weakest of the models in all datasets.

We also consider an augmented multinomial model
that includes a class dependent model for document
length - see Figure 6. Specifying a Poisson distribu-
tion for document length, i.e., for p(zj z;|Xo = 1),
yields a model equivalent to the Poisson naive Bayes
model of Section 2.3 and suffers from the same over-
dispersion problem. In Tables 1-4 we present results
using a non-parametric Gaussian kernel density esti-
mate for p(3_, ;| Xo = 1).

Figure 6: An augmented multinomial model that incor-
porates a class dependent model for document length.

The outcomes barely differ from the multinomial
model. Table 5 and 6 show basic statistics of the
woe (“weight of evidence”) and the part of the woe
that comes from adding a distribution in the length
(“length factor”) of the document. Note that woe is
on a log scale i.e. we have a positive prediction if

woe > 0.
p(XO = Zlec =1, 7X§ = Z'd)
woe — lo -
g(p(XO}Allec:xlv 7X§*xd))
pX():i p(XC 93'|X0—Z)
S AN EC Rk
p(Xo71)" = (X5 = zj|Xo #1)
x| X =1
4 tog(" sl — )

o p(>_; x| Xo # 1)

v

lengthfactor

These tables show that the scale of the “length factor”
is much smaller than the one for the woe, hence, in gen-
eral, the woe is little affected by the length factor. A
negative binomial model for document length behaves
similarly. It is well known that the naive Bayes model
tends to produce probability estimates for X, that are
either close to 1 or close to 0 and are badly calibrated
(Rennie, 2001). In a sense, the length factor cannot
compete with this intrinsic bias that is characteristic
of naive Bayes-type models.



Table 1. Summary of classifiers performances for MDR dataset

Multinomial Poisson Bernoulli | Negative Binomial | Density Estimation

number of words 89077 89077 89077 89077 89077

micro recall 0.85436 0.83502 | 0.82874 0.60202 0.85562
micro precision 0.80225 0.59039 | 0.77874 0.75909 0.80761
micro F 0.82749 0.69171 | 0.80297 0.67149 0.83092
macro recall 0.88407 | 0.84539 | 0.86316 0.46785 0.88088
macro precision 0.64433 | 0.80215 | 0.63381 0.63102 0.64980
macro F 0.7454 0.8232 | 0.73091 0.53732 0.74790

Table 2. Summary of classifiers performances for the Newsgroups dataset

Multinomial Poisson Bernoulli | Negative Binomial | Density Estimation
number of words 137782 137782 | 137782 137782 137782
micro recall 0.86807 | 0.85129 | 0.84194 0.23752 0.87232
micro precision 0.85877 | 0.85877 | 0.62825 0.99643 0.84503
micro F 0.86239 | 0.85501 | 0.71956 0.3836 0.85846
macro recall 0.86239 | 0.84651 | 0.83758 0.22768 0.8665
macro precision 0.85813 | 0.86200 | 0.73129 0.99279 0.84781
macro F 0.86025 | 0.84687 | 0.85419 0.37042 0.85705

Table 3. Summary of classifiers performances for Reuters-21578 dataset

Multinomial Poisson Bernoulli | Negative Binomial | Density Estimation

number of words 24463 24463 24463 24463 24463

micro recall 0.84054 | 0.73024 | 0.76709 0.29594 0.84081
micro precision 0.60264 | 0.61013 | 0.68316 0.97278 0.60145
micro F 0.70199 0.6648 | 0.7227 0.45382 0.70127
macro recall 0.47614 | 0.31747 | 0.32048 0.02682 0.46545
macro precision 0.36732 | 0.33658 | 0.4136 0.18338 0.35831
macro F 0.41471 0.32674 | 0.36113 0.0468 0.40491

Table 4. Summary of classifiers performances for Reuters-21578 10 categories dataset

Multinomial Poisson Bernoulli Negative Binomial | Density Estimation

number of words 23080 23080 23080 23080 23080

micro recall 0.93793 0.87586 | 0.89037 0.4744 0.93793
micro precision 0.8243 0.80214 | 0.78696 0.95227 0.82197
micro F 0.87745 0.83738 | 0.83548 0.63331 0.87613
macro recall 0.91898 0.86254 | 0.83682 0.31079 0.91898
macro precision 0.72394 | 0.68958 | 0.71387 0.92817 0.72126
macro F 0.80989 0.76642 | 0.77047 0.46566 0.80821

Table 5. Summary of statistics for the multinomial model with density estimation on the length of the
document. Reuters-21578 earn category. Training set.

Min. | Tst Qu. | Median | Mean | 3rd Qu. | Max

length factor | -14.27 | -1.276 | -0.9009 | -0.9758 | 0.116 | 0.9122

woe -3811 | -282.3 | -81.88 | -137.9 124.1 937.8

Table 6. Summary of statistics for the multinomial model with density estimation on the length of the
document. Reuters-21578 earn category. Test set.
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max
length factor | -13.75 | -0.6366 | 0.3575 | 0.07291 | 0.8089 | 0.9271
woe -1534 | -117.4 | -27.92 -55.16 53.3 402




4 An Alternative Ad-Hoc Way to
Incorporate Document Length

Figure 7 plots woe from a multinomial classifier ver-
sus document length for the Reuters-21578 test doc-
uments. This particular binary classifier concerns the
Reuters category “money-fx.” Classifying the docu-
ments using woe alone yields 88 misclassified docu-
ments. A k-nearest neighbor classifer using both woe
and length as features yielded just 61 misclassified doc-
uments, a 30% reduction. The Figure shows the k-NN
decision boundary. Notice that the decision boundary
departs from the multinomial model’s decision bound-
ary which is the line woe = 0. The neighborhood
size used here was 15; 10-fold cross-validation of the
training data selected this neighborhood size. Table 7
shows results for other Reuters categories.

Figure 7 also shows a typical behavior of the multi-
nomial model, that is, with longer documents we get
more extreme woe values and we have a higher rate
of documents being well classified, while shorter doc-
uments get less extreme value of woe.

5 Discussion

Our intention in this paper is to clarify the distinc-
tion between the multinomial model and naive Bayes
models. We have considered alternatives to the multi-
nomial model that incorporate term frequencies but
remain within the naive Bayes framework. Our empir-
ical results suggest that the multinomial model often
outperforms these alternatives.

We have presented variants of the multinomial model,
including a Poisson naive Bayes model, a negative bi-
nomial naive Bayes model, and models explicitly incor-
porating document length. In general, the multinomial
model, despite its poorly calibrated predictions, pro-
vides classification performance that is as good as, and
in most cases better than, the performance achieved by
the other models.

Directly incorporating document length into the multi-
nomial model has little effect due to the extreme prob-
ability estimates produced by naive Bayes-type mod-
els. One possibility would be to correct for the bias be-
fore introducing length (see, for example, Spiegelhalter
and Knill-Jones, 1984 or Lewis and Gale, 1994).
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Figure 7: k-nearest neighbour, with k=15, applied to the “money-fr” category of Reuters-21578. FEach point
corresponds to a test set document. The horizontal line is the decision boundary for the multinomial model. The
NN boundary incorporates both the prediction of the multinomial model and document length.

Table 7. Performance results for the K-NN model combining the multinomial model prediction with document
length for the Reuters-21578 ten-category dataset.

# of test errors # of test errors
Category | multinomial model K-NN model K | % improvement
earn 112 103 10 8%
corn 60 35 23 42%
ship 29 30 25 -3%
wheat 44 36 25 18%
interest 97 65 10 33%
trade 63 63 10 0%
crude 38 30 25 21%
grain 22 22 7 0%
moneyfx 88 61 15 31%
acq 83 103 15 -24%
Total 636 548 14%




