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Clustering Approaches to Text Categorization∗

HIROYA TAKAMURA

Abstract

The aim of this thesis is to improve accuracy of text categorization, which is the

basis for various applications such as e-mail classification and Web-page classification.

Among the various possible approaches to this aim, two clustering approaches and an

application of a new kernel (similarity function) are discussed in this thesis. Although

clustering is usually regarded as an unsupervised learning method and categorization

as a supervised learning, we show that clustering can be used to improve accuracy of

text categorization.

The first clustering approach proposed isco-clustering of words and texts. In a

number of previous probabilistic approaches, texts in the same category are implicitly

assumed to have an identical distribution over words. We empirically show that this

assumption is not accurate, and propose a new framework based on a co-clustering

technique to alleviate this problem. In this method, training texts are clustered so

that the assumption is more likely to be true, and at the same time, features are also

clustered in order to tackle the data sparseness problem. We succeeded in improving

accuracy of text categorization using the co-clustering method.

The second approach isconstructive induction based on clustering. In this ap-

proach, Support Vector Machines (SVMs) are combined with constructive induction

using dimension reduction methods, such as Latent Semantic Indexing (LSI). New

features derived by dimension reduction are added to the feature space. Using this

method, we succeeded in improving the categorization performance of SVMs in text

categorization, especially when a number of extra unlabeled examples other than the

given labeled examples are used in the dimesion reduction step.

∗Doctor’s Thesis, Department of Information Processing, Graduate School of Information Science,

Nara Institute of Science and Technology, NAIST-IS-DT0061014, March 24, 2003.
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Lastly we discuss the use of a kernel function based on probabilistic models. The

TOP kernel is a kernel which can be used with discriminative classifiers on the basis

of a probabilistic model. We first view clustering-based constructive induction from

the theory of the TOP kernel. We then propose a new TOP kernel which is based on

hyperplanes generated by SVMs.

Keywords:

text categorization, clustering, support vector machines, kernel method
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Chapter 1

Introduction

Text categorization is the task in which texts are classified into one of predefined cate-

gories based on their contents. If the texts are newspaper articles, categories could be,

for example, economics, politics, sports and so on. This task has various applications

such as automatic email classification and web-page categorization. Those applica-

tions are becoming increasingly important in today’s information-oriented society.

There are mainly two types of approaches to text categorization. One is the rule-

based approach. In the rule-based approach, the classification rules are manually cre-

ated usually by experts in the domain of the texts. Although the rule-based approach

can achieve high accuracy, it is costly in terms of labor and time. Moreover, a rule-

based system created for one domain can hardly be used in other domains. The second

approach involves machine learning techniques, in which classification rules are au-

tomatically created using information from labeled (already-categorized) texts. It is

cost-saving because we have only to prepare labeled texts. This cost-saving property

enables a system for a new domain to be easily constructed. Owing to its wide appli-

cability, we adopt the machine learning approach in this thesis.

Text categorization is also called text classification, document categorization or

document classification. It is sometimes confused with text clustering, in which there

exist no predefined categories; similar texts are simply put together to form a cluster.

These two kinds of tasks should be distinguished.

The goal of this thesis is to effectively use clustering techniques (including text

clustering and word clustering) for text categorization. More specifically, given a su-
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pervised classifier, we investigate how to improve the categorization performance of

the classifier in text categorization by extracting effective features using unsupervised

or supervised clustering methods. We propose three methods for this purpose:

1. co-clustering of words and texts: in a number of previous probabilistic ap-

proaches, texts in the same category are implicitly assumed to have an identi-

cal distribution over words. We empirically show that this assumption is not

accurate, and propose a new framework based on a co-clustering technique to

alleviate this problem. In this method, the training texts are clustered so that the

assumption is more likely to be true, and at the same time, features (words) are

also clustered in order to tackle the data sparseness problem.

2. constructive induction based on clustering: new features extracted by unsuper-

vised dimension reduction methods are added to the feature space. Support Vec-

tor Machines can effectively use the expanded feature space.

3. an application of TOP kernel: a kernel (similarity) function is constructed on the

basis of the hyperplanes of SVMs. The negative class of a binary classification

is considered to be a mixture of several categories.

Consider how these three methods relate to previous machine learning approaches

to text categorization.

In the early 90’s, classical machine learning methods such as k-nearest neighbor

classifiers [8, 57], decision tree learners [20, 31] and Naive Bayes classifiers [36, 31,

35] were applied to text categorization. They have been followed by their variants and

improvements, including word clustering [3] and feature selection [58]. The first topic

in this thesis, co-clustering of words and texts, builds upon such methods.

Since the late 1990s, new machine learning methods, the so called Large Margin

classifiers such as Support Vector Machines (SVMs) [54, 9, 6] and AdaBoost [19,

46] have been proposed. In particular, SVMs have been applied and achieved high

accuracy in various fields such as object recognition [41] and digit recognition [54].

SVMs have also been applied to tasks in NLP such as text categorization [26], chunk

identification [29], named entity extraction [56], and many others [37, 30].

Also for the Large Margin classifiers, many variants have been proposed (e.g., [27,

49]). Moreover, many kernel functions, which can be used in combination with SVMs

2



or other methods, have been proposed. Those include the convolution kernel [22] with

application to parsing [7], the string kernel [34] with application to text categorization.

One general trend in recent developments for both classical and Large Margin clas-

sifiers is the incorporation of unlabeled data. For example, Naive Bayes classifiers can

be enhanced with the Expectation-Maximization (EM) algorithm [38]. Transductive

SVMs [27] can use unlabeled examples as labeled, by iteratively relabeling unlabeled

examples. The second topic in this thesis, constructive induction based on clustering,

is oriented to the use of unlabeled data.

This trend, the use of unlabeled data, has surged over the development of kernel

functions. The Fisher kernel [25] is based on probabilistic models, which can be esti-

mated using unlabeled examples. Another kernel based on probabilistic models is the

TOP (Tangent vector Of the Posterior log-odds) kernel [52], although the way to use

unlabeled examples is not trivial. In the estimation of the model, TOP kernels need to

either use labeled data or adopt EM-like methods, because TOP kernels use the pos-

terior probability of categories. In the third topic of this thesis, we view the first two

topics from the viewpoint of the TOP kernel and also discuss the use of TOP kernel in

text categorization.

Next we look at each of the three proposed methods, in terms of the data that the

method uses.

Unlabeled texts provide co-occurrence information for words, which can be used

to improve categorization performance. Although unlabeled texts are available from

the internet, collecting unlabeled texts which are useful for a text categorization prob-

lem is not an easy task because of the wide diversity of texts on the Internet. For

example, personal diaries can be noise in the categorization of newspaper articles.

Those heterogeneous texts are not useful for text categorization. For this reason, it is

useful to consider two types of situations: when only labeled texts are available, and

when a large quantity of (unlabeled) homogeneous texts as well as the labeled texts

are available. We propose solutions for each situation. The co-clustering approach

corresponds to the first situation, and the clustering-based constructive induction and

the hyperplane-based TOP kernel correspond to the second situation.

This thesis is organized as follows.

Before going into the main topics, several types of machine learning methods are

3



described in Chapter 4.2.

In Chapter 3, the foundations of text categorization are explained. In particular,

through a small experiment, we will see how serious the data-sparseness problem is.

In Chapter 4, related work is described.

The co-clustering approach, the first topic, is described in Chapter 5.

Chapter 6 describes the second approach, constructive induction based on cluster-

ing.

In Chapter 7, we first view the clustering-based constructive induction from the

theory of the TOP kernel. We then discuss the use of the TOP kernel to text catego-

rization.

Finally in Chapter 8, we conclude the thesis.
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Chapter 2

Machine Learning Methods

Various machine learning methods used in text categorization are described in this

chapter. Naive Bayes classifiers in Section 2.1 and Support Vector Machines in Sec-

tion 2.2 are supervised classifiers. Kernel functions based on probabilistic models are

explained in Section 2.3. Co-clustering described in Section 2.4 is an unsupervised

clustering method. The Akaike Information Criterion in Section 2.5 is an information

theoretic criterion used for model selection. Constructive Induction is described in

Section 2.6. In Section 2.7, methods to apply binary classifiers for multi-class classifi-

cation are described.

2.1 Naive Bayes Classifiers

The Naive Bayes (NB) classifier [36] is a probabilistic classifier based on the Naive

Bayes assumption. Given a feature vectorx (= (x1, · · · ,xn)), the posterior probability

of a categoryc is, from the Bayes rule,

P(c|x) =
P(c)p(x|c)

p(x)
. (2.1)

We would like to predict the categorycmax which yields the maximum value for (2.1).

The parameterP(c) is estimated as

P(c) =
number o f documents in c

number o f documents
. (2.2)
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The parameterp(x) does not affect the categorization results because it does not de-

pend on the categories. The problem we are faced with is how to estimatep(x|c). In

NB classifiers,p(x|c) is modeled on the Naive Bayes assumption:

p(x|c) = ∏
i

p(xi |c), (2.3)

which is equivalent to assuming that the components of feature vectors are statistically

independent of each other.

If the maximum likelihood estimation (Appendix A.1) is used to estimate the pa-

rameterp(xi |c), then

p(xi |c) =
N(xi ,c)
N(c)

, (2.4)

whereN(x,c) denotes the joint frequency ofx andc, andN(c) = ∑xN(x,c). However,

in this estimation method, if somexi does not appear in the training data, the probability

of any instance containingxi becomes zero, regardless of the other features in the

vector. To avoid zero probability, the parameterp(xi |c) is estimated using Laplacian

prior probabilities, as follows

p(xi |c) =
N(xi ,c)+λ
N(c)+λ |V| , (2.5)

whereλ is a positive constant, and|V| denotes the number of features. Usually, 1.0 or

0.5 is chosen as the value ofλ . This smoothing method is equivalent to addingλ to

the frequencies of all the features.

The NB classifier predicts the categorycmax with the largest posterior probability:

cmax = argmax
c

P(c|x) (2.6)

= argmax
c

P(c)p(x|c). (2.7)

2.2 Support Vector Machines

Support Vector Machines (SVMs) are binary classifiers which were originally pro-

posed by Vapnik [53]. SVMs have achieved high accuracy in various tasks, such as

6



object recognition [41] and digit recognition [54]. Among several available packages,

we use TinySVM1 in the later experiments.

Suppose a set of ordered pairs consisting of a feature vector and its label

(x1,y1),(x2,y2), · · · ,(xl ,yl ), (2.8)

∀i, xi ∈ Rd,yi ∈ {−1,1},

is given. In SVMs, a separating hyperplane with the largest margin (the distance be-

tween the hyperplane and its nearest vectors, see Figure 2.1):

f (x) = w ·x+b (2.9)

is constructed, on the condition that the hyperplane discriminates all the training ex-

amples correctly (this condition will relaxed in non-separable case)2. Note that the

distance from the hyperplane to the nearest positive example should be the same as the

distance from the hyperplane to the nearest negative example (otherwise margin is not

maximized).

Margin is computed as follows. The condition that all the training examples are

classified correctly is formulated as

yi(xi ·w+b)−1≥ 0. (2.10)

The equality of the above expression (2.10) must hold for the nearest examples. Those

nearest examples form two margin-boundary hyperplanes: one formed by the nearest

positive examples, the other formed by the nearest negative examples. Letλ be the

distance between these two margin-boundary hyperplanes, andx̄ be a vector on the

margin-boundary hyperplane formed by the nearest negative examples.

Then, the following equations hold:

−1× (x̄ ·w+b)−1 = 0, (2.11)

1× ((x̄+λw/|w|) ·w+b)−1 = 0. (2.12)

Margin is half of the distanceλ and computed as

λ/2 = 1/|w|. (2.13)
1Available from http://cl.aist-nara.ac.jp/˜taku-ku/software/TinySVM/
2Some authors define margin for each example, as the distance between the example and the hyper-

plane. With this definition, the hyperplane that maximizes the minimummargin is constructed.
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Margin

Positive Example

Negative Example

Figure 2.1. Support Vector Machine

8



Therefore, maximizing the margin is equivalent to minimizing the norm ofw.

So far, we have seen a general framework for SVMs. In the following two sections,

we will see the formulation of SVMs in two different cases.

2.2.1 Separable Case

First a simple case is considered, where the given data is linearly separable. As men-

tioned in the previous section, finding the largest margin is equivalent to minimizing

the norm|w|. This problem is formulated as:

min. 1
2|w|2, (2.14)

s.t. ∀i, yi(xi ·w+b)−1≥ 0.

The LagrangianL of this problem is

L(w,b,α) =
1
2
|w|2−∑

i
αi(yi(xi ·w−b)−1), (2.15)

whereαi (∀i) are the Lagrange multipliers.

We would like to minimizeL(w,b,α) with respect tow andb under the constraints

αi ≥ 0 (∀i). The stationary condition states

∂L
∂w

= w−∑
i

αiyixi = 0, (2.16)

∂L
∂b

= ∑
i

αiyi = 0. (2.17)

Simple substitutions lead us to the following Lagrangian form:

L(w,b,α) = ∑
i

αi−
1
2∑

i, j
αiα jyiy jxi ·x j . (2.18)

From the Lagrangian theory, we have only tomaximizethe Lagrangian with respect to

αi (∀i) to reach the optimum.

This new problem is called the dual problem of (2.14), which is formulated as

max. ∑i αi− 1
2 ∑i, j αiα jyiy jxi ·x j (2.19)

s.t. ∑i αiyi = 0,

∀i, αi ≥ 0.
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The advantage of the dual problem is that this dual problem has a quadratic form which

has been widely studied and can be solved more easily than the primal problem (2.14).

Usingα∗i (∀i) which maximize (2.19), the optimalw∗,b∗ are expressed as

w∗ = ∑
i

αiyixi , (2.20)

b∗ =−bneg+bpos

2
, (2.21)

where

bneg = max
i:yi=−1

(w∗ ·xi), (2.22)

bpos = min
i:yi=1

(w∗ ·xi). (2.23)

By substituting (2.20) and (2.21) into (2.9), we obtain

f (x) = ∑
i

α∗i yixi ·x+b∗. (2.24)

Examples are classified according to the sign of (2.24).

2.2.2 Non-separable Case

In the preceding section, we solved the problem under the constraintsyi(xi ·w+b)−
1≥ 0 (∀i), which mean that the data must be separated linearly. However, real data is

usually not linearly separable and cannot be solved under those constraints. Introduc-

ing the so-called slack variables enables the non-separable problems to be solved [9].

The problem is formulated as

min. 1
2|w|2 +C∑i ξi , (2.25)

s.t. ∀i, yi(xi ·w+b)−1+ξi ≥ 0,

∀i, ξi ≥ 0,

whereξi (∀i) are slack variables. The intuition behind this formulation is that as few

examples as possible are allowed to penetrate into the margin or even into the other

side of the hyperplane.
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The LagrangianL of this problem is

L(w,b,α,ξ ,µ)

= 1
2|w|2 +C∑i ξi−∑i αi(yi(xi ·w−b)−1+ξi)−∑i µiξi , (2.26)

whereαi andµi (∀i) are the Lagrange multipliers,C is a user-given constant.

We would like to minimizeL(w,b,α,ξ ,µ) with respect tow, b andξ under the

constraintsξi ≥ 0, αi ≥ 0, µi ≥ 0 (∀i). The stationary condition states

∂L
∂w

= w−∑
i

αiyixi = 0, (2.27)

∂L
∂b

= ∑
i

αiyi = 0, (2.28)

∂L
∂b

= C−αi−µi = 0. (2.29)

Simple substitutions lead us to the following Lagrangian form:

L(w,b,α) = ∑
i

αi−
1
2∑

i, j
αiα jyiy jxi ·x j . (2.30)

From the Lagrangian theory, we have only tomaximizethe Lagrangian with respect to

αi (∀i) to reach the optimum.

We thus obtain the dual problem of (2.25):

max. ∑i αi− 1
2 ∑i, j αiα jyiy jxi ·x j (2.31)

s.t. ∑i αiyi = 0,

∀i, 0≤ αi ≤C.

The constraintαi ≤C comes fromµi ≥ 0 andC−αi−µi = 0.

Using optimalα∗i (∀i), the optimalw∗,b∗ are expressed as in the separable case.

2.2.3 Kernel Methods

Since SVMs are linear classifiers, their separating ability is limited. To compensate for

this limitation, thekernel methodis usually combined with SVMs [53].

In the kernel method, the dot-products in (2.31) and (2.24) are replaced with more

general inner-productsK(xi ,x), called the kernel function. The polynomial kernel(xi ·

11



x j +1)d (d ∈ N+) and the RBF kernelexp{−‖xi − x j‖2/2σ2} are often used. Using

the kernel method means that feature vectors are mapped into a (higher dimensional)

Hilbert space and linearly separated there. This mapping structure makes non-linear

separation possible, although SVMs are basically linear classifiers.

Another advantage of the kernel method is that although it deals with a high di-

mensional (possibly infinite) Hilbert space, explicit computation of high dimensional

vectors is not required. Only the general inner-products of two vectors are needed.

This advantage leads to a relatively small computational overhead.

2.3 Kernels from Probabilistic Models

Recently a new type of kernel which connects generative models of data and the dis-

criminative classifiers such as SVMs, have been proposed: the Fisher kernel [25] and

the TOP (Tangent vector Of the Posterior log-odds) kernel [52].

2.3.1 Fisher Kernel

Suppose we have a probabilistic generative modelp(d|θ) of the data (we denote a

sample byd). The Fisher score ofd is defined as∇θ logp(d|θ), where∇θ means

partial differentiation with respect to the parametersθ . The Fisher information matrix

is denoted byI(θ) (this matrix defines the geometric structure of the model space).

Then, the Fisher kernel at an estimateθ̂ is given by :

K(d1,d2) = (∇θ logp(d1|θ̂))t I−1(θ̂)(∇θ logp(d2|θ̂)) (2.32)

The Fisher score approximately indicates how the model will change if the sample is

added to the training data used in the estimation of the model. That means, the Fisher

kernel between two samples will be large, if the influences of the two samples are

similar and large [51].

The matrixI(θ) is often approximated by the unit matrix to avoid large computa-

tional overhead.
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2.3.2 TOP Kernel

On the basis of a probabilistic model of the data, TOP kernel is designed to extract

feature vectorsfθ̂ which are considered to be useful for the categorization with a sep-

arating hyperplane.

We begin with the proposition that, between the generalization errorR(fθ̂ ) and the

expected error of the posterior probabilityD(fθ̂ ), the following relation holds:

R(fθ̂ )−L∗ ≤ 2D(fθ̂ ), (2.33)

whereL∗ is the Bayes error.D(fθ̂ ) is expressed, using a logistic functionF(t) =
1/(1+exp(−t)), as

D(fθ̂ ) = min
w,b

Ex|F(w · fθ̂ −b)−P(y = +1|x,θ ∗)|, (2.34)

whereθ ∗ is the actual parameter of the model.

The expression (2.33) means that minimizingD(fθ̂ ) leads to reducing the general-

ization errorR(fθ̂ ). The TOP kernel extracts features whichcanminimizeD(fθ̂ ). In

other words, we would like to have feature vectorsfθ̂ which satisfy

∀x, w · fθ̂ (x)−b = F−1(P(y = +1|x,θ ∗)), (2.35)

with certain values ofw andb.

For that purpose, we first define a functionv(x,θ):

v(x,θ) = F−1(P(y = +1|x,θ))

= log(P(y = +1|x,θ))− log(P(y =−1|x,θ)). (2.36)

The first-order Taylor expansion ofv(x,θ ∗) around the estimatêθ is

v(x,θ ∗) ≈ v(x, θ̂)+∑
i
(θ ∗i − θ̂i)

∂v(x, θ̂)
∂θi

. (2.37)

If fθ̂ is of the form:

fθ̂ (x) =
(

v(x, θ̂),
∂v(x, θ̂)

∂θ1
, · · · , ∂v(x, θ̂)

∂θp

)
, (2.38)
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and ifw andb are properly chosen as

w = (1,θ ∗1 − θ̂1, · · · ,θ ∗p− θ̂p), (2.39)

b = 0, (2.40)

then (2.35) is approximately satisfied. Thus, the TOP kernel is defined as

K(x1,x2) = f
θ̂ (x1) · fθ̂ (x2). (2.41)

Detailed discussion of TOP kernel and its theoretical analysis can be found in a paper

by Tsuda et al [52].

2.4 Likelihood-based Hard Clustering

In this section, a hard clustering method based on likelihood is introduced. A detailed

explanation of this method is written in a paper by Li [32]. This clustering method is

calledco-clustering, because it clusters two sets of items simultaneously.

Suppose we have co-occurrence dataS= {(x1,y1),(x2,y2), · · · ,(xm,ym)} and as-

sume that these samples were generated from the probability model:

P(x,y) = P(Cx,Cy)P(x|Cx)P(y|Cy) (2.42)

x∈Cx, y∈Cy

The log-likelihood of the given data is

∑(x,y)∈SlogP(x,y)

= ∑(x,y)∈SlogP(Cx,Cy)P(x|Cx)P(y|Cy)

= ∑(x,y) N(x,y) logP(Cx,Cy)P(x|Cx)P(y|Cy), (2.43)

whereN(x) denotes the frequency ofx.

The parameters of this model is computed with the maximum likelihood estimation

as follows:

P(Cx,Cy) =
N(Cx,Cy)
|S| , (2.44)

P(x|Cx) =
N(x)
N(Cx)

, (2.45)

P(y|Cy) =
N(y)
N(Cy)

. (2.46)
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The clustering method described here is of bottom-up type. At each step, a pair

of either two clusters forX (the first dimension) or two clusters forY (the second

dimension) is selected and merged. Merging always causes the non-negative reduction

of likelihood, regardless of which pair is selected. Among all the pairs, the pair with

the least likelihood reduction is basically selected, although several variants to this

method can be created by controlling the selection of pairs. In the algorithm used by

Li and Abe [33], given two positive integersk andl , merging for the first dimensionX

is performedk times, followed byl merges for the second dimensionY. In Chapter 5,

several variants to this clustering method are described.

An efficient implementation of this algorithm is described in a paper by Li [32].

2.5 The Akaike Information Criterion

One problem in the clustering algorithm explained in the preceding section is when to

stop merging. The Akaike Information Criterion (AIC) is a criterion which determines

a stopping point on the basis of information theory.

The maximum likelihood estimation (Appendix A.1) is a method by which the

fixed numbers of parameters of a model are estimated. However, if we are in a situ-

ation where we need to select a model among several models with different numbers

of parameters, the maximum likelihood estimation tends to select a model with larger

numbers of parameters, because the model can be closely fitted to the training data by

adjusting those parameters. Selecting those models with a larger numbers of param-

eters often leads to over-fitting; such models do not fit test data. AIC, proposed by

Akaike [1], is one of the criteria which help avoid such over-fitting. In AIC, both the

likelihood of the data and the complexity of the model are taken into account.

AIC is expressed as

AIC = −2L+2k, (2.47)

and the model that minimizes this value should be selected. In our application, we use

AIC =−L+k, since the multiplication by−2 in (2.47) simply stems from a historical

reason.

A similar criterion is the Minimum Description Length (MDL) proposed by Rissa-

nen [44]. According to the MDL principle, the model which minimize the sum of the
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data description length and the model description length, namely−L + k log|D|/2 is

selected, where|D| denotes the number of data samples.

2.6 Constructive Induction

Constructive induction is a type of induction learning in which new features are created

from original features. Constructive induction is effective when the original features

are not able to express the data [15].

Famous examples of systems in which constructive induction is implemented can

be found in papers by Bloedorn and Michalski [5] or Pagallo and Haussler [39]. In

the system AQ17-DCI [5], severalexpansion operatorsare defined, such asEquiva-

lenceindicating whether or not two features are equivalent, andGreater-thanindicat-

ing whether or not one feature is greater than another feature. The values of these

operators for some pairs of features are iteratively added to the feature set after their

statistical or empirical tests of effectiveness.

2.7 Binary Classification to Multi-class Classification

Since some classifiers including SVMs are binary classifiers, we need a framework to

augment a binary classifier to a multi-class classifier.

There are two well-known methods [18] for that purpose. One is theone-versus-

rest method, which is also called thewinner-takes-allmethod. In this method, clas-

sification is performed for each category. We suppose that the classifier used here

produces a score indicating how likely an example belongs to each category. Exam-

ples are classified into the category that has the maximum score. When SVMs are

used, the distancew ·x−b plays the role of such score.

The other ispairwisemethod, also calledone-against-onemethod. In this method,

classification is performed for each pair of two categories. After finishing the classi-

fication for all the pairs of categories, the category of each example is determined by

voting : if a category wins against another category, the former category obtain one

vote. For each example, the category which has obtained the largest number of votes

is assigned.
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Apart from the two methods mentioned above, the use of error-correcting output

code has been proposed [14].
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Chapter 3

Text Categorization

Text categorization (text classification) is the task in which texts are classified into one

of the predefined categories using information from training (labeled) texts. This task

has various applications such as automatic email classification and web-page catego-

rization. In this chapter, several properties of text categorization are described.

3.1 Vector Space Model

One of the simplest ways to model texts is Vector Space Model [45]. In this model, a

text is represented as a vector whose components are the frequencies of words. Instead

of frequencies, binary features are sometimes used indicating whether a word exists in

the text or not. Most of the methods for text categorization and Information Retrieval

are based on the Vector Space Model. Although the model has lost the information

about the order of word occurrences, there is actually no better model.

3.2 Data Description

As in other tasks, there are several common data sets in text categorization. In this

section, various properties with two widely-used data sets are described. These data

sets are used in the later experiments.
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Table 3.1. The categories of Reuters-21578

Category Number of training texts Number of test texts

earn 2725 1051

acq 1490 644

money-fx 464 141

grain 399 135

crude 353 164

trade 339 133

interest 291 100

ship 197 87

wheat 199 66

corn 161 48

3.2.1 Reuters-21578

Reuters-215781 is probably the most widely used data set for text categorization. All

the texts in this data set were collected from the Reuters newswire in 1987. Although

the original data set contains 21578 texts, researchers use a data-splitting method to ex-

tract a training set and a test set. The most popular data-splitting method is ModApte-

split [17], which extracts 9603 training texts and 3023 test texts. However, there are

still unsuitable texts in the 9603 training texts. For example, some texts contain only

“blah blah blah”. We deleted those texts, because those texts can lead us to an inexact

conclusion of research. After deletion, we obtained 8815 training texts.

Our training set consisting of 8815 samples has 116 different category labels. Table

3.1 shows the 10 most frequent categories (except for “others”) and their numbers of

positive examples. These categories are listed in the same order as in the other literature

(e.g. [26]).

Texts in Reuters-21578 are allowed to have multiple labels, so in Table 3.1 one text

can be counted more than once as a positive example in several different categories.

As features used in the experiments conducted in this thesis, we use the frequencies

of nouns, verbs, proper nouns, adjectives and adverbs which occur five times or more

1Available from http://www.daviddlewis.com/resources/
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in the whole training set. Stemming was conducted using TreeTagger [47].

3.2.2 20-newsgroup

20-newsgroup2 is also a common data set for text categorization. Although 20-newsgroup

is less popular than Reuters-21578, it is still used by many researchers (e.g. [3,

35]). The articles in this data set are postings to some newsgroups, unlike Reuters-

21578 are taken from newswire. Another big difference between 20-newsgroup and

Reuters-21578 is that texts in 20-newsgroup are not allowed to have multiple cate-

gory labels. In addition, the category set has a hierarchical structure (e.g. “sci.crypt”,

“sci.electronics”, “sci.med” and “sci.space” are subcategories of “sci (science)”).

Table 3.2 shows the categories in 20-newsgroup and their numbers of texts. There

is no fixed way to split 20-newsgroup into a training set and a test set. This table

also shows that the sizes of categories are relatively uniform compared with those of

Reuters-21578.

As features, we use the frequencies of nouns, verbs, proper nouns, adjectives and

adverbs which occur 10 times or more in the whole data set. Stemming was conducted

using TreeTagger [47].

3.3 Sparsity of Text Categorization Data

Many tasks in natural language processing including text categorization are suffered

from the data-sparseness problem. The data-sparseness problem refers to the problem

that each feature appears so rarely in training data that estimating reliable parameters

becomes difficult. If words are used as features, the words that never appeared in

training data can be often seen in test data. Such words can not make any contribution

to the categorization.

Through experiments, we illustrate how serious this problem is. Our test set of

Reuters-21578 contains 15197 different words (236563 tokens). We first investigate

how many of the 15197 words are covered by the training sets with various sizes. We

use the data set before deleting low-frequency words. The result is shown in Figure

3.1.

2Available from http://kdd.ics.uci.edu/
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Table 3.2. The categories of 20-newsgroup

Category Number of texts

alt.atheism 799

comp.graphics 974

comp.os.ms-windows.misc 985

comp.sys.ibm.pc.hardware 982

comp.sys.mac.hardware 961

comp.windows.x 980

misc.forsale 972

rec.autos 990

rec.motorcycles 994

rec.sport.baseball 994

rec.sport.hockey 999

sci.crypt 991

sci.electronics 981

sci.med 990

sci.space 987

soc.religion.christian 999

talk.politics.guns 910

talk.politics.mideast 940

talk.politics.misc 775

talk.religion.misc 628
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Figure 3.1 shows that many of the words in the test set are not covered by the

training set. Especially when the number of training examples is around 1000, the

covered vocabulary size is only about one-third of the whole vocabulary size.

Next we count the numbers of tokens covered by the training sets with various

sizes. In this experiment, we set a threshold (0, 10, 50 and 100) and count the number

of tokens whose frequencies are more than the threshold. The result is shown in Figure

3.2. Although, for small thresholds, the difference between the numbers of all the

tokens and the covered tokens is small, the reliable estimation of parameters for the

infrequent words is expected to be hard. This experiment shows that the frequent

tokens are not sufficiently covered by the training sets.

It is expected that making good use of those uncovered words leads to improvement

of categorization performance.

3.4 Evaluation Methods

There are several evaluation measures for text categorization. Among them, we ex-

plain F-measure, which will be used in the experiments, followed by description of

averaging methods and statistical tests.

3.4.1 F-measure

We first describe how to evaluate the binary categorization performance for one cat-

egory. In binary classification problems, we would like to know whether each text

belongs to the category or not. The texts belonging to a category are calledpositive

(with respect to the category), while the texts not belonging to the category are called

negative(with respect to the category).

Suppose we have conducted categorization experiments and obtained the result

summarized in thecontingency table(Table 3.3). LetI denote the set of the texts

which are actually positive, andJ denote the set of the texts which are predicted as

positive by a classifier. Table 3.3 means thata is the size ofI ∩J, b is the size ofI ∩ J̄,

c the size ofĪ ∩J, andd is the size of̄I ∩ J̄.

A simple accuracy(a+d)/(a+b+c+d) is not appropriate as a measure for binary

text categorization. The reason is that in most data sets there are many more positive
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Table 3.3. Contingency table of a result
predicted positive predicted negative

actual positive a b

actual negative c d

texts than negative ones; a trivial prediction that all texts are negative can achieve a

high accuracy. Therefore, more appropriate measures must be defined.

Now we define two measures, each of which is not sufficient by itself alone.Preci-

sionP is defined asa/(a+c), indicating how many of the predicted positive texts are

actually positive.RecallR is defined asa/(a+b), indicating how many of the actual

positive texts the prediction covers. The classifier which realizes both high precision

and high recall can be regraded as a good classifier. These two measures are combined

as follows and makeF-measure:

Fβ =
1

β (1/P)+(1−β )(1/R)
. (3.1)

Usuallyβ is set as 0.5 and F-measure is simply expressed as

F0.5 =
2PR
P+R

. (3.2)

Although there are some other widely used measures such asbreak-even point, through-

out this thesis, we use F-measureF0.5 whenever an evaluation measure for each cate-

gory is needed.

3.4.2 Averaging F-measures

F-measure is computed for each category. To evaluate the performance across cate-

gories, F-measures have to be averaged. There are two main kinds of averaged values,

namely, micro average and macro average [57]. Micro average is obtained by first com-

puting the precisions and the recalls for all the categories and then using them to com-

pute the F-measure. Macro average is computed by first calculating the F-measures

for all the categories and then taking their arithmetic mean. Micro average tends to be

dominated by large-sized categories, and macro average by small-sized ones.
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3.4.3 Statistical Tests

After computing performance measures (say, F-measures) for some methods, we have

to check whether the difference of the measures is statistically significant or not. In

this section, we explain the statistical tests which can be used for that purpose. These

tests are, of course, not exclusive to text categorization.

First, we give the definition of p-value. The p-value is the probability that, given

the data, the statistics computed under a null hypothesis is realized. In other words, p-

value is the smallest significance-level with which the null hypothesis can be rejected.

If the p-value is smaller than the significance-level (usually, 0.001 or 0.05 is used),

then the null hypothesis is rejected.

Suppose we compare model A with model B in terms of F-measure. A usual null

hypothesis is “the F-measure by A and the F-measure by B have an identical distri-

bution”. If the p-value is small enough (smaller than the significance-level), the null

hypothesis is rejected. That is, two F-measures have different distributions. Since we

would usually like to show that one model is superior to another, small p-values are

desired.

Next, we will mention two kinds of tests used to compute p-value and explain

when those tests can be used. The prerequisite condition for both tests is that you have

matched pairs, such as the F-measures for several categories yielded by two models.

• Wilcoxon Signed Rank Test : This test can be used when a difference between

each pair can be defined and those differences can be ranked. For example, a

difference of two F-measures can be defined by subtracting one F-measure from

the other.

• Sign Test : This test is used when you know only whether one value of each

pair is better than, equal to, or worse than the other. For example, if classifier

A correctly classified an example and classifier B incorrectly classified it, you

know that A is better than B, but you do not know how much A is better than B.

It is known that Wilcoxon Signed Rank Test is more sensitive than Sign Test.
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Chapter 4

Related Work

4.1 Text Categorization with SVMs

Joachims first applied SVMs to text categorization [26]. Although the model of the

text used in their framework was a simple Vector Space Model (Section 3.1), they

achieved an outstanding improvement over other methods. They argue that SVMs are

appropriate for text categorization because SVMs can handle high dimensional feature

spaces and few relevant features, which are main properties of text categorization.

4.2 Text Categorization with NB classifiers

NB classifiers described in Section can be applied to text categorization in two different

ways [35]. One is calledmulti-variate Bernoulli model, and the other is calledmulti-

nomial model. The difference between these two models stems from the interpretation

of the probabilityp(x|c).

Multi-variate Bernoulli Model : in this model, we focus on whether one word ap-

pears in the text or not. A random variablexi corresponding to a wordwi takes

one of two values: this word occur in the text or not occur. Therefore, the prob-

ability p(x|c) is expressed as follows:

p(x|c) = ∏
i

p(xi |c)
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= ∏
i

(
δi p(wi |c)+(1−δi)(1− p(wi |c))

)
, (4.1)

whereδi is 1 if wi appears in the text, otherwise 0.

Multinomial Model in this model, a random variablexi indicates the occurrence of

some word at a specific position in the text. The occurrence of a text of length|x|
is regarded as|x| trials each of which produces one of|V| values (|V| denotes the

size of vocabulary). Therefore, the probabilityp(x|c) is expressed as follows:

p(x|c) = P(|x|)|x|! ∏
i

p(wi |c)N(i,x)

N(i,x)!
, (4.2)

whereP(|x|) denotes the probability that a text of length|x| occurs, andN(i,x)
denotes the number of occurrences ofwi in textx.

4.3 Feature Selection

The dimension of a feature space for text data can be very large if words are used as

features. Among those features, some features may provide no contribution to cate-

gorization performance and sometimes decrease accuracy. Several methods to select

only good features (or eliminate bad features) have been proposed [58]. Elimination of

features is beneficial also because it reduces the size of memory required for maintain

the data. Some examples of such methods are explained in this section.

4.3.1 Stop-word Elimination

Among many words, some words are too frequent to work as a useful feature. For

example, the verbs “be” and “have” can be seen in almost any documents. Such words

are calledstop-wordsand often removed from the feature set [2]. One problem in stop-

word elimination is that a word can be a stop-word for a data set, but can be a useful

feature for another data set.

4.3.2 Statistical Methods for Feature Selection

There are several statistical methods for features selection. Those methods provide a

measure for usefulness of each word. Some examples are as follows.
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Document Frequency : this measure is the number of texts in which the word ap-

pears.

Information Gain : this measureIG is computed as

IG = −∑
C

P(C) logP(C)

+P(w)∑
C

P(C|w) logP(C|w)+P(w̄)∑
C

P(C|w̄) logP(C|w̄). (4.3)

Intuitively, IG measures the average entropy-reduction caused by occurrence or

not-occurrence of the word.

Mutual Information : this measureMI is computed as

MI = −∑
C

P(C) log
P(C,w)

P(C)P(w)
. (4.4)

Intuitively, MI measures how strongly the word is statistically dependent on cat-

egories. Instead of taking summation in 4.4, the following expression is also

used [58]:

MI = max
C

logP(C,w)/(P(C)P(w)). (4.5)

Other than these three measures, several measures have been proposed. Yang and

Pedersen [58] compared feature selection methods.

4.4 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [11] is a method to reduce the dimensionn of the

feature space. LSI provides a reduced feature space withm (< n) orthogonal axes.

This reduced space is optimal in the sense that the reduced space realizes the least

square difference from the original space. The reduction with LSI is equivalent to

mapping co-occurring words to one axis.

First, Singular Value Decomposition (SVD) is used to decompose the term-document

matrixX. X (n× l) is expressed using two orthogonal matricesT (n× r) andD (l× r),
and a diagonal matrixS(r× r), as

X = TSDt , (4.6)
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wherer is the rank ofX, and the diagonal elementsσ1,σ2, · · · ,σr of Sare the singular

values ofX (σ1 < σ2 < · · ·< σr ).

Now let us take an integerm (≤ r), instead ofr. Let Sm denote the diagonal matrix

with m largest singular values ofX, Tm the matrix consisting of the firstm row vectors

of T, Dm the matrix consisting of the firstm row vectors ofD. Then the approximated

matrix Xm of X is

Xm = TmSmDt
m. (4.7)

By mappingX into them-dimensional subspace, we obtain the matrixSmDt
m, which

can be expressed asTt
mX. This Tt

mX is the reduced expression of the term-document

matrix. Tm can be regarded as a reduction operator.

4.5 Semantic Kernels

Kernel functions aimed for capturing semantic information have been proposed by

Siolas and d’Alch́e-Buc [48], and Cristianini et al [10].

Semantic Kernel using Thesaurus: in the kernel function proposed by Siolas and

d’Alché-Buc [48], a thesaurus is used to determine thesemantically-smoothing

matrix. Specifically, occurrences of words are smoothed according to seman-

tic proximity computed from the length of two words in the tree structure of

thesaurus. The improvement of performance of SVMs and k-nearest neighbor

classifiers in text categorization is reported.

Semantic Kernel using LSI : in the kernel function proposed by Cristianini et al [10],

LSI is used to determine the mapping from words to conceptual indexes. They

proved that the conceptual indexes can be computed with only the inner products

of example pairs. Although their method has a wide extensibility, the improve-

ment in their experiments of text categorization was limited to a few categories.

4.6 Class-distributional Clustering

Class-distributional clustering was proposed and applied to text categorization by Baker

and McCallum [3]. They theoretically proved the optimality of their clustering method

in terms of the Naive Bayes score, and validated it empirically.
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In class-distributional clustering, occurrences of categories given a word (or a word

cluster) are regarded as a probability distributionP(C|Cw), and words are clustered

according to this distribution (here we denote a category byC and a word cluster by

Cw). This clustering algorithm is of bottom-up type. At each step, two word clusters

that are most similar with each other in terms of Jensen-Shannon (JS) divergence,

are merged. JS divergence is also called as “divergence to the mean”, because JS

divergence is the average of two KL divergences: between clusters before merging and

the cluster after merging. JS divergence is expressed as

JS= P(Cwi
)DKL(P(·|Cwi

)||P(·|Cwi∩w j
))+P(Cw j

)DKL(P(·|Cw j
)||P(·|Cwi∩w j

)), (4.8)

whereP(·|Cw) denotes a probability distribution over categories given a clusterCw.

P(C|Cwi∩w j
) is computed as

P(C|Cwi∩w j
) =

P(Cwi
)

P(Cwi
)+P(Cw j

)
P(C|Cwi

)+
P(Cw j

)

P(Cwi
)+P(Cw j

)
P(C|Cw j

). (4.9)

We should note that class-distributional clustering is a supervised clustering, since

it needs the co-occurrence data of categories and words.

4.7 Fisher Kernel based on PLSI

Hofmann [24] applied Fisher kernels to the text categorization under the Probabilistic

Latent Semantic Indexing (PLSI) model [23].

In PLSI, the joint probability of a documentd and a wordw is :

P(d,w) = ∑
k

P(zk)P(d|zk)P(w|zk), (4.10)

where the variableszk correspond to latent classes. The parameters are estimated using

EM-algorithm.

After the estimation of the model, the Fisher kernel for this model is computed.

They usespherical parametrization[28] instead of the original parameters in the

model. Defineρ jk = 2
√

P(w j |zk) andρk = 2
√

P(zk), then,

∂ logp(d|θ̂)
∂ρ jk

=
P̂(w j |d)P(zk|d,w j)√

P(w j |zk)
, (4.11)
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∂ logp(d|θ̂)
∂ρk

≈ P(zk|d)√
P(zk)

, (4.12)

whereP̂(w|d) denotes the maximum likelihood estimate (Appendix A.1) of the proba-

bility of w givend.

Thus, the Fisher kernel for this model is

K(d1,d2) = ∑
k

P(zk|d1)P(zk|d2)
P(zk)

+∑
j

P̂(w j |d1)P̂(w j |d2)∑
k

P(zk|d1,w j)P(zk|d2,w j)

P(w j |zk)
, (4.13)

where

P(zk|d,w j) =
P(zk)P(d|zk)P(w j |zk)

∑l P(zl )P(d|zl )P(w j |zl )
(4.14)

=
P(zk)P(d|zk)P(w j |zk)

P(d,w j)
. (4.15)

The first term of (4.13) corresponds to the similarity through latent spaces. The

second term corresponds to the similarity through the distribution of each word. The

number of latent classeszk can affect the values of the kernel function. In the experi-

ment of [24], they computed the kernels with the different numbers (1 to 64) ofzk and

added them together to make a robust kernel without deciding one specific number of

latent classeszk.

They concluded that the Fisher kernel based on PLSI is effective when a large

amount of unlabeled examples are available for the estimation of the PLSI model.
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Chapter 5

Co-clustering of Words and Texts

We propose a new method to improve the accuracy of text categorization using co-

clustering. In a number of previous probabilistic approaches, texts in the same category

are implicitly assumed to be generated from an identical distribution over words. We

empirically show that this assumption is not accurate, and propose a new framework

based on co-clustering to alleviate this problem. In our method, training texts are

clustered so that the assumption is more likely to be true, and at the same time, features

are also clustered in order to tackle the data sparseness problem. We conduct some

experiments to validate this co-clustering method.

5.1 Introduction

One problem in a number of previous simple probabilistic approaches to text cate-

gorization is that texts in the same category are assumed to be generated from an

identical distribution (we call it thei.d. assumption, in this thesis). However, cate-

gories are manually defined and there is no predefined probabilistic structure behind

them, as discussed in the next section. Another problem with text categorization is

the data-sparseness problem caused by the high dimensionality of the feature space.

The frequency of each word is usually so small that it is difficult to estimate reliable

statistics.

In order to tackle these problems, we propose a new framework based on co-

clustering. Before estimating the probability model of each category, we first clus-

ter training texts into several clusters whose elements can be thought as being gener-

33



ated from an identical distribution. The data-sparseness problem is more critical if the

number of parameters is larger as in text clustering approach we adopt. Therefore, we

alleviate this problem by clustering features (words). That is to say, wecluster both

texts and features simultaneously. After clustering, examples are classified using a

supervised classifier.

Through experiments, we show that our approach works well with Naive Bayes

(NB) classifiers.

5.2 Human-made Categories and Probabilistic Struc-

ture

As observed in the previous section, a probabilistic structure does not always underlie

the categories defined by humans. In order to provide empirical evidence for this

observation, we conducted a small experiment using the Reuters-21578 data set. We

first clustered a set of texts labeled with “earn”, which is the largest category in this

corpus. We obtained seven clusters1, each of which contains several hundred or more

documents. Let us call these clusters A, B,· · ·, G. Then, according to the probability

of word occurrence given a cluster,P(word|cluster), we computed the KL (Kullback-

Leibler) divergence between a cluster (A) in “earn” and the other six clusters (B,· · ·,
G) in “earn”, and between the same cluster A and the (10 most frequent) categories

other than “earn”. This model is almost equivalent to the Naive Bayes model because

each word is regarded as an independent random event.

If the occurrences of words in texts in the same category are (approximately) iden-

tically distributed, the values of the KL divergence from cluster A to clusters B, C· · ·
G should be smaller than those to the other categories, because the clusters are labeled

as “earn”. The result is shown in Figure 5.1. The six boxes on the left correspond to

the divergences from cluster A to clusters B,· · ·, G. The box on the middle corresponds

to the divergence from cluster A to the category “earn”. The other boxes correspond

to the divergences from A to the other categories. The divergences to B, C and E are

larger than the divergences to other categories. The result is unexpected given the i.d.

assumption. Furthermore, there are two categories, namely “crude” and “ship”, whose

1The number of clusters is determined by the AIC (Akaike Information Criterion).
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divergence from A is smaller than the divergence from A to “earn”. This fact suggests

that, in “earn”, there exists a set of texts (cluster A) which is more similar to another

category than to “earn”.

We conducted the same experiment for the 10 most frequent categories. The phe-

nomenon that there exists a cluster which is more similar to another category than to

its own category, was observed for 3 categories (including “earn”) out of 8 categories

(2 other categories had only one cluster).

These experiments suggest that the i.d. assumption does not always hold true. This

fact leads to the inaccurate estimation of statistics. For example, the probability dis-

tribution over words given a category is estimated in the NB classification (Section

2.1). However, for some texts in the category, a certain word might tend to appear fre-

quently, while for others not. In spite of that, a single value represents the probability

of this word for all texts in the category, in the previous NB approaches.

Consequently, categorization accuracy should be improved if we cluster texts in

order to make the i.d. assumption more likely to be true.

5.3 Co-clustering of Words and Texts

In this section, we propose a framework to overcome the problem caused by the viola-

tion of the i.d. assumption.

Our approach uses a bottom-up clustering technique explained in Section 2.4. The

variablesX andY in Section 2.4 are replaced withW andD, that is, words and texts.

At the initial stage, each cluster has only one word or one text. At each step, the most

similar pair of words or texts is merged into one cluster. As a measure of similarity

(or dissimilarity), we use the likelihood decrease caused by merging. This measure is

related to Jensen-Shannon divergence.

5.3.1 Clustering Algorithm

In the algorithm by Li [32], given two positive integersk and l , merging for the first

dimension is performedk times, followed byl merges for the second dimension.

We propose two variants for Li’s clustering algorithm. In both algorithms, a pair of

words or texts is chosen and merged at each step, on the basis of the model described
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in Section 2.4. The difference is the way to choose the pair of words or texts to be

merged. One is what we calltext-firstclustering, in which text clustering is conducted

first, followed by word clustering. The other isgreedyclustering, in which, at each

step, the pair with the least likelihood decrease is selected from the word pairs and the

text pairs, and merged. In the following, we describe these two algorithms in pseudo-

code:

• Text-first Clustering

1. Initialize

2. Merge twotext clusterswith the least likelihood decrease repeatedly, while

the stopping criterion is not satisfied.

3. Merge twoword clusterswith the least likelihood decrease repeatedly,

while the stopping criterion is not satisfied.

• Greedy Clustering

1. Initialize

2. Merge twotext clustersor two word clusterswith the least likelihood de-

crease repeatedly, while the stopping criterion is not satisfied.

We set two constraints. One is that only texts in the same category can be merged

(we call the category-constraint). The other is that only words with the same part-of-

speech can be merged (pos-constraint). The category-constraint is indispensable in our

method, because of our categorization method which is explained later. Both of these

constraints reduce the computational time needed for clustering.

Text-first clustering has the advantage that word clustering can be carried out using

the information given by class-distribution2. Class-distributional clustering is a special

case of text-first clustering; if the stopping criterion of the text clustering phase is set

as “no two clusters can be merged without violating the category-constraint”, then

text-first clustering is identical to class-distributional clustering.

2Precisely speaking, the information used in text-first clustering is different from the information

given by class-distribution, but as clustering proceeds, these two types of information become more

similar.
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5.3.2 The Relation to Jensen-Shannon Divergence

Here we show that using the criterion of the least likelihood decrease is equivalent to

selecting the closest pair of clusters in terms of a certain information-theoretic mea-

sure, namely the Jensen-Shannon divergence. Let∆L denote the decrease of the log-

likelihood caused by merging word-clustersCi andCj . Let |S| denote the number of

all the training examples. Using the equationP(Ci j ,Cd) = P(Ci ,Cd)+ P(Cj ,Cd), ∆L

divided by|S| is transformed as :

∆L
|S| = ∑

Cd

−P(Ci j ,Cd) log
P(Ci j ,Cd)

P(Ci j )P(Cd)

+∑
Cd

P(Ci ,Cd) log
P(Ci ,Cd)

P(Ci)P(Cd)
+∑

Cd

P(Cj ,Cd) log
P(Cj ,Cd)

P(Cj)P(Cd)

= ∑
Cd

P(Ci ,Cd)
(

log
P(Ci ,Cd)

P(Ci)P(Cd)
− log

P(Ci j ,Cd)

P(Ci j )P(Cd)

)

+∑
Cd

P(Cj ,Cd)
(

log
P(Cj ,Cd)

P(Cj)P(Cd)
− log

P(Ci j ,Cd)

P(Ci j )P(Cd)

)

= P(Ci)∑
Cd

P(Cd|Ci) log
P(Cd|Ci)
P(Cd|Ci j )

+P(Cj)∑
Cd

P(Cd|Cj) log
P(Cd|Cj)

P(Cd|Ci j )

= P(Ci)DKL

(
P(·|Ci)

∣∣∣
∣∣∣P(·|Ci j )

)
+P(Cj)DKL

(
P(·|Cj)

∣∣∣
∣∣∣P(·|Ci j )

)
, (5.1)

whereDKL(p||q) is the KL-divergence between the probability distributionsp andq.

The last line of (5.1) is the Jensen-Shannon divergence, which is also known as “KL

divergence to the mean”. That is, in our method, the closest pair of clusters in terms

of the Jensen-Shannon divergence is merged at each step. Conversely speaking, the

clustering method used by Baker and McCallum [3] is valid in terms of the likelihood.

Li mentioned the relation between the log-likelihood decrease and the mutual in-

formation [32].

5.3.3 AIC-based Stopping Criterion

As the stopping criterion in the clustering algorithm, we adopt AIC (Akaike Informa-

tion Criterion) [1]. Li [32] uses MDL (Minimum Description Length) principle [44].

We do not use MDL principle, because it predicted too few clusters in preliminary
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experiments. For text clustering, it predicted a smaller number of clusters than the

number of categories, which is not suitable for our method because of the category-

constraints.

AIC is realized as follows. The decrease of the number of parameters caused by

merging a pair of clusters is

∆Np =
{ |Number o f text clusters|−1, (word-merge)

|Number o f word clusters|−1. (text-merge)
(5.2)

According to AIC, the stopping criterion should be

−∆L+∆Np > 0. (5.3)

The first term∆L denotes the decrease of log-likelihood caused by merging.

Note that, in the algorithm of text-first clustering, there are two points at which

AIC is applied. One is the point when text clustering is finished. The other is when

word clustering is finished.

5.4 Categorization

Although probabilistic classifiers are expected to yield good results combined with our

clustering method, the performance of non-probabilistic classifiers with our method

is unpredictable. For this reason, we evaluate our clustering method using NB (Naive

Bayes) classifiers (Section 2.1), which are probabilistic classifiers, and SVMs (Support

Vector Machines, Section 2.2), which are non-probabilistic classifiers.

For the NB classifier, we use the multinomial model explained in Section 4.2, but

ignore the concern of document length, because how to deal with document length has

not been investigated in detail, but is not our main point. That is, in our model, the

probability p(x|c) is expressed as

p(x|c) = ∏
i

p(wi |c)N(i,x)

N(i,x)!
. (5.4)

For the notation and the interpretation of this expression, see Section 4.2.

We use the one-versus-rest method (Section 2.7) to apply SVMs to multi-class

classification.
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In our method, the training texts are clustered beforehand. Therefore, we first

categorize the test texts and predict which cluster each test text belongs to. Then, we

assign to each text the label of the category that the predicted cluster belongs to (all

the training texts in each cluster are supposed to have the same category tag). When

constructing a hyperplane of SVMs for one cluster, the training texts belonging to the

other clusters in the same category are removed from the training set.

5.5 Experiments

5.5.1 Experimental Settings

The first data set we used here is Reuters-21578 described in Section 3.2.1. Prepro-

cessing for the data is also done as in Section 3.2.1.

As explained in Section 3.2.1, some of the texts in Reuters-21578 have multiple

category-tags. In the clustering phase, we introduced multiple copies of those texts and

labeled each text with one of its tags, so that every text has one tag (otherwise the texts

with multiple tags can never be merged according to the category-constraint). After

clustering, we treat those texts as belonging to multiple clusters in the categorization

phase.

We compared our method with the method based on class-distribution clustering,

which reportedly shows a good performance [3]. In addition to class-distributional

clustering, we also compared our method with word clustering. The word clustering

algorithm used here is unsupervised and uses only co-occurrence data of words and

texts. This algorithm is equivalent to the co-clustering algorithm without the text clus-

tering phase. As for word clustering, We used word clusters as features, and simply

construct a single model for a single category.

The kernel function used is the linear kernel.

The performance of each method is evaluated in terms of accuracy for multi-class

classification. Here, accuracy is defined as the ratio of the number of correctly classi-

fied test examples to the number of all the test examples. Test texts with several labels

are regarded as correctly classified when one of those labels matches the predicted

category. Although the performance measures such as F-measure or break-even point

are often used, we use accuracy so that the performances of NB classifiers and SVMs
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can be compared with one another directly and fairly, because NB classifiers are not

suitable for binary classification. The probability estimated with the NB classifier are

not reliable [16], although it performs well as a classifier. In other words, when all the

class posterior probabilities are computed simultaneously, it is not appropriate clas-

sifying a text as positive or negative according to whether each posterior probability

is larger than a given threshold or not. Even if we train the NB classifier as a binary

classifier, the NB classifier still has a disadvantage of large bias between the sizes of

positive examples and negative examples. In the experiments by Joachims [26], NB

classifiers perform much worse for small categories.

The second data set is 20-newsgroup (Section 3.2.2). With this data set, we con-

ducted complementary experiments to support the conclusion to be drawn by the ex-

periments with Reuters-21578. To clarify the result, we use the higher categories in

the category hierarchy of 20-newsgroup. That is, we conduct multi-class classifica-

tion with 7 categories: “alt”, “comp”, “misc”, “rec”, “sci”, “soc” and “talk”. Since

4 of those 7 categories have subcategories in the original hierarchy, the effect of the

co-clustering approach is expected to become more evident. For this data set, we com-

pared the proposed method and the method based on class-distributional clustering.

5.5.2 Results

This section and the next section describe the experiments with Reuters-21578.

The accuracies without clustering are 0.863 and 0.890 for NB classifiers and SVMs,

respectively. According to AIC, 141 was selected as the number of text clusters, which

is slightly larger than the number 116 of original categories. The categories that have

multiple clusters after clustering are “earn (7 clusters)”, “acq (6 clusters)”, “others (8

clusters)”, “crude (3 clusters)”, “money-fx (3 clusters)”, “grain (2 clusters)”, “interest

(2 clusters)” and “trade (2 clusters)”. Examples of word clusters can be seen in Ap-

pendix B. Those clusters are extracted from the word clusters at the word compression

rate predicted by AIC.

Figure 5.2 shows the performance of NB classification combined with text-first

clustering, with class-distributional clustering and with word clustering, with various

compression rates of words. As for text-first clustering, the accuracies after the text-

clustering step are displayed because we want to clarify the influence of the clustering

of texts.
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Figure 5.2. Categorization accuracy with NB classifiers (Reuters-21578)
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Table 5.1. The AIC-predicted compression rate and the actual best compression rate
Clustering Method Compression Rate(%)Accuracy

Class-distributional(AIC) 13.4 0.859

(Actual best) 60 0.871

Text-first(AIC) 16.6 0.880

(Actual best) 30 0.881

Table 5.2. Categorization accuracy with the NB classifier combined with greedy clus-

tering

Word Compression Rate(%) 100.0 90.0 80.0 70.0 60.0 50.0

Text Compression Rate(%) 100.0 94.8 94.3 93.8 93.1 91.8

Accuracy 0.717 0.718 0.719 0.722 0.731 0.739

40.0 30.0 20.0 10.0 9.7(AIC) 9.0 8.0 7.0 6.0

43.1 29.9 17.0 7.1 6.8 6.2 5.5 4.9 4.1

0.807 0.834 0.836 0.848 0.848 0.847 0.848 0.849 0.846

5.0 4.0 3.0 2.0

3.5 2.8 2.3 1.8

0.846 0.843 0.837 0.841

Figure 5.3 shows the performance of SVMs combined with text-first clustering,

with class-distributional clustering and with word clustering, with various compression

rates of words.

Table 5.1 shows the AIC-predicted compression rates and the corresponding ac-

curacies, together with the actual best compression rates and their accuracies. Word

clustering was excluded from this table, because its predicted compression rate was

smaller than 1%, which corresponds to a much worse accuracy than others.

Table 5.2 shows the performance of NB classifiers combined with greedy cluster-

ing. In the case of greedy clustering, it is necessary to display both word compression

rates and text compression rates, so we did not include the results of greedy clustering

in Figure 5.2. In Table 5.2, the compression rates predicted by AIC, 9.7% for words

and 6.8% for texts, are also displayed.
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5.5.3 Discussion

At the point of 100% word compression rate (i.e. every cluster corresponds to only

one word) in Figure 5.2, text-first clustering performs better than class-distributional

clustering and word clustering, although the difference is small (at this point, the texts

have been clustered in text-first clustering). As the word compression rate decreases,

the difference between those methods increases. This suggests that the combination of

text clustering and word clustering works well.

Figure 5.3 shows that, also for SVMs, text-first clustering outperforms class-distributional

clustering and word clustering for most compression rates of words. The apparently

slight difference at 100% word compression rate was statistically significant in a sign

test at 5% significance-level. Although text-first clustering tends to perform worse

for smaller compression rates, the accuracy (0.894) for 70% word compression rate is

higher than that for 100%. This difference was statisitically significant at 5% significance-

level. On the other hand, class-distributional clustering shows only decrease in accu-

racy. Word clustering shows little improvement. This result indicates that text-first

clustering is better than class-distributional clustering. However, clustering of words

is not so effective for both clustering methods as in the case of NB classifiers, because

the improvement of accuracy with text-first clustering is small and we currently have

no way to predict the best word compression rate (70%, in this experiment).

The predicted compression rates in Table 5.1 are not close to the actual best com-

pression rates, although the corresponding accuracies are close to each other for text-

first clustering. The difference of two AIC-predicted accuracies is statistically signifi-

cant in the sign-test (with 1% significance-level). The difference of the AIC-predicted

accuracy of our method and the accuracy without clustering is also statistically signif-

icant in the same test with 5% significance-level.

Table 5.2 shows that greedy clustering does not work well. The reason may be that

word clustering in the early stage cannot use the information of class-distribution. In

addition to that, there are too many clusters in the early stage of greedy clustering, and

classifiers are not sufficiently generalized in such situations.
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5.5.4 Complementary Experiments

In the preceding section, we concluded that text-first clustering works well for NB

classifiers. In this section, we conduct experiments with another data set, to support

the above conclusion. The data set used here is 20-newsgroup described in Section

3.2.2. For this data set, there is no fixed way of splitting the set into training and test

sets. So we conduct a five-fold cross-validation. Here only the comparison of text-first

clustering and class-distributional clustering was conducted. All other experimental

settings are the same as in the earlier experiments.

Results are as follows. The accuracies without clustering are 0.912 and 0.919 for

NB classifiers and SVMs, respectively.

Figure 5.4 shows that the NB classifier with text-first clustering outperforms that

with class-distributional clustering. This result supports the conclusion in the preced-

ing section.

Figure 5.5 shows that, also for SVMs, the proposed method is better. This result

also supports the conclusion in the preceding section. Interestingly, clustering of words

is effective for SVMs with 20-newsgroup, and the NB classifier outperforms the SVMs,

at the respective best compression rates.

The effectiveness of word clustering presumably depends on data sets. The condi-

tions where word clustering works well for SVMs should be investigated.

5.6 Conclusion of the Chapter

We proposed a new method to improve the accuracy of text categorization using co-

clustering. In our method, both training texts and features are clustered before estimat-

ing the probabilistic model.

Our approach is motivated by the fact that, in a number of previous probabilis-

tic approaches, one category is assumed to have one identical probability distribution.

However, this assumption is not always true, as discussed in Section 5.2. Our co-

clustering approach alleviates this problem by splitting performing text clustering on

the training data set. At the same time, our approach avoids the data-sparseness prob-

lem by performing word clustering on the data set.

Through experiments, we have shown that the co-clustering approach works well

with Naive Bayes classifiers and that, for the SVMs, text-first clustering outperforms
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class-distributional clustering and word clustering, although the effectiveness of word

clustering is not clear yet.

Future work includes the following.

We should first investigate in what situations word clustering works well for SVMs.

We used AIC as a stopping criterion of text clustering step in text-first cluster-

ing. But we have not investigated whether AIC was valid as a criterion indicating the

turning point from text clustering to word clustering, since it needs experiments over

two-dimensional parameter space. As a stopping criterion, AIC does not always work

well for SVMs. Better criteria should be pursued. In our framework, AIC is targeting

the joint probability of words and texts. But, in order to obtain a better stopping crite-

rion, AIC should be incorporated in a more sophisticated way such that it aims at the

categorization accuracy itself.

Although we used an agglomerative clustering method, a divisive clustering method [13]

may be better in terms of computational time.
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Chapter 6

Constructive Induction based on

Clustering

In this chapter, we discuss text categorization with Support Vector Machines (SVMs)

combined with the constructive induction using dimension reduction methods, such

as Latent Semantic Indexing (LSI). It is difficult to improve categorization ability of

SVMs only with the usual dimension reduction methods. We show, however, that the

categorization ability is improved by adding new features derived by dimension reduc-

tion methods. Experiments show that this method works well in text categorization,

especially when a number of unlabeled examples are available.

6.1 Introduction

Although several approaches to text categorization have been proposed, most of them

rely on a large amount of labeled data. However, text categorization must be realized

with a small amount of labeled data because collecting training data incur a high cost.

Although several methods aimed at categorization with a small labeled data set have

been proposed so far [38], they need to be further developed. For that purpose, we

have to take advantage of invaluable information offered by the property of unlabeled

data.

The method that we discuss in this chapter is aimed at categorization with a small

labeled data set.
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This method uses Support Vector Machines (SVMs) combined with constructive

induction using dimension reduction methods, such as Latent Semantic Indexing (LSI).

SVMs have been used in many applications such as image processing and natural

language processing. The idea to apply SVMs to text categorization was first intro-

duced by Joachims [26]. However, when the size of the labeled data set is small, SVMs

often fail to produce a good result, although several efforts to solve this problem have

been made. There are two main strategies for improving performance in the case of a

limited amount of data. One is to modify the learning algorithm itself [27, 21]. The

other is to process training data [55], including the selection of features. Our method

belongs to the latter.

The dimension reduction with Latent Semantic Indexing (LSI) is often used with

classifiers such as k-nearest neighbors method. LSI [11] can be regarded as a soft-

clustering method, which uses co-occurrence information of words to create soft clus-

ters of words related to the same topic. LSI is widely used in NLP and IR.

However, dimension reduction methods such as LSI do not work well with SVMs,

as shown in later experiments. Taira and Haruno [49] report that the feature selection

with mutual information deteriorates the performance of SVMs.

These observations suggest that the preprocessing to make use of the high clas-

sification ability of SVMs should be studied intensively. Our method is a kind of

constructive induction, which uses the new features extracted with a dimension reduc-

tion method. Specifically, the dimension of the original feature space is reduced with

a dimension reduction method, then those reduced features are added to the feature

space. The expanded set of new features is used as input to SVMs. This method makes

it possible to put weights on a subspace of the feature space without losing information

from the original vectors.

The idea of using LSI for constructive induction itself is not novel. Popelinsky and

Brazdil [42] used the combination of decision trees and Principal Component Analysis

(PCA), which is basically equivalent to LSI, for constructive induction. However, in

their paper [42], only small experiments were conducted. We do not know yet whether

such constructive induction is effective for high-dimensional and sparse data such as

text. Moreover, the question of whether or not SVMs can be improved should be

investigated, because SVMs have a good generalization ability, but feature selection or

reduction does not work for SVMs.
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We also investigate the use of agglomerative hard clustering, which may have dif-

ferent properties compared with LSI.

To validate the effectiveness of the proposed method, we conducted several ex-

periments in text categorization with SVMs using Reuters-21578 (Section 3.2.1) and

20-newsgroup (Section 3.2.2). We tested the following five types of feature spaces:

• the original feature space,

• the feature space reduced by LSI,

• the feature space reduced by hard clustering,

• the feature space expanded by LSI,

• the feature space expanded by hard clustering.

The result shows that the proposed methods (corresponding to the last two fea-

ture spaces above) improve the performance of SVMs when a number of unlabeled

examples are available.

6.2 The Dimension Reduction Methods

We adopt the Vector Space Model in Section 3.1 to express texts in vector form. We use

two types of dimension reduction methods. One is LSI, which is explained in Section

4.4. The other is hard clustering. Hard clustering is also explained in Section 2.4,

however the clustering model used here is one-sided (only the words are clustered), so

we will give an explanation to clarify the algorithm.

In our model, the joint probability of a word and a text is expressed as

P(w,d) = P(Cw,d)P(w|Cw), (6.1)

w∈Cw,

wherew denotes a word andd denotes a text, andCw denotes the cluster whichw

belongs to.

Given co-occurrence data of words and texts:

S= {(w1,d1),(w2,d2), · · · ,(wk,dk)}, (6.2)
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its log-likelihood is computed as

∑
(w,d)∈S

logP(w,d) = ∑(w,d)∈S
logP(Cw,d)P(w|Cw)

= ∑(w,d)
N(Cw,d) logP(Cw,d)P(w|Cw), (6.3)

whereN(x) denotes the frequency ofx. The parameters of (6.1) are estimated with the

maximum likelihood estimation as

P(Cw,d) =
N(Cw,d)
|S| , (6.4)

P(w|Cw) =
N(w)
N(Cw)

. (6.5)

Word clusters are merged iteratively. Two word clusters are selected if their merg-

ing causes the least reduction of log-likelihood compared with other pairs.

Although this clustering method looks similar to class-distributional clustering, the

two clustering methods are quite different in that class-distributional clustering is a

supervised clustering method which needs the co-occurrence data of categories and

words, but the above clustering method is an unsupervised clustering method which

needs only the co-occurrence data of texts and words.

Let H be a matrix whose(i, j) element is1 if the i-th cluster contains wordw j and

otherwise 0. Using this matrixH, the reduced matrix of a term-document matrixX is

expressed asHX.

6.3 Constructive Induction with Clustering

Constructive induction is a type of induction learning in which new features are created

from original features. Constructive induction is effective when the original feature set

is not rich enough to describe the various properties of the data [15].

We use clustering (dimension reduction) methods as extractors of new features

for constructive induction. Thornton [50] strictly distinguishes constructive induction

from the others. They insist that a learning method can be called a constructive induc-

tion only when the new features make use of relations between features (e.g.and or

or). But we use the word, constructive induction, in a more general sense that some

features are created from the original features.
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Our approach is described in the following.

First, the feature space is reduced using LSI or hard clustering. LetM denote the

reducing matrixTt
m for LSI or H for hard clustering. The relation between an original

feature vectord and its reduced vectors is

Md = s. (6.6)

Next, the original vectord and the reduced vectorsare concatenated:

d̂ =

[
d

s

]
. (6.7)

Then, the texts are categorized with SVMs usingd̂ as input.

Expanding the dimension of the feature space as above is equivalent to using a

special kernel in the original feature space. We give an explanation for the linear case.

Given two vectorsd1 andd2, the kernel functionK in the expanded space is expressed

as

K(d̂1, d̂2) = d̂1 · d̂2

= d1 ·d2 +s1 ·s2

= d1 ·d2 +(Md1) · (Md2). (6.8)

This kernel is different from many popular kernels such as polynomial kernels, in that

the form of the mapping to a higher dimensional space depends on the given data.

Expression (6.8) implies that weights are put on theLatent Semantic Indexesde-

termined by the clustering methods. We should note that weighting is different from

reducing. In the dimension-reduction methods, only the Latent Semantic Indexes are

considered. But in our method, the original feature space still directly influences the

classification result. This property of our method makes it possible to focus on the

information given by the latent semantic space, without losing information given by

the original feature space.

As illustrated in Section 3.3, many words in the test set do not appear in the training

set. The dimension reduction methods used in this work can include the occurrences

of such uncovered words as reduced features, since the methods are unsupervised. On

the other hand, a few specific words can greatly influence the categorization results [4].

Simple dimension reduction methods are unable to use the occurrences of those useful
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words. The proposed method, on the other hand, can make use of both the uncovered

words and the useful words. Furthermore, since we use SVMs, the weights on the new

features are appropriately determined, and remaining unuseful features expectedly do

not deteriorate accuracy. From these observations, the proposed method is expected to

improve the categorization performance.

The remaining problem is to determine the compression rate. There exist infor-

mation theoretic methods such as Minimum Description Length [44] and Akaike In-

formation Criterion [1] which can be used to determine the compression rate. But we

avoid this problem simply by adding all the features reduced with various compression

rates. High generalization ability of SVMs allows us to choose this simple avoidance

method.

6.4 Experiments

We conducted several experiments to evaluate the proposed method. The data sets we

used here are Reuters-21578 and 20-newsgroup explained respectively in Section 3.2.1

and Section 3.2.2.

First, we give an explanation about the experiments with Reuters-21578 consist-

ing of 8815 training examples and 3023 test examples. For each of the 10 most fre-

quent categories (Table 3.1), we conducted binary categorization experiments to pre-

dict whether each text belongs to the category or not.

For the computation of LSI and hard clustering, we use 8815 training examples or

some part of it, but none of the test examples. However, their category labels are not

used in the computation, since LSI and hard clustering are unsupervised.

There are four experiments using Reuters-21578. The first experiment is to investi-

gate the categorization performance for each category with a fixed number of training

examples (Section 6.4.1). The second is to observe how the performance changes

when the number of training examples changes (Section 6.4.2). The third is to observe

the performance for a large amount of training data (Section 6.4.3). The last experi-

ment with Reuters-21578 is to investigate the categorization performance with a fixed

number of training examples when the number of examples used for the dimension

reduction changes (Section 6.4.4).

The result is evaluated using F-measure (see Section 3.4.1).
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The experiment is repeated 10 times with different training examples randomly

sampled from the whole training set consisting of 8815 examples (but we guarantee

that there exists at least one positive example for each category). The values in the

result are computed by averaging 10 F-measures with different samples (we take macro

average. See Section 3.4.1).

As numbers of clusters, we take 100, 200 and 300 for LSI, and 100, 500 and 1000

for hard clustering. We use different sets of numbers of clusters for each clustering

method, because the models of the two clustering methods have different numbers of

parameters and comparing these two methods with the same numbers of clusters is not

necessarily fair.

The kernel function used for SVMs is the linear kernel.

The experiments using 20-newsgroup in Section 6.4.5 are complementarily con-

ducted to confirm the effectiveness of the proposed method. Experimental settings are

the same as for the second experiment with Reuters-21578.

6.4.1 Performance for each Category

We investigate the categorization performance for each category with 1000 training

examples.

The result is shown in Table 6.1 and Table 6.2.

The row “Method” indicates how the feature space is constructed. The column

“Original” corresponds to the original feature space. The columns “LSI” and “hard”

correspond to the feature spaces reduced respectively by LSI and hard clustering.

The columns “Original+LSI” and “Original+hard” correspond to the feature spaces

expanded respectively by LSI and hard clustering. The row “Dimension” indicates

the dimensions of the reduced spaces. In the figures and tables, expressions such as

“100+200+300” indicate adding all the reduced features of corresponding dimensions.

We performed the Wilcoxon Signed-Rank Test [12] for the averaged F-measure

of each method. We test whether the differences of the averaged F-measures of the

“Original” and the proposed methods are statistically significant or not. Since we have

10 categories and performed 10 experiments for each category, we have 100 paired F-

measures. The results of the tests are shown in Table 6.3. Table 6.3 displays the names

of the methods and the corresponding upperbounds of p-values (if an upperbound is

less than 0.001, then we simply write 0.001). In parentheses, the dimensions of the
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Table 6.1. F-measures for LSI (1000 labeled examples)

Method Original LSI Original+LSI

Dimension – 100 200 300 100 200 300 100+200+300

earn 96.8 95.3 94.9 95.2 96.6 96.6 96.5 96.4

acq 88.8 86.8 86.3 86.8 89.5 89.4 89.1 89.5

money-fx 61.3 63.1 61.1 62.3 63.1 62.9 62.3 63.3

grain 70.1 68.1 68.8 70.8 72.0 71.0 71.2 72.0

crude 63.5 68.9 69.3 69.3 67.0 67.2 66.5 69.0

trade 63.3 65.2 62.8 63.0 65.1 63.8 64.1 64.2

interest 58.2 56.4 55.9 56.3 58.9 58.9 58.0 58.6

ship 43.6 45.1 58.5 58.8 49.4 54.2 53.6 57.9

wheat 65.8 66.1 71.3 70.8 68.1 68.6 67.9 70.5

corn 52.1 37.2 46.6 50.4 52.0 52.8 53.2 52.7

Average 66.4 65.2 67.5 68.4 68.2 68.5 68.2 69.4

Table 6.2. F-measures for hard clustering (1000 labeled examples)

Method Original hard Original+hard

Dimension – 100 500 1000 100 500 1000 100+500+1000

earn 96.8 92.6 95.4 96.3 96.3 96.4 96.7 96.4

acq 88.8 79.0 84.5 87.2 87.3 87.9 88.7 87.7

money-fx 61.3 56.7 60.5 60.4 63.4 62.0 60.9 63.9

grain 70.1 57.3 70.9 68.6 71.7 73.3 70.5 73.7

crude 63.5 66.1 65.6 66.1 70.4 66.2 65.9 69.8

trade 63.3 58.0 63.3 63.3 67.9 64.1 63.3 66.9

interest 58.2 40.9 55.7 57.1 55.7 57.7 58.1 56.9

ship 43.6 40.1 56.4 57.3 52.9 57.3 54.6 59.9

wheat 65.8 40.7 57.5 65.1 62.8 65.1 65.2 65.0

corn 52.1 34.2 44.8 55.9 50.2 52.8 55.1 53.4

Average 66.4 56.5 65.5 67.7 67.9 68.3 67.9 69.4
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Table 6.3. Results of Wilcoxon tests (p-value)

Method Upperbound of p-value

Original+LSI(100) 0.001

Original+LSI(200) 0.001

Original+LSI(300) 0.001

Original+LSI(100+200+300) 0.001

Original+hard(100) 0.120

Original+hard(500) 0.003

Original+hard(1000) 0.014

Original+hard(100+500+1000) 0.001

reduced spaces are written.

When the number of training examples is 1000, both “Original+LSI” and “Orig-

inal+hard” outperform “Original” regardless of the dimension of the reduced space.

However, the results of statistical tests in Table 6.3 show that the upperbounds of p-

value of “Original+hard” are higher than those of “Original+LSI”. Especially when the

dimension of the reduced space is 100, the difference is not significant. On the other

hand, “Original+LSI” has significant improvements.

Both “Original+LSI (100+200+300)” and “Original+hard (100+500+1000)” have

significant differences from “Original”. It shows that adding several reduced features

is effective.

6.4.2 Performance for Various Training Set Sizes

The purpose of this experiment is to observe how the performance changes when the

number of training examples changes. The number of training examples ranges from

100 to 1000. The averaged numbers of positive examples for 100 training examples

are shown in Table 6.4. Since training examples are sampled randomly from 8815

examples with 116 categories, some training examples can belong to the categories

not in Table 6.4.

The result is shown in Figure 6.1 and Figure 6.2. Figure 6.1 corresponds to LSI.

Figure 6.2 corresponds to hard clustering. In the range shown in Figure 6.1 and Figure
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Table 6.4. The averaged numbers of positive examples

Category Averaged number

earn 31.2

acq 16.3

money-fx 5.3

grain 4.3

crude 4.7

trade 4.5

interest 3.5

ship 2.2

wheat 2.9

corn 1.7

6.2, both cases yield the best F-measure when the three kinds of reduced features

are added, regardless of the number of training examples. Moreover, all types of the

proposed methods perform better than the original method. This experiment shows

that our approach is effective at least in this range.

6.4.3 Performance for a Large Amount of Training Data

Although the proposed method is aimed at a small amount of training data, we test how

the proposed method behaves when the number of training examples is large. Specif-

ically, we tested the case of 4000 and 8000 training examples. Since the number of

examples used for LSI and hard clustering is 8815, the case of 4000 training examples

corresponds to the case where twice as large data is available for dimension reduction

and the case of 8000 training examples corresponds to the case where little extra data

exist.

The result is shown in Table 6.5 and Table 6.6. In the case of 4000 training exam-

ples, F-measures of the proposed methods are not so different from that of “Original”.

In the case of 8000 training examples, “Original” mostly performs better than the pro-

posed methods.

This experiment shows that the proposed method is effective only when a large
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Table 6.5. F-measures (4000, 8000 labeled examples, LSI)

Method Original LSI Original+LSI

Dimension – 100 200 300 100 200 300 100+200+300

4000 77.6 73.1 74.2 74.9 78.1 78.0 77.8 77.9

8000 80.1 76.3 77.6 77.1 80.2 79.9 79.8 79.7

Table 6.6. F-measures (4000, 8000 labeled examples, hard clustering)

Method Original hard Original+hard

Dimension – 100 500 1000 100 500 1000 100+500+1000

4000 77.6 64.4 69.0 75.3 76.9 76.3 77.6 76.1

8000 80.1 76.3 77.6 77.1 80.2 79.9 79.8 77.0

amount of unlabeled data used for dimension reduction is available. In the next exper-

iments, we will see this point in detail.

6.4.4 Performance for Various Sizes of Unlabeled Data

The experiments in the preceding sections suggest that the proposed method performs

better than the original method for a small training set. The experiments in Section

6.4.3 show that the proposed method does not perform better for a large training set.

However, on the basis of the discussion in Section 6.3, we conjecture that the cause of

these results is not the number of training examples itself, but the amount of extra data

used for dimension reduction. To confirm this conjecture, we observe the behavior

of the proposed method when the number of examples used for dimension reduction

changes.

In the next experiment, while the number of training examples is fixed as 1000, the

number of examples used for dimension reduction ranges from 1000 to 8000, includ-

ing the 1000 examples used for training (in other words, the number of extra examples

is 0 to 7000). The results are shown in Figure 6.3 and Figure 6.4. These figures show

that performance does not improve when there is no extra data available. In particular,

performance of the method using hard clustering is worsened. However, performance

increases as the number of extra examples increases. From this experiment and the

preceding experiments, we conclude that the proposed method has the ability to im-
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prove the performance of SVMs when there exist a large number of examples used for

dimension reduction (in our experiment, three times as many examples are needed).

6.4.5 Experiment using Another Data Set

We conduct a complementary experiment to test whether the proposed method works

well for another data set. The new data set is 20-newsgroup described in Section 3.2.2.

For Reuters-21578, the proposed method performs well when the number of examples

for dimension reduction is about three times or more than the number of training ex-

amples. Therefore, we conduct an experiment under the condition that “the number

of examples for dimension reduction is about three times or more than the number of

training examples”. For dimension reduction, we use all the 9420 examples except for

test examples, changing the number of training examples from 100 to 3000 (the above

condition holds true in this range). We compare the proposed methods “Original+LSI

(100+200+300)” and “Original+hard (100+500+1000)” with “Original”, because the

two proposed methods were better than others. Other experimental settings are the

same as that for the experiments in Section 6.4.2.

The result is shown in Figure 6.5. We can see that the proposed methods outper-

form “Original” regardless of the number of training examples. This result supports

the conclusion that the proposed method has the ability to improve the performance

when there exist a large number of extra examples.

6.5 Conclusion of the Chapter

We discussed text categorization with Support Vector Machines (SVMs) combined

with the constructive induction using dimension reduction methods, such as Latent

Semantic Indexing (LSI).

In the proposed method, the dimension of the original feature space is reduced

with a dimension reduction method, then those reduced features are added to the fea-

ture space. The expanded new feature vectors are used as inputs to SVMs. We have

empirically shown that the proposed method has the ability to improve the perfor-

mance of SVMs when there exist a large number of extra examples and that using

several reduced feature spaces with various dimensions simultaneously improves the
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performance.

Similar results are reported by Raskutti et al. [43], in which the similarity values

to text clusters are added as a feature and the categorization performance is improved

when a large number of unlabeled examples are available.

Although it is still unclear whether performance will be improved by using unla-

beled data for dimension reduction when the number of training examples is increased

up to around 10000, the discussion in Section 6.3 and the experiments in Section 6.4

suggest a good performance for large training data. The problem of how many unla-

beled examples are needed to improve the performance for other data sets still remains.

We regard it as future work and would like to address this problem by investigating it

theoretically or conducting more experiments with other data sets.
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Chapter 7

Application of the TOP Kernel

In this chapter, we discuss the application of TOP kernels to text categorization, which

reportedly work well in categorization problems. First we discuss the clustering-based

constructive induction in Chapter 6, from the viewpoint of the theory of TOP kernels.

Next, we propose a TOP kernel based on the separating hyperplanes of SVMs.

7.1 LSI-based TOP Kernel

In Chapter 6, we saw that adding features extracted with clustering improves perfor-

mance of SVMs. However, the theoretical underpinnings of the method are not clear.

In this chapter, we first discuss the method used in Chapter 6 from the viewpoint of the

theory of TOP kernels proposed by Tsuda [52] (explained in Section 2.3.2).

Suppose we have trained SVMs in the reduced feature space where an original fea-

ture vectord is expressed asAd and obtained the parametersw andb of the separating

hyperplane. We first assume that the posterior probability of a positive class is of the

form :

P(+1|d) =
1

1+exp(α(w ·Ad−b))
. (7.1)

α is some (usually negative) constant. This function is used to map distances from the

hyperplane to pseudo-probability [40].

The functionv(d,α,w,b) used in TOP kernels is

v(d,α ,w,b) = logP(+1|d)− logP(−1|d) (7.2)
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= logP(+1|d)− log(1−P(+1|d)) (7.3)

= log
P(+1|d)

1−P(+1|d)
(7.4)

= log
1

P(+1|d)−1−1
(7.5)

= − log(P(+1|d)−1−1) (7.6)

= − log(1+exp(α(w ·Ad−b))−1) (7.7)

= −α(w ·Ad−b). (7.8)

By differentiatingv(d,α,w,b) with respect to each parameter as follows:

∂v(d,α,w,b)
∂α

= w ·Ad−b, (7.9)

∂v(d,α,w,b)
∂w

= αAd, (7.10)

∂v(d,α,w,b)
∂ac j

= −αwcd j , (7.11)

∂v(d,α,w,b)
∂b

= α, (7.12)

we obtain the TOP kernelK(d1,d2) based on this probabilistic model (d1 andd2 denote

document vectors)1 :

K(d1,d2) = (w ·Ad1−b)(w ·Ad2−b) (7.13)

+α2Ad1 ·Ad2 (7.14)

+α2(∑
c

w2
c)d

1 ·d2 (7.15)

+α2(w ·Ad1−b)(w ·Ad2−b). (7.16)

We should note that only the two terms (7.14) and (7.15) in the above expression

are dot-products of vectors and the others terms are scalar products. Ignoring the

terms of scalar products, we obtainα2Ad1 ·Ad2 + α2(∑cw2
c)d

1 ·d2, which is similar

to the expression (6.8) :d1 · d2 + Md1 ·Md2. Thus, we have shown that the kernel

function used in clustering-based constructive induction can be regarded as a type of

TOP kernels.
1Here we do not use the notationd1 andd2, because in such a notation, the indexes for components

are easily confused with the indexes for document instances.
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TOP kernels of other models lead to a similar expression. The model discussed in

this section was one example.

7.2 Hyperplane-based TOP Kernel

The basic idea in Chapter 5 is that one category may have multiple probability distri-

butions. In this section, a similar idea is used to derive a TOP kernel. We focus on

negative examples when performing binary classification. Negative examples in text

categorization are usually more common than positive examples. There may be several

different types of negative examples. Moreover, the categories of negative examples

are sometimes explicitly given. In this situation, the probabilistic model of negative

examples can be regarded as a mixture of several models. We make efficient use of

this property. Although many models can be used, we propose a model based on the

separating hyperplanes of categories.

Suppose we have obtained the parameterswc andbc of the separating hyperplane

for each categoryc in the original feature space. We assume that the generative model

P(d|c) of a vectord givenc is

P(d|c) = λq(d|c) (7.17)

=
λ√

2πσ2
c

exp{−|(wc ·d−bc)−µc|2
2σ2

c
} (7.18)

with the meanµc of a random variable(wc ·d−bc) and the varianceσc, and a constant

λ . Strictly speaking, thisλ is not a constant. For the model to be valid as a probability

distribution,λ must be 0 in the infinity. However, by assumingλ is a local constant

in a neighborhood large enough to enclose all the feature vectors, we can treatλ as a

constant. In addition, we assume thatλ is statistically independent of categories.

Indeed the assumption thatλ is a constant is unlikely to be true, but our purpose is

to extract useful feature vectors. So here we ignore this impreciseness.

In the following, c is the positive category among many categories,e is used to

denote a category which is notc, andc′ is used to denote a category which can be

eitherc or e.

v(d,α,w,b) = logP(+1|d)− logP(−1|d)
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= log
P(c)λq(d|c)

∑c′ P(c′)λq(d|c′) − log
∑e6=cP(e)λq(d|e)
∑c′ P(c′)λq(d|c′)

= logP(c)q(d|c)− log ∑
e6=c

P(e)q(d|e)

= logP(c)exp{θc1(wc ·d)+θc2(wc ·d)2 +
θ 2

c1

4θc2
− 1

2
log

−π
θc2
}

− log ∑
e6=c

P(e)exp{θe1(we ·d)+θe2(we ·d)2 +
θ 2

e1

4θe2
− 1

2
log

−π
θe2

},

(7.19)

whereθc′1 = µ ′c/σ ′2c ,θc′2 = 1/2σ ′2c . We should note thatθc′1 andθc′2 are not the natural

parameters of this model. However, we parameterize this model using the parameters

θc′1, θc′2, wc′, bc′ andP(c′) for simplicity.

The partial derivatives of this function with respect to the parameters are the fol-

lowing :

∂v(d,θ)
∂θc1

= wc ·d−bc−µc, (7.20)

∂v(d,θ)
∂θe1

= − P(e)q(d|e)
∑c′ 6=cP(c′)q(d|c′)(we ·d−be−µe), (7.21)

∂v(d,θ)
∂θc2

= (wc ·d−bc)2−µ2
c −σ2

c , (7.22)

∂v(d,θ)
∂θe2

=
P(e)q(d|e)

∑c′ 6=cP(c′)q(d|c′){(we ·d−be)2−µ2
e−σ2

e}, (7.23)

∂v(d,θ)
∂wci

=
µc− (wc ·d−bc)

σ2
c

di , (7.24)

∂v(d,θ)
∂wei

=
P(e)q(d|e)

∑c′ 6=cP(c′)q(d|c′)
µe− (we ·d−be)

σ2
e

di , (7.25)

∂v(d,θ)
∂bc

=
wc ·d−bc−µc

σ2
c

, (7.26)

∂v(d,θ)
∂be

=
we ·d−be−µe

σ2
e

, (7.27)

∂v(d,θ)
P(c)

=
1

P(c)
, (7.28)

∂v(d,θ)
P(e)

=
P(d|e)

∑c′ 6=cP(c′)q(d|c′) . (7.29)
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Then we can follow the definition (2.41) to obtain our version of the TOP kernel. We

call this new kernel ahyperplane-based TOP (HP-TOP)kernel. Computing the kernel

in this form is time-consuming because the number of components of type (7.25) can

be very large : (vocabulary size)×(number of categories). We can avoid this heavy

computational cost as follows. Let us compute the dot-product of derivatives (7.25) of

two vectorsd1 andd2 :

∑
e6=c

∑
i

∂v(d1,θ)
∂wei

∂v(d2,θ)
∂wei

(7.30)

= ∑
e6=c

∑
i

P(e)2q(d1|e)q(d2|e)
P−c(d

1)P−c(d
2)

µe− (we ·d−be)
σ2

e

µe− (we ·d−be)
σ2

e
d1

i d2
i (7.31)

=
(
∑
e6=c

P(e)2q(d1|e)q(d2|e)
P−c(d

1)P−c(d
2)

µe− (we ·d−be)
σ2

e

µe− (we ·d−be)
σ2

e

)
d1 ·d2,

(7.32)

whereP−c(d) denotes∑c′ 6=cP(c′)q(d|c′). The last expression (7.32) is regarded as the

scalar product of two dot-products. Thus, by preserving vectorsd and
(

P(e)q(d|e)
P−c(d)

µe− (we ·d−be)
σ2

e

)

e6=c
, (7.33)

we can efficiently compute the dot-product in (7.25); the computational complexity

of a kernel function is of the order of vocabulary size (on the condition that the vo-

cabulary size is larger than the number of categories). Thus, from the viewpoint of

computational time, our kernel has an advantage over some other kernels such as the

PLSI-based Fisher kernel in Section 4.7, which needs the computational complexity of

the order of (vocabulary size)×(number of clusters).

According to expression (7.32), two vectors are considered to be more similar, if

they have similar distributions over categories. In the PLSI-based Fisher kernel, each

word has a probability distribution over latent classes. In this sense, the PLSI-based

Fisher kernel is more detailed, but simultaneously has the computational disadvantage

mentioned above.
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7.3 Experiments

We empirically compare the HP-TOP kernel with the linear kernel and the PLSI-based

Fisher kernel. We use Reuters-21578 data set with ModApte-split (Section 3.2.1).

The size of the training data ranges from 1000 to 8000. For each size of the data

set, experiments are executed 10 times with randomly selected training examples.

The result is evaluated using F-measures for the 10 most frequent categories (Table

3.1).

The total number of categories is actually 116. However, for small categories, reli-

able statistics cannot be obtained. For this reason, we regard the remaining categories

other than the 10 most frequent categories as one category. Therefore, the model for

negative examples is a mixture of 10 models (9 out of the 10 most frequent categories

and the new category consisting of the remaining categories).

We assume uniform priors for categories because computing category priors from

the given data set can lead to poor estimates [52].

We computed the Fisher kernels with different numbers (10, 20 and 30) of latent

classes and added them together to make a robust kernel [24].

The result is shown in Figure 7.1. The HP-TOP kernel outperforms the linear

kernel and the PLSI-based Fisher kernel for all numbers of examples. At each number

of examples, we conducted a Wilcoxon Signed Rank test with 5% significance-level,

for the HP-TOP kernel and the linear kernel, since these two are better than the other.

The test shows that the difference between the two methods is significant for the data

sizes 1000 to 5000.

In this experimental setting, the PLSI-based Fisher kernel did not work well. How-

ever, this Fisher kernel will perform better when the number of labeled examples is

small and a number of unlabeled examples are available, as reported by Hofmann[24].

7.4 Conclusion of the Chapter

In this chapter, we first gave an interpretation of the method discussed in Chapter 6

from the theory of the TOP kernel. Then we proposed a TOP kernel based on sepa-

rating hyperplanes. The proposed kernel is created from one-dimensional Gaussians

along the normal directions of the hyperplanes. We have empirically shown that the

73



64

66

68

70

72

74

76

78

80

82

1000 2000 3000 4000 5000 6000 7000 8000

F
-m

e
a
s
u
re

Number of Labeled Examples

HP-TOP Kernel
Linear Kernel

PLSI-based Fisher Kernel

Figure 7.1. Performance of Hyperplane-based TOP kernel

74



proposed kernel outperforms the linear kernel in text categorization.

Although the superiority of the proposed method to the linear kernel was shown,

the proposed method has to be further investigated. Firstly, for large data sizes (namely

7000 and 8000), the proposed method was not significantly better than the linear ker-

nel. The effectiveness of the proposed method should be confirmed by more experi-

ments and theoretical analysis. Secondly, we have to compare the proposed method

with other kernels in order to show the effectiveness of the kernel function consisting

of one-dimensional Gaussians normal to the hyperplanes.

This model can be extended to incorporate unlabeled examples, for example using

the EM algorithm. When the category structure of the negative examples is not given,

the proposed method is not applicable. We should investigate whether unsupervised

clustering can substitute for the category structure.
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Chapter 8

Conclusion

In this thesis, two clustering approaches and an application of kernel methods to text

categorization were studied.

In Chapter 4.2, we introduced machine learning methods used in this thesis. In

Chapter 3, several properties of text categorization were described. In particular, we

focused on the sparsity of text data.

We proposed a new method to improve the accuracy of text categorization using

co-clustering in Chapter 5. In this method, both training texts and features are clustered

before estimating the probabilistic model. The development of this method was moti-

vated by the fact that one category may not be expressed by one probabilistic model.

We have empirically shown that co-clustering outperforms class-distributional clus-

tering and word clustering. Co-clustering improves the performance of Naive Bayes

classifiers, although the effectiveness of the word clustering phase for SVMs is not

clear yet.

In Chapter 6, we discussed text categorization with Support Vector Machines com-

bined with the constructive induction using dimension reduction methods, such as La-

tent Semantic Indexing. The method improves the performance of SVMs when the

dimension reduction method can use unlabeled examples to extract new features.

In Chapter 7, we applied a TOP kernel to text categorization on the basis of the

probability distributions along the normal lines of the separating hyperplanes. A simple

experiment has shown that this hyperplane-based TOP kernel outperforms the linear

kernel.

One interesting point for future work is the incorporation of unlabeled data. Al-

76



though we used unlabeled data in the constructive induction approach in Chapter 6,

the framework of co-clustering is based on a supervised clustering technique. The

hyperplane-based TOP kernel also uses only labeled data. These supervised approaches

can be enhanced with the use of unlabeled data.
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Appendix

A Mathematical Foundations

A.1 Maximum Likelihood Estimation

Suppose we want to estimate the parametersθ of a modelp(x|θ), given a set of data

samples{x1, · · ·xn}. The log-likelihood functionL({x1, · · ·xn}|θ) is defined as

L({x1, · · ·xn}|θ) ≡ log
n

∏
i=1

p(x|θ)

=
n

∑
i=1

logp(x|θ) (8.1)

In the maximum likelihood estimation, the parameters maximizing (8.1) are chosen.

Example A.1 Supposep(x|θ) is a gaussian with unknown parametersµ and σ2.

Then, (8.1) is

L({x1, · · ·xn}|θ) =
n

∑
i=1

logp(x|θ)

=
n

∑
i=1

(
−(xi−µ)2

2σ2 + log
1√

2πσ2

)
. (8.2)

Its partial derivative with respect toµ is

∂L({x1, · · ·xn}|θ)
∂ µ

=
n

∑
i=1
−xi−µ

σ2 . (8.3)

From the stationary condition stipulating that (8.3) is zero, the maximum likelihood

estimator ofµ is obtained as follows :

∑n
i=1−xi−µ

σ2 = 0 (8.4)

⇒ ∑n
i=1(xi−µ) = 0 (8.5)

⇒ ∑n
i=1xi = ∑n

i=1 µ (8.6)

⇒ µ = ∑n
i=1xi
n . (8.7)
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A.2 Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence (or distance) for the probability distributionsP(x)
andQ(x) is, in the discrete case, defined as

KL(P||Q) = ∑
x

Q(x) log
Q(x)
P(x)

. (8.8)

This quantity is used as adistancebetween two probability distributions, though it

does not satisfy the conditions for distance.

A.3 Exponential Family

Definition A.1 The exponential family of distributions is defined as the set of the prob-

ability distributions whose densityp(x|θ) can be expressed in the following canonical

form :

p(x|θ) = exp{T(x)tθ −ψ(θ)+C(x)}. (8.9)

The parametersθ are called natural parameters.T,ψ,C are some continuous func-

tions.

The exponential family includes, for example, :

• Binomial distribution.

p(x|θ) =
(

n

x

)
px(1− p)1−x (8.10)

= exp

(
log(

p
1− p

)x+nlog(1− p)+ log

(
n

x

))
(8.11)

T(x) = x,θ = log( p
1−p), · · ·

• Gaussian

p(x|θ) =
1√

2πσ2
exp

(
−|x−µ |2

2σ2

)
(8.12)

= exp

(
µ

σ2x− 1
2σ2x2− µ2

2σ2 + log
1√

2πσ2

)
(8.13)

T1(x) = x,T2(x) = x2,θ1 = µ
σ2 ,θ2 = 1

2σ2 , · · ·
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B Examples of Clusters

• deliver [VB], handle [VB], charter [VB], destine [VB], halve [VB], mill [VB],

feature [VB], date [VB], earmark [VB], reallocate [VB], transact [VB], switch

[VB], subsidize [VB]

• export [NN], exporter [NN]

• go [VB], get [VB], do [VB]

• port [NN], ship [NN], vessel [NN], harbour [NN], dwt [NN], liner [NN], yard

[NN], charterer [NN], mt [NN]

• increased [JJ], significant [JJ], positive [JJ], overall [JJ], dramatic [JJ], responsi-

ble [JJ]

• loan [NP], home [NP], savings [NP]

• apr [NP], mar [NP], feb [NP]

• many [JJ], large [JJ], major [JJ]

• likely [JJ], unlikely [JJ]

• unemployment [NN], employment [NN]

• december [NP], november [NP]

• milk [NN], feeding [NN], convention [NN], livestock [NN], marketings [NN],

herd [NN], lock-out [NN], meatpackers [NN], pork [NN], meat [NN], beef [NN],

cattle [NN]

• sulphur [NN], fuel [NN], gasoline [NN]

• yemen [NP], guarantee [NP], weekly [NP], egypt [NP], bangladesh [NP], mo-

rocco [NP], deputy [NP], poland [NP], sudan [NP]

• electrical [JJ], swedish [JJ], fine [JJ], sophisticated [JJ], compatible [JJ], elec-

tronic [JJ], plastic [JJ], 12th [JJ], video [JJ], yearly [JJ], advanced [JJ], techno-

logical [JJ]
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• copper [NP], smelting [NP], comex [NP], lme [NP], aluminium [NP], metal

[NP], alcoa [NP], alcan [NP], aluminum [NP]

• hamburg [NP], chinese [NP], alfred [NP], lord [NP], french [NP], austria [NP],

italy [NP], belgium [NP]

• afternoon [NN], morning [NN]

• ask [VB], halt [VB], resolve [VB], speak [VB], urge [VB]

• citibank [NP], banks [NP], midland [NP], trust [NP], bankers [NP], banking

[NP]

• talk [NN], negotiation [NN], discussion [NN], failure [NN]

• baa-1 [JJ], prime-2 [JJ], a-1-plus [JJ], ba-2 [JJ], plus [JJ], baa-2 [JJ], ba-3 [JJ],

baa-3 [JJ], b-1 [JJ], a-plus [JJ], implied [JJ]

• qtly [JJ], mthly [JJ], qtrly [JJ], cts [JJ]

• president [NN], vice [NN], executive [NN]

• zinc [NN], vein [NN], diamond [NN], mint [NN], tunnel [NN], gram [NN], silver

[NN], nickel [NN], hole [NN], mine [NN]

• yield [NN], yields [NN]

• east [RB], north [RB], south [RB], northwest [RB], southwest [RB], nearby

[RB], west [RB]

• labour [NN], strikes [NN], employer [NN]

• work [NN], job [NN], people [NN]

• wednesday [NP], monday [NP], tuesday [NP]

• philippine [NP], manila [NP], philippines [NP]

• chip [NN], chipmakers [NN], microchip [NN], microchips [NN], semiconductor

[NN]
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