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Summary 
 

Text classification is the process to classify the unlabeled data with the use of 
labeled data. Different methodologies exist for this text classification that uses labeled 
data to classify unlabeled data. This paper presents use of Latent Semantic Indexing (LSI) 
for text classification. The key of this paper is to improve classification accuracy by 
incorporating unlabeled data and other forms of background knowledge to collection of 
existing labeled data. Classification process that uses background knowledge and LSI as 
a classification tool achieves wider semantic space that was unreachable with the labeled 
data alone. Results of methodology that uses LSI with and without the inclusion of back-
ground text are plotted and compared. Results are compared with other classification 
process that also incorporates unlabeled data and background text. 
 
Why classification is needed? 
Classification process is to classify any unlabeled data with the use of available labeled 
data. Need of using classification process is because of large availability of inexpensive 
unlabeled data compare to expensive and scarcity of labeled data. On the other hand it is 
tedious and expensive to label unlabeled data with existing classification methodologies. 
LSI is the methodology that can classify large amount of unlabeled data with the help of 
small-labeled data and background knowledge.  
 
Why background knowledge is incorporated? 
By incorporating background knowledge, first they (background knowledge) are 
classified using existing labeled data with LSI tool. This background knowledge is now 
added to the original labeled data (training data-documents) and new classifier is formed. 
This new classifier is then used as the basis for labeling new unlabeled data. This is 
iterative process that helps to improve the new class formed that contains the words that 
even did not occur in the training examples (documents). Iterative process also provides 
richer and more reliable patterns for data in the given domain. 
 
Why LSI as a classification tool? 
LSI is the classification tool that neither classifies the background knowledge nor it 
directly compares to any training examples or test examples. LSI is an automatic method 
that re-describes the textual data in a new smaller semantic space. LSI assumes there 
exists an underlying semantic structure among the training examples (documents) and 
terms in a corpus. LSI places documents that appear related in close proximity in the new 
space. Now to classify any unlabeled data, unlabeled data (query) is run using LSI. LSI 
places this test example in newly created semantic space close to those documents which 
are semantically related to it. Compute distance between unlabeled data in new semantic 
space with other classes and highest score class is used to classify this unlabeled data. 
 
 
 
 
 
 



 
 
Explanation of LSI: 
 
LSI is the retrieval strategy uses Matrix Computation as a basis. All other strategy 
directly matches key words. Since the same concept can be described using many 
different keywords, this type of matching is prone to failure. People used same query for 
same concept only 20% of time. Goal is to represent the underlying semantics of 
documents rather than matching keywords. LSI uses Singular Value Decomposition to 
capture this semantic structure. This filters noise found in a document, such that two 
documents that have the same semantic concepts are located close to one-another in a 
multi-dimensional space.  
 
Three major advantages of using the LSI representation with the following labels: 
synonymy, polysemy and term dependence.  
 
Synonymy: Synonymy refers to the fact that the same underlying concept can be 
described using different terms. Traditional retrieval strategies have trouble discovering 
documents on the same topic that use a different vocabulary. In LSI, the concept in 
question as well as all documents that are related to it are all likely to be represented by a 
similar weighted combination of indexing variables. 
 
Polysemy: Polysemy describes words that have more than one meaning, which is 
common property of language. Large numbers of polysemous words in the query can 
reduce the precision of a search significantly. By using a reduced representation in LSI, 
one hopes to remove some "noise" from the data, which could be described as rare and 
less important usages of certain terms. (however that this would work only when the real 
meaning is close to the average meaning. Since the LSI term vector is just a weighted 
average of the different meanings of the term, when the real meaning differs from the 
average meaning, LSI may actually reduce the quality of the search). 
 
Term Dependence: The traditional vector space model assumes term independence and 
terms serve as the orthogonal basis vectors of the vector space. Since there are strong 
associations between terms in language, this assumption is never satisfied. While term 
independence represents the most reasonable first-order approximation, it should be 
possible to obtain improved performance by using term associations in the retrieval 
process. Adding common phrases as search items is a simple application of this approach. 
On the other hand, the LSI factors are orthogonal by definition, and terms are positioned 
in the reduced space in a way that reflects the correlations in their use across documents. 
It is very difficult to take advantage of term associations without dramatically increasing 
the computational requirements of the retrieval problem. While the LSI solution is 
difficult to compute for large collections, it need only be constructed once for the entire 
collection and performance at retrieval time is not affected.  
 
LSI process is really straight forward. 



A term-document matrix is constructed such that location (i, j) indicates the number of 
times the term i appears in document j. 
A SVD of this matrix is computed. 

 
Steps to the SVD of the matrix A Є Rmxn: 
 
1. Find the eigen values of the matrix ATA and arrange them in descending order. 
2. Find the number of nonzero eigen values of the matrix ATA. 
3. Find the orthogonal eigenvectors of the matrix ATA corresponding to the obtained 
eigenvalues and arrange them in the same order to form the column-vectors of the matrix 
V Є Rnxn 

4. Form a diagonal matrix ∑ Є Rmxn placing on the leading diagonal of it the square roots 
σi=√λi of   eigenvalues found of the matrix ATA in descending order 
5. Find the column vectors of the matrix U Є Rmxm: 
 ui = σi-1 A Vi (i = 1:r) 
6. Add to the matrix U the rest of the column vectors using the Gram-Schmidt 
orthogonalization process  
7. A = U∑VT 

 
In U∑VT, ∑ is a diagonal matrix and values in ∑ are referred to as singular values. Select 
top k sorted singular values and set all other values to zero and corresponding columns of 
U and rows of VT are deleted. Top k values are used as a means of developing a “latent 
semantic” representation. Prior work shows that smaller values of k (100-300) achieve 
effective results. New matrix after limiting value of k is the product of simplified three 
matrices A` = U2∑2V2

T 

New matrix represents original relationship as a set of k orthogonal factors. Each factor is 
a linearly independent concept and can be considered as a means of combining meanings 
of different terms and documents. Training examples (documents) are re-expressed in 
same semantic space (using these factors). Query (here unlabeled data) is represented in 
same space by treating query as document vector. It is done by multiplying the transpose 
of term vector of query (qT) with U2∑2

-1, (qTU2∑2
-1). 

Find distances between query and documents those are represented in same semantic 
space using cosine metric, which are similarity measures between documents and query. 
Relevant documents to query are those documents, which are having higher cosine 
distance value than some cutoff point. This is how LSI works.  
 
LSI for Text Classification: 
 
Single example to be labeled (classified) is judged by LSI methodology similar to a range 
of different training examples. And labeling is done according to how different 
documents vote for the label of new example. Result of LSI can be looked at as a table of 
different tuples (train-example, train-class, cosine-distance) with one line for each 
training example of training (document) collection. Combine score of all training 
examples of each class to get score of each class for new example.  
Cohen and Hirsh used noisy-or operation to get one similarity value per class for given 
new example to be labeled. 



Final score for single class is given by 
1 - n∏i=1 (1-si) where, { s1, s2, …, sn} are scores of all documents of one class. 
Final scores of all classes is sorted and the class with highest score for given unlabeled 
data is used to classify it. 
This way LSI is used in text – classification. 
 
Incorporating background knowledge: 
 
LSI is used in text classification as explained above. But incorporation of background 
knowledge is more helpful in classification. Fist this background knowledge that is 
easily available and inexpensive is classified using available labeled data and 
classification tool LSI. This classified background knowledge is incorporated to the 
original training examples. Now new unlabeled data could be classified with the help of 
these new classifier formed by incorporating background text.  
For this first term-by-document matrix is formed for all training examples and classified 
background knowledge. LSI is run on this term-by-document matrix and SVD of this 
matrix is computed and original relationship is expressed as a set of top k orthogonal 
factors. This new term-by-document matrix is a model of the space that was 
unobtainable with the training examples alone. The larger matrix contains words those 
even did not occur in the training examples at all. It also provides richer and more 
reliable patterns for data in the given domain. 
Now new test example (unlabeled data) to be labeled is re-described in the new space 
created above using LSI. Voting of each training example to label unlabeled data is 
computed as distance (score) in the space. Using operation (Cohen Hirsh noisy-or 
operation) that is described above score of each class to label unlabeled data is 
computed. Class with highest score is used to classify this unlabeled data. 
 
It is important to for the background knowledge to be similar in content to the original 
training set that it is combined with. If the background knowledge is totally unrelated to 
the training corpus then features would be unrelated to the actual classification task 
though LSI might successfully model the background knowledge. Because in that case 
documents (training examples) might stay far away though they are semantically similar 
in the multi dimensional space. 
 
Example: 
 
Consider collection originally contains training examples on car and related. Now 
background knowledge (unlabeled data) those contains data on automobile is 
incorporated. First data on automobile is classified using existing collection of training 
examples with LSI classification tool. LSI is run on this background knowledge and 
existing training examples and distances between different classes and background 
knowledge is found. Class with highest similarity is used to classify this background 
knowledge. Here, this class will be the class of automobile that is used to classify data on 
automobile. Now this background knowledge is treated as training examples of 
automobile class and incorporated into existing collection of documents.  
 



Now when query car repairing is run with newly formed collection it could retrieve 
documents those even don’t contain the term car but related to query semantically (may 
contain automobile repairing place) and thus serve the purpose of adding background text 
using LSI.  
 
Thus, for text classification incorporation of background knowledge is a good 
technique to expose to a large semantic collection. And for this classification use of 
LSI dramatically increases the semantic representation of new collection. That’s 
why use of LSI for incorporation of background knowledge is the best classification 
tool compared to other tools because its places the background knowledge at proper 
place (in proper class) in existing collection close to semantically similar documents 
more efficiently. 
 
What is data set? 
They apply LSI tool to classify the input data set . This data set is same as previously 
used on text classification in the presence of background text. The purpose of using the 
same data set is that so that they can compare the result that obtain with this LSI tool with 
background knowledge with the other alternative classification tool. 
 
How this data set is used for experiments? 
The graph plotted for different percent of data vs. accuracy for both LSI without 
background knowledge and with background knowledge. For each run they took one fifth 
of the total data as test example and one fourth of the total data as training example now 
they make the test example constant and increase the percent of the training example and 
plot the graph for 20 ,40, 60, 80, 100 percent of data. 
 
This data set is categorized in to four different categories. 

1. Technical papers 
2. Web page titles 
3. WebKB 
4. Newsgroups 
 

Technical papers: 
 
This data set contains the categories related to technical papers. They created a data set 
from the physic paper archives. They took all the title of the paper that contain the 
information about astrophysics as well as condensed matter by downloading and put the 
abstract of all these papers as a background text by downloading them without their label. 
By doing this approach has no more direct access to this background. 
 
 



Fig1: LSI and LSI-bg for the two-class paper title problem  
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Webpage titles: 
 
They took this data set from the NetVet site that contain the web page title of hourse, 
cow, birds, cats, etc. Now each of this title had a URL link they took this link that 
pointing to another page as background knowledge by incorporating the first 100 words  
from that page. Note: The URLs that were not reachable were ignored by program that 
has created the background knowledge database. 
 
Fig 2: LSI and LSI-bg for the NetVet problem 
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WebKB: 



This data set contain the information about the web pages from the computer science 
department but they have selected only the class named student, project, faculty and 
project. For this set the background knowledge is totally unlabeled and for optimization 
for EM technique they took only first 300 words as a back ground knowledge. 
 
Fig 3: Evaluation of results for WebKB four class problem 
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20 News groups: 
This data set contains the articles from the 20 different newsgroups. The latest 4000 
articles are added as the training examples and random 10000 are used as a background 
text. 
 
Fig 4: LSI and LSI-bg for the 20 Newsgroups problem 
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Comparison of the result that obtained by running LSI tool with above data set and the 
data set that do not have any in corporate background knowledge in it. 
 
Fig: 1 and Fig: 2 shows Results for Physical data and NetVet Data. Results for both 
shows accuracy using LSI- bg changed very little as can seen by the flatness of line. This 
lead to believed that background knowledge compensates for the limited training data. In 
each case reduction of error increased as training the training set size decreased. 
 
Fig: 3 shows LSI-bg only outperform LSI on small training sets. LSI-bg degrade as 
training class size grown compare with LSI without background text. It might because of 
the incorporating optimized background knowledge that is for EM but not clear whether 
it works for LSI or not. 
 
Fig: 4  shows that increment in training set size does not degrade in accuracy. LSI 
without background knowledge perform extremely poor.  
 
Comparison of result of the LSI tool with the alternative tool EM both having same 
data sets.  
EM is Expectation maximization techniques that use probabilistic method and iterative 
approach. Disadvantages of EM are  
1. It requires much more computation than more standard techniques. 
2. The chief disadvantage of EM is slow convergence. 
3. EM algorithm might converge to local optima of the cost function 
 
 
Fig 5: Comparison LSI with EM for Physical Data 
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Fig 6: Comparison LSI with EM for WebKB 
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On the Physics data and WebKB data, EM is far superior in all cases. 
For Physics Data Zelikovitz and Hirsh showed that in this domain the simple process of 
labeling the background text using the training data and then adding the resulting data to 
the training data without any further processing, gets extremely high accuracy as well. 
 
 
Fig 7: Comparison LSI with EM for NetVet Data 
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Fig 8: Comparison LSI with EM for 20 Newsgroups 
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For small data set in both the NetVet domain and 20 Newsgroups domain, LSI-bg 
outperforms EM.  As more training examples are added to these problems LSI-bg does 
not perform as well. This phenomenon occurs mostly in all data set. 
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