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Abstract

Automatic text categorization has always been an important
application and research topic since the inception of digital
documents. Today, text categorization is a necessity due to the
very large amount of text documents that we have to deal with
daily. Many techniques and algorithms for automatic text cat-
egorization have been devised and proposed in the literature.
However, there is still much room for improving the effective-
ness of these classifiers, and new models need to be examined.
We propose herein a new approach for automatic text catego-
rization. This paper explores the use of association rule mining
in building a text categorization system and proposes a new fast
algorithm for building a text classifier. Our approach has the
advantage of a very fast training phase, and the rules of the
classifier generated are easy to understand and manually tune-
able. Our investigation leads to conclude that association rule
mining is a good and promising strategy for efficient automatic
text categorization.

Keywords: Text Categorization, Classification, Asso-
ciation Rules, Text Mining.

1 Introduction

The sudden expansion of the Web and the use of the
Internet has triggered a lot of research fields, text
categorization being only one of them. Text catego-
rization is the distinction between predefined classes
of text (documents or paragraphs) by identifying dis-
criminating features in text. After identifying these
discriminating features, a text categorizer classifies
documents into known classes. A document could
fall into one class or many. Automatic categorization
of text has been a relevant research issue since the
inception of digital documents. A long list of suc-
cesses and setbacks has been reported in the research
literature since the beginning of the 1960s. Many
statistical-based and machine-learning-based meth-
ods have been proposed and extensive research and
experiments were done in text categorization, espe-
cially by using natural language processing and arti-
ficial intelligence methods, with the main application
devoted to support information retrieval. While the
enthusiasm for classification of text had almost faded
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out at one point, the rapid growth of the Web has
revived the interest in text categorization. The past
decade has seen an increasing effort in applying new
techniques in discriminating and classifying text doc-
uments. A text categorization system can be used
to classify e-mail messages (e-mail response systems),
incoming memos, to filter documents, to route texts
or to classify web pages in a Yahoo-like manner. The
increasing number of the online documents has de-
manded more research in the text categorization field.

Many techniques have been applied in text cate-
gorization, such as Bayesian Networks, decision trees,
neural networks, support vector machines, k-nearest
neighbor approach, etc. A good survey on these meth-
ods and their application in text categorization can be
found in [19].

Another aspect that motivates our research is the
success of association rule mining in the data mining
research community. The use of association rules has
been exploited for finding new and interesting hidden
patterns in large transactional databases, such as in
market basket analysis. Association rules are rules
that identify associations between items in transac-
tions. In the recent years many algorithms have been
proposed for computing association rules efficiently.
Among the proposed algorithms the best known are
apriori [1] and FP-tree growth [6]. The concept of
association rules mining has been intensively used in
market basket analysis, but has also found applica-
tions in a myriad of domains such as the discovery of
topological patterns in images [23].

Automated text categorization represents the pro-
cess of assigning labels (the labels for each category
are predefined) to new documents based on the knowl-
edge accumulated in the training process. That is
why building a text classifier necessitates a training
set. Both the training and the testing sets must have
the documents associated with one or multiple cate-
gories. Once the classifier is built using the training
set, its effectiveness is determined by comparing the
class labels found by the classifier with those being
already assigned to the testing set.

In this paper we exploit the use of association rules
mining in building a text categorization system from
arelatively large training set. Our solution to the text
categorization problem differs from the others in the
literature in that it consists of modeling documents
as transactions and discovering associations between
the words existing in documents and the labels as-
signed to them. The performance study shows that
our classifier proves to be efficient especially for the
non-overlapping categories, both training and testing
phases are very fast and it can be updated incremen-
tally. Moreover, the association rules discovered that



define the classifier are very easy to understand and
allow easy manual maintenance and tuning.

The remainder of the paper is organized as fol-
lows: Section 2 gives a brief overview of related work
in automatic text categorization and in association
rule mining. In Section 3 we introduce our text cat-
egorization approach using association rules mining.
An experiment using Reuters-21578 collection is de-
scribed in Section 4 along with the performance of our
system compared to known systems. We summarize
our research and discuss some future work directions
in Section 5.

2 Related work

There have been many text classifiers proposed us-
ing machine learning techniques: neural networks,
genetic algorithms and probabilistic models, etc. Al-
though a lot of approaches have been proposed, au-
tomated text categorization is still a major area of
research primarily because the effectiveness of cur-
rent automated text classifiers is not faultless and still
needs improvement, and the time to train a classifier
is still very significant.

In this section we outline some of the known tech-
niques for categorizing text and the benchmarks used
for evaluation. Since our algorithm is based on the
association rule mining idea, we briefly present the
concepts in order to introduce the subsequent section.

2.1 Text categorization

In the past decade, great attention was paid to the
text categorization problem. Most of the text clas-
sifiers that were developed and proposed are either
machine learning-based or statistical-based. Proba-
bly the only one among those that proved to be pow-
erful that comes from information retrieval field is
the Rocchio classifier. The problem of building a text
classifier was addressed in many ways, but only a few
of these have proven to be powerful tools. The tech-
niques applied can be divided in some sub-classes:
probabilistic, decision trees, decision rules, regression
models, neural networks, support vector machines,
etc. [19]. Examples in the literature are [7] using
Rocchio Algorithm, [13] using C4.5 decision tree in-
duction, [20] using k-nearest neighbor algorithm, [8]
using support vector machines, [22] using neural net-
works, etc.

Generally, text categorization systems use a vector
model representation of the documents. The vector
that represents the document contains the document
terms and also the weights assigned to each term.
The computation of the weights is a problem in itself
and will not be covered in this paper. Basically, there
are different ways to decide how to assign and how to
compute the weights. However, in our model we do
not assign weights to terms and model the documents
in transactions of unordered terms.

Significant attention was devoted by the research
community to the probabilistic classifiers. Even the
first text classifier presented in the literature by
Maron in 1961 was a probabilistic one [19]. The Naive
Bayesian Classifiers represent an important trend in
the probabilistic classifiers. An interesting survey
about the different variations in Naive Bayesian Clas-
sifiers was presented in [10]. One drawback of these
classifiers is their sensitivity to term space reduction.
Term selection can lead to significant degradation in
the classification.

Probabilistic classifiers seem rather cryptic for
some people and it is not easy to interpret or even
maintain the numeric models generated by the classi-
fier. A more intuitive approach in building text clas-
sifiers is represented by decision trees and decision
rule-based induced classifiers. Many researchers have
tackled this class of algorithms [14, 12, 3, 4, 2, 15].
The decision tree classifiers are based on tree induc-
tion algorithms such as ID-3 and C4.5 which gener-
ate inductive non-numeric rules. Decision rule classi-
fiers come from the machine learning community and
they are mainly constructed by inductive rule learn-
ing methods.

Some researchers attempted to solve the text cate-
gorization problem by using regression models. These
classifiers belong to the statistical-based class and
probably the best known among them is the ‘Linear
Least Squares Fit’ (LLSF), proposed in [21] in which
documents are modeled with two vectors, a vector for
weighted terms and a vector of weighted categories,
and the classification consists of adjusting the cate-
gory weights.

Neural networks have been widely used in different
domains. Also in text categorization different types
of neural networks have been applied in the attempt
of making a better classifier, starting by the simplest
one - the perceptron, from linear to non-linear neural
networks [18]. The problem in using neural networks
is that the training time is often excessive and the
resulting network is difficult to interpret.

Since the idea of support vector machines was in-
troduced in 1995 by Vapnik, text categorization using
support vector machines have also been proposed in
the literature [8]. Support vector machines proved to
build very powerful systems, which is illustrated by
the results presented in [8] and in [19].

Another categorizer, Rocchio classifier [7], often
used as a reference for comparison, uses Rocchio’s
formula for relevance feedback in the document vector
space model. Since it was proposed in 1994 many
variations have been implemented.

Comparing text classifiers is a difficult and often
subjective task. Designers tend to show the bright
side of the classifier by putting forward the best ex-
amples where the method yields the best results. For
instance, it is common that unassigned documents
are removed from collections, or only frequent cate-
gories are kept for training and testing. An objective
way to compare classifiers is to use the same docu-
ment corpus with fixed categories as well as convene
on the same training set and testing set. For the sake
of comparison with other methods, we have also ap-
plied pruning in the data collections as we shall see
later. Most of the proposed classifier systems sug-
gested in the literature have performed experiments
on the Reuters and/or OHSUMED text collections
for benchmarking. For comparison reasons we per-
formed experiments on both text corpora. In or-
der to construct a learning-based classifier, the col-
lection is divided into a training part and a testing
part. In the case of the Reuters collection for exam-
ple, there exist different splits of the data set that
were used for benchmarking: Reuters 22173 “Mod-
Lewis”, Reuters 22173 “ModApte”, Reuters 22173
“ModWiener”, Reuters 21578 “ModApte”, etc. A
good comparison done between well-known text clas-
sifiers using this data collection can be found in [19].



2.2 Association Rule Mining

Association rule mining is a canonical data min-
ing task aiming at discovering relationships between
items in a dataset. Association rules have been exten-
sively studied in the literature. The efficient discovery
of such rules has been a major focus in the data min-
ing research community. From the original apriori
algorithm [1] there was a remarkable number of vari-
ants and improvements culminated by the publication
the FP-Tree growth algorithm [6]. Most popular al-
gorithms, however, designed for the discovery of all
types of association rules, are apriori-based.

Formally, as defined in [1], the problem is stated
as follows: Let Z = {i1,42,...im } be a set of literals,
called items. Let D be a set of transactions, where
each transaction T is a set of items such that T C 7.
A unique identifier T1D is given to each transaction.
A transaction T is said to contain X, a set of items
in Z, if X CT. An association rule is an implication
of the form “X = Y”, where X C Z,Y C Z, and
XNY = 0. The rule X = Y has a support s in
the transaction set D is s% of the transactions in D
contain X UY. In other words, the support of the
rule is the probability that X and Y hold together
among all the possible presented cases. It is said that
the rule X = Y holds in the transaction set D with
confidence c if ¢% of transactions in D that contain X
also contain Y. In other words, the confidence of the
rule is the conditional probability that the consequent
Y is true under the condition of the antecedent X.
The problem of discovering all association rules from
a set of transactions D consists of generating the rules
that have a support and confidence greater that given
thresholds. These rules are called strong rules.

The idea driving the apriori algorithm is to scan
the dataset in search of the one-itemsets that are fre-
quent (i.e. support higher than threshold), then com-
bine these to form 2-itemsets called candidates. A
second scan of the data set allows to check their sup-
port and keep only the frequent ones, then combine
them to generate candidate 3-itemsets. the process
is repeated again and again for k-itemsets keeping in
mind that for a k-itemset to be frequent all its k-1
itemsets have to be frequent, hence the apriori nom-
ination. The algorithm only discovers all frequent
itemsets in the transactional dataset. Association
rule mining is normally a two-step process, wherein
the first step frequent item-sets are discovered (i.e.
itemsets whose support is no less than the minimum
support) and in the second step association rules are
derived from the frequent itemsets. The problem of
association rule mining is to discover all those associ-
ation rules that satisfy the conditions of support and
confidence.

In our algorithm, as we shall see in the next sec-
tion, we take advantage of the apriori algorithm to
discover frequent term-sets in documents. Since the
training documents are labeled, we can constrain the
association rules to contain the class label in the con-
sequent of the rule and terms in the antecedent. In
other words, discovering rules such as “T = C”,
where T is a conjunction of terms from a document
and C a class label, would simply generate a classifier
for text.
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Figure 1: Construction phases for an association-rule-
based text categorizer

3 Categorization with Association Rules

3.1 Building the association-rule-based text
categorizer

In our approach we construct a text classifier by ex-
tracting association rules that associate the terms of
a document and its categories. To do so, we model
the text documents given for training as a collec-
tion of transactions where each transaction repre-
sents a text document, and the items in the transac-
tion are the terms selected from the document and
the categories the document is assigned to. How-
ever, not all terms contained in a document are re-
tained in the transaction. To reduce the term space,
we eliminate stopwords and may even reduce some
terms to their canonical form by stemming. If a
document D; is assigned to a set of categories C =
{c1,¢2,...c,} and after stopwording and stemming
the set of terms T = {t1,t2,...tp} is retained, the
following transaction is used to model the document:
-Di : {Cl, C2,y ...Cmy,s tl, tz, tn}

Initial testing using Porter’s stemming algorithm
[16] have shown that stemming does not improve
effectiveness significantly. We have opted to selec-
tively put stemming, as well as stopwording for that
matter, on and off depending upon the data set to
categorize. We consider stemming and stopword-
ing as well as the transformation of documents into
transactions as a pre-processing phase. The subse-
quent phase consists of discovering association rules
from the set of cleansed transactions. Figure 1 illus-
trates the phases of the association-rule-based text
categorizer construction with the optional stemming
and stopwording modules. Stopwords removal con-
siderably reduces the dimensions of the transactional
database and thus significantly improves the rule ex-
traction time (i.e. training time). Moreover, while
we use a common stopword list in English [5], too fre-
quent terms that are associated to all categories can
be automatically added as words to reject. Note that
the stopword lists from any language can be used as
well.

Using the aprior: algorithm on our transactions
representing the documents would generate a very
large number of association rules, most of them irrel-
evant for classification. We use an apriori-based algo-
rithm that is guided by the constraints on the rules
we want to discover. Since we are building a classi-
fier, we are interested in rules that indicate a category
label, rules with a consequent being a category label.
In other words, given the document model described
above, we are interested in rules of the form “T" = ¢;”
where T' C T and ¢; € C. To discover these interest-
ing rules efficiently we push the rule shape constraint
in the candidate generation phase of the apriori algo-
rithm in order to retain only the suitable candidate
itemsets. Moreover, at the phase for rule generation
from all the frequent k-itemsets, we use the rule shape
constraint again to prune those rules that are of no
use in our classification.
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We have considered two different approaches for
extracting term-category association rules and for
combining those rules to generate a text classifier. In
the first approach (Figure 2), each category is consid-
ered as a separate text collection and the association
rule mining applied to it. In this case, the transac-
tions that model the training documents are simpli-
fied to D; : {C,t1,t2,...t,} where C is the category
considered. The rules generated from all the cate-
gories separately are combined together to form the
classifier. In the second approach (Figure 3) all the
categories form a single training collection and the
rules generated are de facto the classifier. For both
approaches we have devised a different algorithm for
classification rule discovery. The Association Rule-
based Categorizer By Category algorithm (ARC-
BC), outlined in Algorithm 1, discovers rules for one
category at a time and thus does not consider the cat-
egory items in the document transaction model but
just the term items. Once the frequent term-itemsets
are discovered, the rules are simply generated by mak-
ing each frequent term-itemset the antecedent of the
rule and the current category the consequent. The
Association Rule-based Categorizer for All Categories
algorithm (ARC-AC), outlined in Algorithm 2 con-
siders all categories combined by using the transac-
tions as described above and pushing the rule form
constraint to the candidate generation phase of apri-
ori. Basically, any frequent itemset has to include a
category label starting from 2-itemsets to k-itemsets.
and the join of frequent k-1 itemsets to generate can-
didate k itemesets is based on the category label in the
itemset. While ARC-BC is simple it has to be called
for every category in the collection, and it necessi-
tates the split of the training set by category which
may add an overhead in the training phase. ARC-AC
is obviously faster to train since document transac-
tions are not repeated like with ARC-BC - documents
that are assigned to many categories are repeated in
ARC-BC. However, ARC-AC has a significant draw-

back since potentially discriminating terms could be
pruned during the frequent itemset generation due to
their low support with respect to the whole document
collection. Tuning the minimum support threshold
could alleviate this problem, but a very low support
could generate too many and potentially conflicting
rules making the classification slower and less accu-
rate. Moreover the tuning of the minimum support
threshold is an iterative and tedious process. The
over pruning of relevent terms by ARC-AC explains
the reason why ARC-BC slightly outperforms ARC-
AC despite the fact that ARC-BC searches for local
solutions compared to the global solution of ARC-AC.
With both algorithms the document space is reduced
in each iteration by eliminating the transaction rep-
resenting documents that do not contain any of the
frequent term-sets. FilterTable(D;—_1,F;_1) reduces
the set of transactions in D;_; that do not contain
itemsets in F;_;. This significantly improves the per-
formance of the algorithm (line 6 in Algorithm 1 and
line 12 and 16 in Algorithm 2).

Algorithm 3.1 Algorithm 1: (ARC-BC) Find
Association rules that associate terms with a given
category from a collection of documents all assigned
to the same category. Input: (i) D; a set of
transactions representing text documents of the form
{Cat,t1..t, } where Cat is a given category assigned
to all the documents and #¢; a selected term from
the document represented by the transaction; (ii) the
minimum support thresholds o.

Output: Set of rules R such that each rule r € R
is of the form ¢, Atg Aty A ... Aty = Cat where t; is
a term and Cat is tﬁe given category.

Method: The algorithm starts by finding the fre-
quent term-sets then converts each frequent term-set
into a rule with the category Cat as the consequent.
The pseudo-code for generating the classification rules
is as follows:

begin

(1 ) 01 + {Candidate 1 term-sets and their support}
(2) Fi <+ {Frequent 1 term-sets and their support}
(3) for (i 2;F;_1 # 0;i i+ 1) dof

(4:) C(—(211><1F,1)

(5) C; + Ci —{c| (i —1) item-set of c ¢ F;_1}
(6) D; + FilterTable(D;—, F;_1)

(7) foreach document d in D; do {

(8) foreach ¢ in C; do {

EQ)) c.support + c.support + Count(c, d)
10

!

(12)  F; + {c € C; | c.support > o}

(13)}

(14)Sets —U{ceFi|i>1}

(15)R=

(16) foreach itemset I in Sets do {

(17) R+ R+{I = Cat}

(18)}

end

Algorithm 3.2 Algorithm 2: (ARC-AC) Find
frequent term-category-sets for enumerating text as-
sociation rules in a document labeled collection. In-
put: (i) D; a set of transactions representing text
documents of the form {c;..cp,t1..tm} where ¢; is a
category assigned to the document represented by the
transaction and ¢; a selected term from the document;
(ii) the minimum support thresholds o.



Output: Set of rules R such that each rule r € R
is of the form t, Atg Aty A... Aty = Cy where t; is
a term and C} is a category

Method: The algorithm starts by finding the fre-
quent term-category sets then splits the itemsets to
form rules with terms in the antecedent and one cat-
egory in the consequent. The pseudo-code for gener-
ating the classification rules is as follows:

begin
(1) Cp + {Candidate categories and their support}
(2) Fo < {Frequent caterories and their support}
(3) Cy «+ {Candidate 1 term-sets and their support}
(4) Fy « {Frequent 1 term-sets and their support}
(5) Cy FO x Fi
(6) foreach document d in Dy do {
(7) foreach ¢ in Cs do {
(8) c.support < c.support + Count(c, d)
(9)
(10)}
(11)F5 « {c € Cy | c.support > o}
(12)D4 < FilterTable(D:, F»)
(13)for (i < 3; F;—1 # 0;i < 1+ 1) do{
(14) Ci + (F;—1 2 F3) /* ve € C;c has only one category */
(15) Ci«Ci—{c|(i—1)item-set of c ¢ F;_1}
(16) D; + FilterTable(Di,l, Fi,]_)
(17)  foreach document d in D; do {
(18) foreach ¢ in C; do {
(19) c.support <+ c.support + Count(c, d)
(20)
(21)
(22)  F; + {c€ C;| c.support > o}
(23)}
(24)Sets - |J;{ce F; |i>1}
(25)R= 0
(26)foreach itemset I in Sets do {
(27) R+ R+{W=C|WUCelA
W is a term-set AC is a category in C}
(28)}
end

For example, Table 1 illustrates a set of rules ob-
tained as a result of association rule mining algo-
rithms.

net A profit = earn

agriculture A department A grain = corn

assistance A bank A england A market A money = interest

acute A coronary A function A left A ventricular = myocardial-infarction
ambulatory A ischemia A myocardial = coronary-disease

antiarrhythmic A effects = arrhythmia

Table 1: Examples of association rules composing the
classifier.

The rules that are generated by the system must
have a higher confidence than a certain threshold. In
our case we set the threshold to 70% because the
higher confidence the stronger the rules. As it can be
observed, the antecedent of the rule contains k words,
where k words represent a frequent k-itemset that was
found applying association rule mining. The conse-
quent of the rules are represented by the categories
that are associated with the corresponding k-itemsets.
Although the rules are similar to those produced using
a rule-based induced system, the approach is differ-
ent. In addition, the number of words belonging to
the antecedent could be large, while in some studies
with rule-based induced systems, the rules generated
have only one or a pair of words as antecedent [2].

3.2 Classifying a new document

The association-rule-based text categorizer is a set of
rules that assigns a category to a document if a set
of terms occur in the document. It is common that
more than one rule would reinforce the assignment of
one document to a class label. Should a document be-
long to more than one category, many rules with dif-
ferent consequents (i.e. category attached) could be
found, for instance “I7 = ¢;” and “T> = cJ” where
T and T» are term-sets from the document in ques-
tion. A problem arises when we have too many rules
assigning too many categories to a document and we
want to limit the number of category assignments per
document. To solve this problem, we introduce the
notion of dominance factor. The dominance factor §
is the proportion of rules of the most dominant cate-
gory in the applicable rules for a document to classify.
Given a document to classify, the terms in the doc-
ument would yield a list of applicable rules. If the
applicable rules are grouped by category in their con-
sequent part and the groups are ordered by number
of rules, the ordered groups would indicate the most
significant categories that should be attached to the
document to be classified. We call this order category
dominance, hence the dominance factor §. The dom-
inance factor allows us to select among the candidate
categories only the most significant. When § is set
to a certain percentage, only the categories that have
enough applicable rules representing that percentage
of the number of rules applicable for the most dom-
inant category are selected. For example, if § = 0%
all categories that have applicable rules are selected.
If § = 100%, only the most dominant category is se-
lected. More than one category could be selected if
the top categories have the same number of applicable
rules. When § = 50%, only the categories that have
the number of applicable rules representing at least
50% of the number of rules of the dominant category
are selected. The dominance factor allows adjusting
the number of category labels we can assign a docu-
ment.

4 Experiments with well-known Collection

In order to be able to objectively evaluate our al-
gorithm vis-a-vis other approaches, like other re-
searchers in the field of automatic text categoriza-
tion, we used the Reuters-21578 text collection [17]
and OHSUMED collection as benchmarks. These two
databases are described below.

Text collections for experiments are usually split
into two parts: one part for training or building
the classifier and a second part for testing the ef-
fectiveness of the system. There exists many splits
of the Reuters collection and we chose to use the
“ModApte” version. This split leads to a corpus of
12,202 documents consisting of 9,603 training docu-
ments and 3,299 testing documents. There are 135
topics to which documents are assigned. However,
only 93 of them have more that one document in the
training set and 82% of the categories have less than
100 documents [22]. Obviously, the performances in
the categories with just a few documents would be
very low, especially for those that do not even have a
document in the training set. Among the documents
there are some that have no topic assigned to them.
We chose to ignore such documents since no knowl-
edge can be derived from them. Finally we decided
to test our classifiers on the ten most populated cat-



CAHI | CNAHI
Category assigned by automated system a b
Category not assigned by automated system c d

Table 2: Contingency table where CAHI stands for
Category assigned by human indexer and CNAHI
stands for Category not assigned by human indexer.

egories, categories with the largest number of docu-
ments assigned to them in the training set (See Table
3 for the categories). Other researchers have used the
same strategy [19], which constrained us to do the
same for the sake of comparison. By retaining only
the ten most populated categories we had 6488 train-
ing documents and 2545 testing documents. On these
documents we performed stopword elimination but no
stemming.

The other collection used in our experiments is the
OHSUMED text collection, which was compiled by
William Hersh. This collection was developed at the
Oregon Health Science University and it is available
online at ftp://medir.ohsu.edu/pub/ohsumed. With
a corpus of 348,543 records that have MeSH categories
assigned, it consists of Medline records form the years
1987 to 1991. MeSH categories represent human-
assigned terms to each record from the Medical Sub-
ject Headings (MeSH) vocabulary. From the 348,543
records, only 233,445 of them have abstract. We used
in our experiments only those 233,445 records that
have both title and abstract. We conducted two ma-
jor experiments on this data collection. First, we
used all the 233,445 documents. The training/testing
split used was the same as that reported by other
researchers in the literature: the documents from the
first four years (183,229) were used for training, while
those from 1991 (50,216) are considered for testing.
For comparison reasons, we focused in this study on
the Heart Disease sub-tree of the Cardiovascular Dis-
eases tree as other researchers reported in their work
[11, 9, 18]. The Heart Disease sub-tree contains 119
categories, but due to the variance in frequency of
these categories, we used only those categories that
had at least 75 documents per category. This new
pruning led us to the use of 49 categories out of 119.

On these data sets we tested our two classifiers
ARC-BC and ARC-AC. Several measurements have
been used in previous studies for evaluation. Some
measures, as well as those used in our evaluation, can
be defined in terms of precision and recall. The for-
mulas for precision and recall are given below:

recall (R) = a/(a+ c¢) ; precision (P) = a/(a +b).
The terms used to express precision and recall are
given in the contingency table Table 2.

For evaluating the effectiveness of our system, we
used the F1 measure and breakeven points. F1 mea-
sure is a particular case of the Fjg measure introduced
by van Rijsbergen in 1979. This measure is a com-
bination of precision (P) and recall (R) and has the
following formula:

2+1)xPxR

Fs = (ﬁﬁ—gx)iP—}-R

F1 measure is obtained when g equals 1. The
breakeven point is the point at which precision equals
recall. Because we work with many categories and be-
cause of comparison reasons we’ll compute a macroav-
erage among the categories. We compute F1 measure
for each category separately and then compute the
mean of these results.

To evaluate the performance of our text catego-
rization algorithms we used the precision, recall and

F} measure. F| measure combines precision and re-

call as follows: F1(p,r) = ?;‘f‘rg, where p=precision

and r=recall [19]. Table 3 shows a comparison be-
tween our ARC-BC classifier and other well known
methods. The measure used is the precision/recall-
breakeven point on the ten most frequent Reuters
categories and macroaveraging performance over all
categories. The measures for Bayes, Rocchio, C4.5,
k-NN and SVM were obtained from [8]. While our
method does not outperform most of the other ap-
proaches on this particular Reuters collection, the re-
sults are nevertheless quite similar. The results were
poor for ‘corn’ and ‘wheat’ categories. While for both
of these categories the precision was very high, in the
order of 95%, the recall was particularly low. This is
due to a significant overlap between these two cate-
gories. We have not reported the results of ARC-AC
in the table because the precision was only 76% on
average. This is due to the fact that the Reuters col-
lection is not uniformly distributed. The categories
that didn’t have enough documents assigned to them
in the training set were disadvantaged by our algo-
rithm since the terms didn’t have enough support to
exceed the minimum support threshold of the associ-
ation rule mining algorithm. We intend to improve
this drawback by adding in the association rule min-
ing process of ARC-AC some partial and relative sup-
port thresholds that automatically adapt to the size
of the categories. This would avoid dropping terms
that have low global support but are actually good
class discriminators.

To control our classifiers’ compliance to assign
multiple categories to documents we have used the
dominance factor and we have varied this factor from
0% to 100%, 0 meaning total compliance and assign-
ing all applicable categories, and 100 meaning re-
stricted compliance and assigning only the dominant
category. The dominance of a category is in the sense
of number of applicable rules. Table 4 shows the re-
sults in F; measure for the 10 most populated cat-
egories with dominance factor 0%, 10%, 25%, 50%,
75% and 100%. One can observe that the perfor-
mance decreases as the dominance factor is reduced.
This is due to the fact that for every document in the
testing set there are often too many applicable rules
found by the classifier. If the dominance factor is too
low, all applicable rules are used and the document
ends up categorized in too many categories leading to
a low recall. Selecting the categories with the most
supported rules but setting the dominance factor to
a high level guaranties a higher precision and recall.
This problem could be lessened by carefully pruning
the association using rule interestingness measures.
Good interestingness measures in the context of as-
sociation rules from textual document are yet to be
determined.

While the training time, and even often the test-
ing time, can be very significant for many well-known
categorizers, it is important to note that the train-
ing for our categorizers is very fast. The training
time for our algorithms is in the order of 3 to 4 min-
utes for the whole Reuters collection depending upon
the parameters used. For instance, with a support
threshold set to 10% the training of ARC-BC takes
215 seconds on average. The experiments were per-
formed on a PentiumIII 800MHz dual processor ma-
chine running Linux. Figure 5 shows the training time
as function of the minimum support threshold used to
prune the term-sets and the testing time in the same
coordinates. The smaller the support threshold, the
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Categories 0% 10% 25% 50% 75%  100%
acq 45.6 74.8 85.2 90.6 90.9 92.2
corn 4.6 11.7 22.7 35.3 47.7 50.3
crude 14.0 23.7 36.0 61.8 77.9 86.6
earn 62.3 68.1 78.0 90.3 94.2 96.1
grain 12.3 36.3 68.8 75.6 11.0 56.8
interest 9.9 19.8 33.1 51.5 65.2 75.7
money — fzx 13.7 26.8 40.6 56.0 64.9 79.5
ship 7.0 17.5 38.3 66.1 66.3 70.8
trade 9.3 18.9 31.0 48.2 63.6 76.2
wheat 6.0 17.4 36.7 52.0 25.5 45.2

MacroAvg. 18.47 31.50 47.04 62.74 60.72 72.94

Table 4: F; measure on the ten most populated
Reuters categories with a variable dominance factor.
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Figure 4: Precision versus the Minimum Support
Threshold.

larger the number of frequent itemset discovered and
the more time it takes to generate the rules. Figure
4 depicts the variation of the precision the support
threshold. We can see that as the support threshold
decreases, the precision improves. However, there is
a trade-of between precision and training time at the
10% and 5% point. With a support threshold set to
5% the training time reaches 8 minutes on the Reuters
collection.

With the OHSUMED collection, our algorithm
ARC-BC outperformed the Rocchio classifier (29%)
and approximately equaled the neural network clas-
sifiers at 40% as reported in the literature by [18].
However, the results were lower than exponentiated
gradient (EQG) algorithm (50%) and Widrow-Hoff al-
gorithm (55%) also reported by [18].

5 Conclusion and Future Work

This paper introduced the use of association rules in
text categorization. Our study provides evidence that
association rule mining can be used for the construc-
tion of fast and effective classifiers for automatic text
categorization. We have presented two algorithms for
building the classifier: the first considering categories
one at a time, ARC-BC, and the second, ARC-AC,
treats the training set as a whole. Both algorithms as-
sume a transaction-based model for the training doc-
ument set.

The experimental results show that the
association-rule-based classifier = performs well
and its effectiveness is comparable to most well-
known text classifiers. One major advantage of the
association-rule-based classifier is its relatively fast
training time. Moreover, the rules generated are
understandable and can easily be manually updated
or adjusted if necessary. The maintenance of the

classifier is straight forward. In the case of ARC-BC,
when new documents are presented for retraining,
only the concerned categories are adjusted and the
rules could be incrementally updated.

The experimental results also showed that our
association-rule-based text categorizer performed
better for those categories that are non-overlapping.
The introduction of the dominance factor ¢ allowed
to enhance the for those categories that overlap. Cur-
rently, ARC-BC provides a combination of local clas-
sifiers and ARC-AC a global classifier that could weed
out relevant terms inadvertently. We are in the pro-
cess of improving ARC-AC by introducing the no-
tion of relative support, a support that adapts to the
category at hand rather than a global and univer-
sal support threshold. Currently the rules discovered
consider the presence of terms in documents to cate-
gorize. We are also studying possibilities to take into
account the absence of terms in the classification rules
as well.

This study demonstrates how promising
association-rule-based categorizers could be. We are
testing our categorizers on different collections and
we intend to study the effectiveness of our algorithms
with image collections. Moreover, we plan to enhance
our algorithm to handle multi-level association rules
in order to categorize text documents with categories
defined over a given ontology.
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