
Topic Difference Factor Extraction between Two 
Document Sets and its Application to Text Categorization 

Takahiko Kawatani 
Hewlett-Packard Labs Japan 

3-8-13, Takaido-Higashi, Suginami-Ku, Tokyo, 168-0072 Japan 

takahiko_kawatani@hp.com 
 

ABSTRACT 
To improve performance in text categorization, it is 
important to extract distinctive features for each class. This 
paper proposes topic difference factor analysis (TDFA) as a 
method to extract projection axes that reflect topic 
differences between two document sets. Suppose all 
sentence vectors that compose each document are projected 
onto projection axes. TDFA obtains the axes that maximize 
the ratio between the document sets as to the sum of 
squared projections by solving a generalized eigenvalue 
problem. The axes are called topic difference factors 
(TDF’s). By applying TDFA to the document set that 
belongs to a given class and a set of documents that is 
misclassified as belonging to that class by an existent 
classifier, we can obtain features that take large values in 
the given class but small ones in other classes, as well as 
features that take large values in other classes but small 
ones in the given class. A classifier was constructed 
applying the above features to complement the kNN 
classifier. As the results, the micro-averaged F1 measure for 
Reuters-21578 improved from 83.69 to 87.27%. 

Categories & Subject Descriptors: H.3.m 
[Miscellaneous]. 

General Terms: Algorithms, Experimentation, 
Performance. 

1. INTRODUCTION 
Recently text categorization research has become more and 
more popular. According to Yang’s comparative study of 
classifiers [1], k nearest neighbors (kNN)[1,2,3], support 
vector machines (SVM)[1,4], and Linear Least Squares Fit 
(LLSF)[5] outperform other methods proposed so far. 
Adaboost also achieves high performance [6]. However, 
because these methods have been studied in depth, 

increasing performance by improving individual methods 
seems difficult. A new approach is necessary. 
Every classifier has information about document classes, 
and compares it with an input document. We call this 
information the class model. The class model is the average 
vector of documents belonging to the same class in 
Rocchio’s model [7], the set of documents belonging to the 
same class in kNN, and a set of simple hypotheses in 
Adaboost. The class model needs to be precise to enable 
high performance. However, many classifiers, even precise 
class models, do not consider class-model overlapping. In 
most classifiers the class model of a certain class shares 
information with other classes. If an overlap exits in class 
models, unnecessary likelihood can be generated for classes 
an input document does not belong to. Therefore, class-
model overlapping may cause misclassification. To prevent 
misclassification, a class model should be described using 
each class’s distinctive information so that class model 
overlapping is reduced. 
This paper focuses on this issue. To clarify each class’s 
distinctive information, it is essential to extract features that 
reflect differences between a document set of a given class 
and a document set that belongs to other classes. 
First, this paper proposes a method to extract projection 
axes that reflect topic differences between two document 
sets. Suppose that each document is represented as a set of 
sentence vectors, whose components represent frequency 
related values of corresponding terms, and that all sentence 
vectors are projected onto projection axes. The projection 
axes are obtained so that the ratio between the document 
sets as to the sum of the squared projections is maximized. 
By projecting the sentence vectors onto the projection axes, 
we can obtain the features that take large values in one 
document set but small ones in the other. Here, a feature 
denotes a linear combination of terms. Since the projection 
axis reflects the topic difference between the document sets, 
we call it a topic difference factor (TDF), and the method 
topic-difference-factor analysis (TDFA). By applying 
TDFA to text categorization, we can obtain features that 
take large values in a given class but small ones in other 
classes, and features take small values in the given class but 
large ones in other classes. This paper proposes a 
classification scheme that applies the features in a 
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complementary classifier to an existent one. The proposed 
complementary classifier corrects the likelihood scores of 
an input document that are assigned to each class by an 
existent classifier. 
The rest of this paper is organized as follows. Section 2 
describes how TDF’s are obtained and how TDFA is 
interpreted. What TDF’s are obtained is also illustrated for 
simple examples of sentence vectors. Section 3 shows how 
TDF’s are obtained for the complementary classifier and 
how likelihood scores are corrected. Section 4 presents 
experimental results using Reuters-21578. They show that 
the micro averaged F1 measure was significantly improved. 
Section 5 summarizes the paper. 

2. TOPIC DIFFERENCE FACTOR (TDF)  
2.1 Approach 
We consider two document sets, D={D1,..,DM} and T={T1,.., 
TN }. Let the k-th sentence vector in document Dm and Tn be 
dmk (k=1,..,KD(m)) and tnk(k=1,..,KT(n)), respectively. Here, 
let αααα be the projection axis to be obtained. We assume 
||αααα||=1. Let PD and PT be the sums of squared projections of 
all sentence vectors in document sets D and T onto αααα, 
respectively. They are obtained as follows. That is, 
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where T denotes transpose, and SD and ST are the matrices 
defined by 
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We call these matrices square sum matrices. The matrix 
divided by the number of sentences is the so-called 
autocorrelation matrix. Let J(αααα) be a criterion function 
which represents how strongly the differences between the 
document sets D and T are reflected on αααα. We define J(αααα) 
as  
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Since the sum of squared projections of all sentence vectors 
onto the αααα that maximizes J(αααα) should be large for 
document set D and small for T, the αααα reflects information 
that appears frequently in document set D but rarely in T. In 
other words, it reflects distinctive information that should 
exist in document set D. Therefore, we call such an αααα the 
positive topic difference factor (P-TDF) of document set D. 
Criterion function J(αααα) has the same form as that in linear 
discriminant analysis[8,10]. As in linear discriminant 

analysis, plural α α α α ’s are obtained as the eigenvectors of the 
following generalized eigenvalue problem. 

αααααααα TD SS λ= .   (6) 

 Alternatively, α α α α ’s can be expressed as the eigenvectors of 
ST

-1 SD. 

Let ββββ be another projection axis to be obtained. When J(ββββ) 
is defined as  
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information that appears frequently in document set T but 
rarely in D is reflected on the ββββ that maximizes J(ββββ). The β β β β  
becomes the P-TDF of document set T. We also call the 
β β β β the negative topic difference factor (N-TDF) of document 
set D. In this case, plural β β β β ’s are obtained as the 
eigenvectors of the following generalized eigenvalue 
problem. 

βSβS DT λ= .   (8) 

In Eqs.(1) and (2), dmk and tnk might be replaced by their 
normalized forms, mkmkmk ddd /ˆ =  and nknknk ttt /ˆ = , 
respectively, to prevent influence from sentence-length 
variance. In this case, criterion J(αααα) or J(ββββ) represents the 
ratio between the document sets as to the sum of the 
squared cosine similarities of αααα or    β β β β with all sentence 
vectors. 

2.2 Interpretation 
We consider the case of Eq.(6). Let λi and ααααi be the i-th 
eigenvalue and eigenvector, respectively. Since 
λi=ααααi

TSDααααi/ααααi
TSTααααi, λi represents the value of J(ααααi). It is 

known that the eigenvectors of Eq.(6) can be acquired in a 
two-stage procedure, and that the matrices SD and ST are 
diagonalized simultaneously[9].  

Let ρj and φφφφj be the j-th eigenvalue and eigenvector of ST, 
respectively. The sum of the squared projections of all 
sentence vectors in document set T onto φφφφ1 is greater than 
that onto any other vector, and λ1 represents the sum of the 
squared projections onto φφφφ1. The φφφφ2 gives the largest sum of 
the squared projections of all sentence vectors under the 
constraint that φφφφ2 is orthogonal to φφφφ1, and λ2 represents the 
sum of the squared projections onto φφφφ2. The same 
relationship holds for the higher order eigenvectors. 
Suppose a sentence vector dmk in document set D be 
mapped into vector ymk in space Y. The j-th component of 
ymk is given by 

jmk
T

jmkjy ρ/dφφφφ= .   (9) 

138



The eigenvectors of the squared sum matrix of document 
set D in space Y correspond to αααα    ’s in the original space. 
That is, the principal components of document set D in 
space Y correspond to αααα    ’s. 

On mapping to space Y, the inner product between φφφφj and 
dmk is divided by the square root of ρj as shown in Eq.(9). 
This means that document set D in space Y is compressed in 
the directions of the φφφφj’s with large eigenvalues, and 
expanded in those with small eigenvalues. For the principal 
components of the scaled document set D in space Y, 
consequently, the directions of the principal components of 
document set T become less dominant, and the sum of 
squared projections of all sentence vectors on αααα becomes 
large for document set D and small for T. If dmk describes 
the content that document set T does not include but D does, 
∑ =

L
i i

T
mk1

2)( ααααd takes a large value. The value of L should 
be determined experimentally.  

2.3 Regularization 
We consider the case of Eq.(6) again. For eigenvectors to 
be obtained in Eq.(6), matrix ST must be regular. When the 
number of sample sentence vectors is less than the 
dimension of the vectors, or when a certain pair of terms 
always co-occurs, matrix ST is actually not regular. In these 
cases, matrix ST must be regularized. Regularization can be 
achieved by biasing diagonal components as follows 
[10,12]. 

ITT
2ˆ σ+= SS ,   (10) 

where σ2 and I are a bias parameter and the identity matrix, 
respectively. 

The meaning of Eq. (10) is as follows. Suppose that every 
term has a vector with the same dimension as the sentence 
vector and that value σ is given only to the component that 
corresponds to each term. Let ul be the l-th term vector. 
Since ,2IT

l ll σ=∑ uu adding σ 2 to all diagonal 
components is equivalent to adding all term vectors to 
document set T. As mentioned above, the eigenvectors of ST 
are the projection axes that maximize the sum of the 
squared projections of all sentence vectors in document set 
T, and the eigenvalues are the sums. Since the sum of the 
squared projections of all term vectors onto any normalized 
vector is always σ 2, in this case, the eigenvectors of ST do 
not change by adding all term vectors to document set T. 
Since the sum of squared projections of all term vectors is 
added to that of all sentence vectors, however, the 
eigenvalues of ST get biased by σ 2 and the criterion 
function also changes to 

)/()( 2σ+= TD PPJ αααα .  (11) 

Higher order eigenvalues of ST usually take very small 
values, nearly 0. Very small eigenvalues are easily affected 
by noises in document set T. Since the scaling factors for 
document set D in space Y become very large along the 
directions of higher order eigenvectors, the principal 
component of document set D easily suffer from noises in T. 
Thanks to eigenvalue biasing, those scaling factors become 
smaller and noise influence can be reduced. 

2.4 Example 
This section illustrates what TDF’s are obtained for simple 
examples. Suppose that four 5-dimensional sentence vectors 
are given in document set D and T as shown in Table 1. The 
n-th component in the vectors is supposed to represent the 
existence of term n. Let D-m or T-m represent the m-th 
sentence vector in document set D or T. The differences and 
similarities between the document sets D and T are as 
follows. 

• Term 5 does not occur in document set T, but it occurs in 
D-1. 

• In document set D, term 2 co-occurs with term 3 in D-3, 
and term 1 with term 4 in D-4. 

• In document set T, term 1 co-occurs with term 3 in T-3 
and term 2 with term 4 in T-4. 

• In both document sets, term 1 co-occurs with term 2 in 
D-1 and T-1, and term 3 with term 4 in D-2 and T-2. 

The TDF’s were obtained by setting σ 2 at 0.1. Table 2 
shows eigenvalue λn (n=1,..5) and eigenvector 
ααααn=(αn1,.., αn5) (n=1,..5) of Eq.(6) as P-TDF’s of document 
set D. Table 3 shows eigenvalues µn (n=1,..5) and 
eigenvector ββββn=(βn1,.., βn5) (n=1,..5) of Eq.(8) as N-TDF’s 
of document set D. In Table 2 and 3, ααααn or ββββn is normalized 
so that ααααn

TSDααααn=λn or ββββn
TSTββββn=µn. Consequently, the 

dynamic range of the squared inner products between 
sentence vectors and TDF get larger for lower order PDF. 
This normalization means weighting according to the 
degree of topic differences reflected on each eigenvector. 
This normalization was applied in the experiments. Table 4 
shows the projections of each sentence vector onto both the 
first and the second eigenvector.  

From these results the following can be noted. 

(1) For the first eigenvector, αααα1, shown in Table 2, both 
α11 and α14 take negative values, and both α12 and α13 
positive values. This shows that αααα1 reflects the term co-
occurrence between 1 and 4 and the one between 2 and 
3 in document set D , so the projections of D-3 and D-4 
onto αααα1 have large absolute values with different signs, 
and the projections of any other sentence vectors take 
zero, as shown in Table 4 . 
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(2) For the second eigenvector αααα2 shown in Table 2, only 
α25 takes a large value. This shows that αααα2 reflects the 
occurrence of term 5 in document set D , so only D-1 
takes a large projection value as shown in Table 4. 

(3) Similarly, the term co-occurrence between 1 and 3 and 
that between 2 and 4 in document set T are reflected on 
ββββ1 shown in Table 3. Only projections of T-3 and T-4 
take non-zero values. 

(4) The difference between D-1 and T-1 is reflected on ββββ2, 
as shown in Table 3. The projection of T-1 takes a 
large absolute value. 

(5) In Table 2 and 3, the eigenvectors of the 3rd order or 
higher are not effective as TDF’s because the 
eigenvalues of those orders are small. 

These observations confirm that not only the term 
occurrence difference between the document sets but also 
the term co-occurrence differences are reflected on TDF’s. 
In this paper, a document is represented as a set of sentence 
vectors so that the term co-occurrence difference is 
reflected precisely on the TDF’s.  

3. APPLICATION TO TEXT 
CATEGORIZATION 
3.1 Approach 
As described in section 1, this paper does not aim at 
developing a classifier that only uses TDF’s, but at a 
classification scheme that combines an existent classifier 
with its complementary one which uses TDF’s. The reasons 
are as follows. 

(1) We define a set of documents belonging to class l as 
document set D and a set of documents belonging to 
classes other than l as document set T. If we construct a 
classifier that only uses TDF’s, we have to apply 
TDFA to the document sets. In this case, document set 
T must include all documents that are not included in D. 
As a result the number of documents in document set T 
would probably be much larger than that in D, and 
document set T would probably include many 
documents irrelevant to class l. In such a case, it is 
doubtful whether subtle differences between class l and 
documents easily confused with those in class l can be 
reflected exactly on the TDF’s. To reflect such 
subtleties , only the documents that are easily confused 
should be included in document set T. Those 
documents can be obtained by using the results of an 
existent classifier. 

(2) It is considered easier to achieve high performance by 
combining TDF-based classifier with an existent high 
performance classifier than by constructing a classifier 
using TDF’s only. 

Based on these considerations, a classification scheme was 
constructed such that the complementary classifier corrects 
likelihood scores obtained by an existent classifier. The 
existent classifier acts as the main classifier. If an input 
document has features that should appear in a given class, a 
gain is added to the likelihood score of the class in the 
complementary classifier, and if an input document has 
features that should not appear in a given class, a penalty is 
imposed. 

3.2 Complementary Classifier 
The TDF’s of class l is obtained as follows. First, all 
training documents are classified by the main classifier and 

Table 1. Sentence vectors
comprising document set D  and T .

# D T
1 11001 11000
2 00110 00110
3 01100 10100
4 10010 01010

Table 2. P-TDF's of document set D .

n λ n α n1 α n2 α n3 α n4 α n5

1 20.00 -1.58 1.58 1.58 -1.58 0.00
2 10.74 0.11 0.11 -0.04 -0.04 3.05
3 0.97 -0.01 -0.01 -0.40 -0.40 0.01
4 0.22 -0.41 -0.41 0.14 0.14 0.84
5 0.00 0.35 -0.35 0.35 -0.35 0.00

Table 3. N-TDF's of document set D .

n µ n β n1 β n2 β n3 β n4 β n5

1 20.00 1.58 -1.58 1.58 -1.58 0.00
2 2.78 -0.72 -0.72 0.23 0.23 1.31
3 0.97 0.01 0.01 -0.40 -0.40 -0.01
4 0.00 -0.25 0.25 0.25 -0.25 0.65
5 0.00 0.24 -0.24 -0.24 0.24 0.70

Table 4. Projections of each document.

text αααα 1 αααα 2 ββββ 1 ββββ 2

D-1 0.00 3.27 0.00 -0.13
D-2 0.00 -0.07 0.00 0.46
D-3 3.16 0.08 0.00 -0.49
D-4 -3.16 0.08 0.00 -0.49
T-1 0.00 0.22 0.00 -1.44
T-2 0.00 -0.07 0.00 0.46
T-3 0.00 0.08 3.16 -0.49
T-4 0.00 0.08 -3.16 -0.49
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the likelihood scores of each class are obtained. Let γ be a 
threshold given for each class. The training documents that 
have a likelihood score of class l larger than γ are selected. 
Among the selected documents, the documents belonging to 
class l are added to document set D and the documents 
belonging to other classes to T. Every document in 
document set T is the one that has been misclassified or 
nearly misclassified as belonging to class l. We call such a 
document a competing document of class l. Document sets 
D and T are thus defined and used for solving Eq.(6) and 
(8). The P-TDF’s of class l are given by eigenvector 
{ααααn}(n=1,..,LG) of Eq.(6) and N-TDF’s by eigenvector 
{ββββn}(n=1,..,LP) of Eq.(8).  

Let g(X) and p(X) be a gain and a penalty of input 
document X for class l, respectively. Suppose document X 
is composed of a sentence vector set {x1,.., xK}. g(X) and 
p(X) can be obtained as follows. 
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where LG and LP are parameters whose values should 
optimally be determined by experiments. Let Lik(X) be the 
likelihood score of document X for class l in the main 
classifier and LikC(X) the corrected likelihood score. 
LikC(X) can be given as follows. 

LikC(X)= Lik(X) + a g(X) - b p(X),  (14) 

where a and b are positive parameters, which should be 
determined by experiments. LikC(X) is computed for 
documents that have Lik(X) larger than γ. A document with 
Lik(X) smaller than or equal to γ is not judged as belonging 
to class l under any conditions. If LikC(X) exceeds another 
threshold δ, the input document X is judged as belonging to 
class l. 

When Eqs.(12) or (13) are used as a gain or a penalty, g(X) 
or p(X) tend to take a large value for long documents. To 
reduce the influence of document-length variance, 
normalizing g(X) or p(X) by the number of sentences in 
document X might be effective. When sentence vectors are 
normalized to reduce influence from sentence-length 
variance in the TDF calculation, the normalized sentence 
vectors in document X should be used in Eqs.(12) and (13).  

4. EXPERIMENTS 
4.1 Experimental Conditions 
The experimental conditions in this paper follow Yang’s 
experiments [1] and Reuters-21578 was used. According to 
ModApte Split, the documents were selected which belong 
to classes that have at least one document in the training set 
and the test set. This resulted in 87 classes, a training set of 
7770 documents, and a test set of 3019 documents.  

For the training and the test data, sentence segmentation, 
lemmatization, replacement of uppercases by lowercases, 
replacement of all digits by “0”, removal of “-”, “/” and all 
punctuation, stop-word removal, and term selection were 
conducted as a preprocess. Sentence segmentation was 
needed since a document is represented as a set of sentence 
vectors in this paper. Ordinary documents were segmented 
by finding periods. In the corpus, however, there are many 
table-like documents where terms are spaced by the same 
interval without any punctuation. For such documents one 
line was regarded as one sentence. For the term selection, 
2500 terms were selected based on χ2 statistics[11].  

 To represent sentences as vectors, each term was weighted 
based on tf-idf. The weight of the i-th term, wi, was 
determined as follows.  

)/log()log1( iDii nNfw += ,  (15) 

where fi, ni, and ND represent the frequency of an i-th term 
in a given sentence, the number of documents including an 
i-th term and the total number of documents, respectively.  

4.2 Experimental Methods 
As the main classifier, kNN classifier [1] was used ,which 
enables high performance by using a simple algorithm. For 
a given input document, the classifier calculates similarity 
scores with each training document and then, finds k nearest 
neighbors out of the training documents. As the similarity 
measure, the cosine similarity was adopted, as it is 
commonly done. The value of k was set at 45 in accordance 
with Yang’s experiment [1]. The similarity scores with the 
documents belonging to the same class out of all k 
documents are summed up as the likelihood score of that 
class. Thus, the likelihood scores are obtained for the 
classes that the documents of k nearest neighbors belong to. 
The input document is judged as belonging to a class if the 
likelihood score of that class is larger than a threshold. The 
threshold is determined in advance for each class so that it 
maximizes the evaluation score. 

To evaluate the proposed method, the standard recall, 
precision, and F1 measure were used. Recall (r) is defined 
as the ratio of correct assignments by the classifier divided 

  Table 5. Performance comparison for Reuters-21578. 
classifier Recall Precision F 1

SVM 81.20 91.37 85.99
kNN 83.39 88.07 85.67
LSF 85.07 84.89 84.98
Nnet 78.42 87.85 82.87
NB 76.88 82.45 79.56

kNN(this paper) 81.57 85.93 83.69
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by the total number of correct assignments. Precision (p) is 
defined as the ratio of correct assignments by the classifier 
divided by the total number of classifier’s assignments. The 
F1 measure is defined as F1=2rp/(r+p). Table 5 shows the 
micro-averaged evaluation scores reported by Yang [1] for 
several well-known methods including the kNN classifier 
and those of the kNN classifier in this paper. In Table 5, 
Nnet and NB stand for neural network and naive Bayes, 
respectively. The F1 measure of the kNN result in this paper 
is 83.69%, which is inferior to that in Yang’s report by 2%. 

When LG and LP in Eqs.(12) and (13), and a and b in 
Eq.(14) were determined, the following problem occurred. 
Although these parameters should be determined using 
training data, TDF’s obtained by using training data were 
tuned to the training data. If the parameters are determined 
by using such TDF’s, the parameters would be doubly 
tuned to the training data. Evaluating test data using the 
parameters obtained in such a way is obviously 
inappropriate. To remedy this problem, cross validation was 
also conducted. The test data were divided into N blocks, 
and the parameters were determined by using N-1 blocks as 
the secondary training data and the remaining block was 
used as true test data. After running experiments N times by 
rotating the blocks, the results for each true test data were 
summed up as the results of total test data. Since the 
summed up results were not tuned to the test data, the 
results can be compared with other method’s results. 

The parameters were obtained as follows. The a and b in 
Eq.(14) were obtained by applying linear discriminant 
analysis. Threshold δ was obtained for each class to 
maximize the F1 measure. The linear discriminant analysis 
and threshold determination were conducted for every 
combination of LG with LP, each of which was restricted to 
be lower than 15. The LG and LP were determined by 
selecting the combination which gave the best results. The 
linear discriminant analysis was conducted between a 
document set and a competing document set of each class. 
The competing documents were selected by using threshold 
γ that was used in the TDF-calculation stage. For the 
analysis, a 3-dimensional vector, whose components were 
given by Lik(X), g(X) and p(X), was generated for each 
document. As a result of the linear discriminant analysis, 
the weights of Lik(X), g(X), and p(X), which optimally 
separate a document set from a competing document set of 
each class, were obtained. By dividing the weights of g(X) 
and p(X) by that of Lik(X), a and b in Eq.(14) were 
determined.  

Furthermore, the experiments confirmed that combining 
sentence vector normalization with normalizing Eqs.(12) 
and (13) by the number of sentences in an input document 
was effective. The experimental results shown in the next 
paragraph are the best ones obtained by varying the 
parameters including γ and σ2.  

 

4.3 Experimental Results 
Figure 1 shows the probability density distributions of gain 
g(X) for test documents correctly classified and 
misclassified by kNN as belonging to class “earn”. In Fig.1, 
the horizontal axis shows z=g(X) and the vertical axis the 
probability density Prob(zk), which is derived as follows. 

∑=
k kkk znznzobPr )(/)()(    (16) 

where n(zk) represents the number of documents whose g(X) 
take value zk. Similarly, Fig. 2 shows the probability density 
distributions of penalty p(X). The number of documents 
correctly classified as belonging to class “earn” is 1077 and 
the number of the misclassified documents 51. Both LG and 
LP in Eqs.(12) and (13) were set at 5. Out of all documents, 
the misclassified documents are the most difficult ones to 
separate from the documents belonging to class “earn”. As 

Figure 1. Probability density distribution of
g(x)  for correctly classified and misclassified
documents by kNN as belonging to class "earn".
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Figure 2. Probability density distribution of
p(x)  for correctly classified and misclassified
documents by kNN as belonging to class
"earn".
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shown in Figs.1 and 2, however, the misclassified 
documents are well separated though slight overlaps 
occurred.  

The effectiveness of introducing σ2 in Eq.(11) was 
investigated when cross validation was conducted. The σ2 
was set at the average of the diagonal components of ST 
multiplied by τ. Figure 3 shows the relationship between 
τ and the F1 measure when a likelihood score was corrected 
only by g(X). The N was set at 20. As the figure shows, the 
F1 measure peaks at τ=2.0. As mentioned in 2.3, αααα tends to 
be easily affected by noises in document set T if σ 2 is small. 
This is the reason why the F1 measure is small for τ<2.0. If 
σ 2 is too large, on the other hand, PT in Eq.(11) is not 
necessarily small because σ 2 becomes dominant in the 
denominator. Therefore, PD /PT may be small. This is the 
reason why the F1 measure is small for τ>2.0. 

Table 6 shows the classification results for training data and 
test data before the likelihood correction. Table 7 illustrates 
the classification results after the likelihood correction 
without cross validation. It shows the following three cases: 
(a) evaluate trainig data using parameters trained by 
training data, (b) evaluate all test data using parameters 
trained by all test data, (c) evaluate all test data using 
parameters trained by training data. When parameters were 
trained using training data, the F1 measure of training data 
significantly increased. The F1 measure, nevertheless, 
remains less than 95%. This implies that class boundaries 
are not clear between many classes.  The F1 measures of all 
test data using parameters trained by all test data, 89.33%, 
is quite different from that by training data, 85.87%. The 
former seems to be due to overtuning to test data, and the 
latter due to overtuning to training data. These F1 measures 
do not represent true performance for test data. 

Table 8 shows the classification results  based on cross 
validation for N=2, 5, 10, and 20. Table 8 shows the F1 
measures when the likelihood was corrected by either only 
g(X) or p(X), and the F1 measures, precision, and recall 
when the likelihood was corrected by both g(X) and p(X). 
These measures are micro-averaged ones. From this table, 
the following can be noted.  

• Likelihood correction by g(X) or p(X) effectively 
improves performance. 

• Likelihood correction by g(X) is more effective than 
that by p(X). This fact shows that, in each class, it is 
easier to extract features that should occur than 
features that should not occur. This is because a 
competing document set of each class is composed of 
documents belonging to various classes and because P-
TDF’s of each competing document set(N-TDF’s of 
each class) are not clear in comparison with P-TDF’s 
of each class. 

• The F1 measure improved from 83.69% obtained by 
kNN classifier alone to 87.27% when the likelihood 
was corrected by both g(X) and p(X). The score is 
significantly better than the scores of the other 
classifiers shown in Table 5. 

The averages of LG and LP were 3.0 and 1.7, respectively, 
when N was set at 20. When the dimension of sentence 
vectors was individually determined for each class by 
assigning only terms appearing in each class and its 

Figure 3. Relationship between F 1  measure
and regularization parameter.
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Table8. Performance after liklihood correction with
cross validation .

N
Lik C (X) measure 2 5 10 20

Lik(X)+ag(X) F 1 86.44 86.70 86.67 86.66
Lik(X)-bp(X) F 1 84.55 85.04 85.09 85.18
Lik(X)+ag(X) F 1 86.64 86.95 87.10 87.27

 -bp(X) Precision 90.03 90.59 91.03 91.28
Recall 83.49 83.60 83.49 83.60

Table 7. Performance after liklihood correction without
cross validation.

evaluation
data

parameter
training dsta Recall Precision F 1

a training data training data 94.15 95.06 94.60
b test data test data 85.44 93.59 89.33
c test data training data 84.74 87.02 85.87

Table 6. Performance before liklihood correction.

evaluation
data Recall Precision F 1

training data 90.69 89.02 89.85
test data 81.57 85.93 83.69
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competing document set to the vector components, the 
processing time to obtain 15 eigenvectors of Eqs.(6) or (8) 
for all classes was about 60 minutes using a workstation 
with a 120-Mhz clock. Thus, the computational cost of the 
proposed method is not high. 

5. Summary 
The objective of this paper is to extract distinctive features 
for each document class and to apply them to text 
categorization. This paper proposes Topic Difference 
Factor Analysis as a method to extract difference factors 
between two document sets by obtaining projection axes 
which maximize the ratio between the document sets as to 
the sum of squared projections of all sentence vectors. Tests 
confirmed that not only term occurrence difference between 
document sets but also term co-occurrence difference are 
reflected on the topic difference factors. By applying this 
method to document classification, we can obtain the 
features that should occur in a given class and the features 
that should not occur in the class. This paper proposes a 
classification scheme that uses the features in a 
complementary classifier to correct the likelihood of an 
input to each class of an existent classifier. By applying the 
kNN classifier as the existent one, improved the micro- 
averaged F1 measure for Reuters-21578 from 83.69 to 
87.27%.  

These experimental results prove that topic difference 
factors have been successfully extracted. This paper, 
however, has not shown what the topic difference factors 
are for each class. Interpreting topic difference factors is an 
important remaining problem. TDFA has many possible 
applications, and the interpretation will be important for 
new applications. 
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