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Abstract

The field of automatic Text Categorization (TC) concerns the creation of cat-

egorizer functions, usually involving Machine Learning techniques, to assign

labels from a pre-defined set of categories to documents based on the docu-

ments’ content. Because of the many variations on how this can be achieved

and the diversity of applications in which it can be employed, creating specific

TC applications is often a difficult task.

This thesis concerns the design, implementation, and testing of an Object-

Oriented Application Framework for Text Categorization. By encoding exper-

tise in the architecture of the framework, many of the barriers to creating TC

applications are eliminated. Developers can focus on the domain-specific as-

pects of their applications, leaving the generic aspects of categorization to the

framework. This allows significant code and design reuse when building new

applications.

Chapter 1 provides an introduction to automatic Text Categorization, Ob-

ject-Oriented Application Frameworks, and Design Patterns. Some common

application areas and benefits of using automatic TC are discussed. Frame-

works are defined and their advantages compared to other software engineering

strategies are presented. Design patterns are defined and placed in the context

of framework development. An overview of three related products in the TC

space, Weka, Autonomy, and Teragram, follows.

Chapter 2 contains a detailed presentation of Text Categorization. TC is

formally defined, followed by a detailed account of the main functional areas
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in Text Categorization that a modern TC framework must provide. These

include document tokenizing, feature selection and reduction, Machine Learn-

ing techniques, and categorization runtime behavior. Four Machine Learning

techniques (Näıve Bayes categorizers, k-Nearest-Neighbor categorizers, Support

Vector Machines, and Decision Trees) are presented, with discussions of their

core algorithms and the computational complexity involved. Several measures

for evaluating the quality of a categorizer are then defined, including precision,

recall, and the Fβ measure.

The design of a framework that addresses the functional areas from Chap-

ter 2 is presented in Chapter 3. This design is motivated by consideration of

the framework’s audience and some expected usage scenarios. The core archi-

tectural classes in the framework are then presented, and Design Patterns are

employed in a detailed discussion of the cooperative relationships among frame-

work classes. This is the first known use of Design Patterns in an academic work

on Text Categorization software. Following the presentation of the framework

design, some possible design limitations are discussed.

The design in Chapter 3 has been implemented as the AI::Categorizer

Perl package. Chapter 4 is a short discussion of implementation issues, includ-

ing considerations in choosing the programming language. Special consideration

is given to the implementation of constructor methods in the framework, since

they are responsible for enforcing the structural relationships among framework

classes. Three data structure issues within the framework are then discussed:

feature vectors, sets of document or category objects, and the serialized repre-

sentation of a framework object.

Chapter 5 evaluates the framework from several different perspectives on

two corpora. The first corpus is the standard Reuters-21578 benchmark corpus,

and the second is assembled from messages sent to an educational ask-an-expert

service. Using these corpora, the framework is evaluated on the measures in-

troduced in Chapter 2. The performance on the first corpus is compared to

the well-known results in [50]. The Näıve Bayes categorizer is found to be
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competitive with standard implementations in the literature, and the Support

Vector Machine and k-Nearest-Neighbor implementations are outperformed by

comparable systems by other researchers. The framework is then evaluated in

terms of its resource usage, and several applications using AI::Categorizer

are presented in order to show the framework’s ability to function in the usage

scenarios discussed in Chapter 3.
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Preface

This thesis is the culmination of a Masters project in the Web Engineering Group

at the University of Sydney School of Electrical and Information Engineering.

The project has produced two large products—one is this thesis, and the other

is the AI::Categorizer framework itself, which forms the subject matter of

most of the thesis.

In order to produce such a framework, research into current Text Categoriza-

tion algorithms has been necessary, as well as research into software engineering

practices for building object-oriented frameworks. The discourse in this thesis

does not assume any prior familiarity with Text Categorization, but it does

assume that the reader is familiar with the basic concepts and terms of object-

oriented programming, such as “class,” “object,” and “instance.”

Availability

The latest released version of the AI::Categorizer framework (currently 0.04)

is always available at http://search.cpan.org/author/KWILLIAMS/. Perl

source code, documentation, and a simple example application are included

in the distribution.

For developers who wish to stay more actively involved with tracking changes

in the framework, the entire distribution is also available using the Concurrent

Versions System (CVS). This allows developers to access the latest bug fixes,

to create their own patches against the main framework code, and to track
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changes between releases. Details of how to access the CVS version are at http:

//sourceforge.net/cvs/?group_id=62831, or via the project’s development

home page at http://sourceforge.net/projects/ai-categorizer/.

The ApteMod data set discussed in Chapter 5 is available for download from

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html.

The Dr. Math data set is not available for direct download, but interested

parties may contact Ken Williams at ken@mathforum.org for details.

After submission to the University of Sydney, this thesis document will be

available in electronic format at http://www.ee.usyd.edu.au/~kenw/Thesis.

pdf, and in hardcopy format from the University of Sydney Engineering Library.

Licensing

The AI::Categorizer framework is implemented as a set of Perl modules (see

Section 4.1). As is customary with many Perl modules, the framework is dis-

tributed under the same licensing terms as the standard version of the Perl

interpreter. This means that the user may choose either the GNU General Pub-

lic License or the Artistic License as the terms of using the software, whichever

fits better with their needs. In practical terms, this means that the code is

encouraged to be used in research, commercial, educational, or other environ-

ments, without the need to pay royalties to the software’s original author. It

also means that the software’s inner workings are available to be inspected or

modified by other developers for their own projects.

Licenses of the above type are called “open source” licenses. Their goal

is to foster the development and evolution of software by leveraging the user

community and developer community as a resource that can feed back into the

development cycle. According to http://www.opensource.org/, “open source

promotes software reliability and quality by supporting independent peer review

and rapid evolution of source code.” This aligns very well with the traditional

goals of academic research. By making the source code discussed in academic
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publications available as open source resources, the results can far more easily

be verified by other researchers.

For more information on open source concepts, please visit http://www.

opensource.org/.

This thesis is copyright c©2003 by Ken Williams. This material may be

distributed only subject to the terms and conditions set forth in the Open

Publication License, v1.0 or later (the latest version is presently available at

http://www.opencontent.org/openpub/).

Motivations

My own personal motivations for embarking on this project were to further

educate myself on Text Categorization research, to learn more about frame-

work methodology, and to provide a software resource to others who wish to

use TC methods in their software projects. I have long been interested in Ma-

chine Learning methods for various purposes, and I enjoy working with natural

languages. Doing corpus-based work in Natural Language Processing is a fun

combination of Machine Learning and Linguistics, and reading the literature on

the topic always makes me excited to work on my next project.

Unfortunately, when I was just beginning to do work on my own Text Cat-

egorization projects, I found that there were very few TC tools freely available

for my use, and those that were available were often difficult to customize. Very

few tools were available in Perl, my usual language of choice, and this seemed

like an odd situation given the well-known agility of Perl at handling text data.

I cannot hope to solve everyone’s software needs in TC, but the AI::Categor-

izer framework represents my best effort in providing the kind of thing I was

looking for when I began working in this area.

My interest in framework development has recently increased by working on

the HTML::Mason project [33]. For this, I and others helped shepherd the code

from a fairly monolithic function-based tool to a customizable OO framework
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suitable for many more purposes than it was originally developed to serve. I

became convinced of the power of framework development with that project,

and I sought to bring the same benefits to an open-source framework for TC.

Contributions

During the course of the candidature on which this thesis is based, the following

contributions were accomplished:

• The AI::Categorizer framework was designed, implemented, and re-

leased under an open-source license [42]. The release includes documen-

tation and a simple example application using the framework.

• Näıve Bayes and Decision Tree categorizers were implemented, as well as a

mechanism which allows users to use categorizers implemented in the Weka

Machine Learning system [47]. A simple probabilistic guessing categorizer

has also been implemented to provide a baseline for experimentation.

• The framework currently has a Document Frequency feature selection

module implemented.

• A paper on the design and applicability of the AI::Categorizer frame-

work was published in the proceedings of the 7th Australasian Document

Computing Symposium [44].

• A short paper on the use of the AI::Categorizer framework to cate-

gorize financial documents was published in the proceedings of the 7th

Australasian Document Computing Symposium [5].

• A paper on the use of AI::Categorizer to automatically categorize math-

ematics questions will be published in the proceedings of the 11th Inter-

national Conference on Artificial Intelligence in Education [45].

• New testing corpora have been assembled in the educational and financial

domains, and the framework has been evaluated using them (see Chapter
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5).

• Contributions from other developers have provided the framework with an

SVM categorizer. Collaborative work with other developers have provided

Rocchio and k-Nearest-Neighbor categorizers.

• An overview seminar on TC and the design of AI::Categorizer was given

at the University of Sydney. An invited presentation of the same seminar

was given to the Language Technology group at Macquarie University.

• Tutorials on Machine Learning were presented at the O’Reilly 2002 Open

Source Conference and 2003 Bioinformatics Technology Conference (http:

//conferences.oreilly.com/).
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Chapter 1

Introduction

1.1 Automatic Text Categorization

The field of automatic Text Categorization (TC) is an extremely active area of

current research and application. It is multi-disciplinary, attracting attention

from the Linguistics, Computer Science, Engineering, and Business communi-

ties. Its applicability is broad, with many potential uses for large businesses as

well as individuals. A recent survey article from the Association of Computing

Machinery provides a good introduction to the field [38].

The goal of automatic Text Categorization is to create systems that can

automatically place text-based documents into predefined categories. For ex-

ample, one system may assign themes such as “sports,” “finance,” or “politics”

to general-interest news stories. Another system may automatically route a

user’s email messages by placing documents into folders based on the messages’

content. In these scenarios, the news story or email message plays the role of a

“document,” and the news theme or email folder plays the role of a “category.”

TC systems’ categorization decisions are usually based on some analysis of the

words in each document, though they may be based on any arbitrary document

properties.

The standard modern approach to TC involves using Machine Learning to

1
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create categorizers automatically rather than manually specifying the member-

ship criteria for each category [38, p. 2]. The Machine Learning process typically

examines a set of documents which have been pre-assigned to categories, and

makes inductive abstractions based on this data that will assist it in categorizing

future documents [27, sec. 2.7].

Because the process of creating categorizers is automatic, and the catego-

rization process itself is also automatic, efficient TC systems requiring no hu-

man intervention can be created that process large numbers of documents very

quickly. In practice, human intervention may sometimes be applied in either

phase, because manual tuning of the parameters that govern the creating of

a categorizer may improve its performance, and because a human expert may

assist the categorizer in making decisions, or vice versa.

The following quotation from [38] provides a sense of the broad range of

applications currently using TC methods:

TC is now being applied in many contexts, ranging from document

indexing based on a controlled vocabulary, to document filtering,

automated metadata generation, word sense disambiguation, popu-

lation of hierarchical catalogs of Web resources, and in general any

application requiring document organization or selective and adap-

tive document dispatching.

Because of the recent explosion in volume of electronic data due to the ad-

vent of the World Wide Web and the widespread use of email for business and

personal communication, many new applications may benefit from using TC

methods. Two application areas investigated during the course of this candi-

dature include the use of TC methods to determine potential market impact

of corporate financial announcements [5], and to assist educational mentors

in managing a stream of messages sent to a mathematics question-and-answer

service [44]. These tasks are currently performed by humans with special knowl-

edge about the particular relationships between documents and categories, and
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any gains in efficiency brought by automation may significantly aid the business

processes of such organizations.

1.2 Object-Oriented Application Frameworks

An Object-Oriented Application Framework (hereafter referred to simply as a

framework) is a large-scale unit of reusable code in object-oriented software

development.1 The relevant software engineering literature contains several dif-

ferent definitions of the term, with two definitions appearing most commonly:

• a reusable design of all or part of a system that is represented by a set of

abstract classes and the way their instances interact [23]

• a reusable, “semi-complete” application that can be specialized to produce

custom applications [14]

These definitions are not in conflict, but rather emphasize different aspects

of framework development—the first definition emphasizes what a framework is

made of, while the second emphasizes what a framework is used for. Notice that

the first definition refers to the system’s design, while the second refers to the

system’s actual code. This is because frameworks represent both code reuse and

design reuse. The design of a system gets reused because any application built

using the framework will embody the design decisions encoded in the framework

structure, and the system code gets reused by employing the concrete classes

provided with the framework [18, ch. 1].

In designing frameworks, developers strive to create a product that is useful

in a maximum number of situations with a minimum of effort by the appli-

cation developers. This is evidenced by the consistent appearance of the word

“reusable” in the definitions in the previous section. In order to achieve effective

reuse, the framework developer must identify those aspects of the target appli-

cations that vary from one application to the next, typically called hot spots,
1This thesis assumes that the reader is familiar with the basic terminology of object-

oriented programming. For an introduction to the subject, please see [46] for an academic
treatment, or [8] for an applied treatment.
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and allow explicitly for their variations to be instantiated in applications [15,

ch. 14] [10].

In some cases, the hot spot variations are known in advance to the framework

developer, so concrete classes may be provided to the application developer

to fulfill the variation requirements. Application development then becomes a

simple matter of selecting the appropriate concrete classes for the application.

This is known as blackbox framework usage.

In other cases, the application developer may have a particular need that the

framework developer did not or could not anticipate. Application development

then involves writing custom subclasses of the hot spot classes, a process known

as whitebox framework usage [15, ch. 1].

Because blackbox framework usage involves much less effort than whitebox

usage, most framework developers aim to provide blackbox functionality when-

ever possible. Since framework requirements may not be clear until the frame-

work has been used in several different applications, however, many frameworks

evolve from being primarily whitebox frameworks to primarily blackbox frame-

works as they mature [18, ch. 6].

Frameworks are certainly not the only kind of software reuse technique in

active use. Other reuse techniques include components, libraries, and application

generators. A component is an element of a software system that can be replaced

by other elements with similar purpose but different behavior [23]. A library

is a set of routines or objects (possibly components) that provide functionality

developers may use in application code [15, ch. 1]. An application generator is

a system that creates varying applications based on high-level, domain-specific

languages that specify the desired behavior of the application in its aspects that

vary (i.e., in its hot spots) [15, ch. 1].

The biggest difference between frameworks and the above reuse techniques

is that frameworks create an inversion of control between the framework code

and the application developer code. Framework code assumes control of the

main flow in an application, and any custom developer code (if the framework
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is being used in a whitebox development style) is invoked by the framework.

In the other reuse techniques mentioned above, the developer writes the high-

level application code (whether in a programming language or in the application

generator’s mini-language) and invokes the reusable elements at a lower level.

The inversion of control in frameworks lets the framework developer dictate the

overall structure of the application, while allowing the application developer

low-level control over application details [15, ch. 1].

According to [15, ch. 1], framework methodology offers the following benefits

as a reuse technique:

Modularity The hot spots of a framework represent encapsulated solutions to

the variations in the application domain. This helps minimize the impact

of design and implementation changes in applications because they will

usually be limited to these encapsulated areas.

Reusability Frameworks represent both design reuse and code reuse, leverag-

ing both the expertise of the framework developer encoded in the frame-

work architecture, and well-tested implementations encoded in the frame-

work’s concrete classes. In the case of blackbox usage, reuse may be

achieved with no custom application code.

Extensibility Whitebox reuse allows frameworks to be used for purposes that

the framework developer did not or could not foresee, and allows applica-

tion developers to create interfaces to proprietary or non-generic entities

while using the framework’s general architecture.

Inversion of control Custom application code can play a subordinate role to

generic framework code, so that different applications developed using the

same framework will behave in similar ways at the highest levels.

1.2.1 Design patterns

In order to shed light on the design of complex object-oriented systems, many re-

searchers and software developers have tried to standardize language, concepts,
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and notation for class and object relationships. There is as yet no universally ac-

cepted terminology for describing these relationships, but one common practice

is to use design patterns to provide a baseline grammar for discussing commonly

seen patterns of cooperation in object-oriented design [18, p. 3]. The design

patterns do not provide prescriptions for software design, but rather descriptions

of common practices in common situations. Each design pattern in [18] includes

discussions of variations that can be made in applying the pattern, indicating

that a design pattern is actually a family of similar solutions to a problem, not

one rigid solution.

Design patterns help to illustrate object-oriented software designs that use

composition rather than just inheritance for embodying important relationships

between objects. Composition refers to the practice of multiple independent ob-

jects cooperating to achieve a task, or assembling to form a larger functional

unit, while inheritance refers to the practice of defining a single object’s struc-

ture and behavior in terms of both general (“parent”) and specific (“child”)

specifications. In the language of framework design and reuse, composition al-

lows for blackbox reuse, while pure inheritance forces whitebox reuse [18, p.

19].

The relevance of several design patterns to AI::Categorizer will be dis-

cussed in detail in Chapter 3.

1.3 Related products

To discuss the relevance of AI::Categorizer in the marketplace of Text Cat-

egorization, three related products are examined here. These products are by

no means the only available products similar to AI::Categorizer, but they

provide a reasonable sample of well-known tools for comparison.
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1.3.1 Weka

Weka is an open-source system for Machine Learning originally developed at the

University of Waikato, New Zealand, by Ian H. Witten and Eibe Frank [47]. Its

primary audience is the international community of academic Machine Learning

researchers, most notably those working with categorization or clustering prob-

lems that arise from working with text. Weka has undergone at least one major

code rewrite; at present it is implemented as a set of related Java classes with

documented internal interfaces. Since these classes may be extended, Weka may

itself be considered a framework.

Weka is used extensively throughout the academic Text Categorization com-

munity, and as such includes support for many cutting-edge categorization tech-

niques. These include recent advances in Support Vector Machines, k-Nearest-

Neighbor, Näıve Bayes, and other categorizers (see Section 2.3), as well as sev-

eral variations of feature selection techniques (see Section 2.2.5). Weka there-

fore provides a standard against which the AI::Categorizer framework can be

measured, as well as a resource which can be leveraged in its construction.

Despite some similar properties, Weka and AI::Categorizer differ in their

goals and in many important implementation decisions. Whereas Weka specifi-

cally targets the academic research community, AI::Categorizer aims to sup-

port use cases under both application-building and research situations. Con-

sequently, Weka will typically keep up with research trends more closely, but

AI::Categorizer will usually be easier for application developers to integrate

into a real-world situation.

In addition to these differences, another important difference arises from the

different goals in the two projects. Much of the academic community is inter-

ested in evaluating the correctness and algorithmic complexity of categorization

techniques, whereas most application developers must also consider resource

usage in real-world terms like time and memory. In informal testing, AI::Cat-

egorizer has greatly outperformed Weka in terms of speed and memory when

equivalent algorithms are compared on identical data sets. This doesn’t reflect
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an inherent design flaw in Weka, rather a difference in the kinds of things Weka

developers are likely to spend their time working on.

In order to help facilitate cooperation between the Weka and AI::Categori-

zer communities, as well as leverage existing solutions inside AI::Categorizer,

a machine learner class has been created within AI::Categorizer that simply

passes data through to Weka’s categorizers. In this way, application developers

can easily experiment with Weka’s cutting-edge categorization techniques while

retaining AI::Categorizer’s application integration advantages. Any cross-

pollination generated as a result will likely benefit both projects. See Section

3.6 for more information on the existing bridge to Weka.

Some other facilities included in Weka’s distribution are not yet offered by

AI::Categorizer. These include visualization tools and several sophisticated

correctness evaluation tools. Most of these facilities would make useful additions

to AI::Categorizer if implemented.

1.3.2 Autonomy Corporation

Autonomy Corporation (http://www.autonomy.com/) provides information

services and product licensing to enterprise-level organizations. Some of its

customers include General Motors, Ericsson, Sybase, Deutsche Bank, and the

United States Department of Homeland Security. Its products range broadly

over several areas of Text Processing and Information Retrieval, including cate-

gorization, summarization, and search systems. The company’s web site claims

that their products are “automatic, language independent, fast, scalable, and

accurate.” Since the products are proprietary, no independent verification of

these claims has been done in this thesis, but the claims do provide a list of

attributes this company feels are important in marketing its products.

The Autonomy web site indicates that its products utilize “Bayesian Infer-

ence and Claude Shannon’s principles of information theory.” While further

details are not provided and the proprietary nature of Autonomy’s products

precludes much further analysis, this statement would be consistent with Näıve
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Bayes categorization and an Information Gain feature selection criterion (see

Sections 2.3 and 2.2.5). However, one must be cautious in making assessments

like this, since there are other ways of employing Bayesian techniques for cate-

gorization, and Shannon’s information theory pervades many areas of TC and

Information Retrieval, including Decision Tree construction [31, 43] and search

relevance ranking [20].

Autonomy suggests that their products can be useful in building customized

portals, Customer Relationship Management (CRM) systems, enterprise-level

search systems and document management tools, and Human Resources solu-

tions. These are commonly encountered applications mentioned (but seldom

illustrated) in the TC literature, and it seems to be generally felt that TC

technologies apply broadly to these application areas.

1.3.3 Teragram Corporation

According to their web site (http://www.teragram.com/), Teragram Corpora-

tion is a provider of “fast and stable linguistic technologies, information search

and extraction, knowledge management, and text processing technologies.” One

of their largest-scale products is the Teragram Categorizer, an automatic doc-

ument categorizer that plays a similar technical role to AI::Categorizer. It

cooperates with the Teragram Taxonomy Manager, which provides a user inter-

face to categories and the documents within each category.

Like with Autonomy Corporation, Teragram’s software products are propri-

etary, so little information on implementation is available. However, product

capabilities and roles can be assessed from the marketing information given on

the web site. The information presented here has all been gathered this way.

The Taxonomy Manager is a browser of hierarchical categories, similar to

several on-line directory services like Yahoo (http://www.yahoo.com/) or the

Open Directory Project (http://www.dmoz.org/). It might therefore be in-

ferred that the Teragram Categorizer is a native hierarchical categorizer (see

Section 3.7.2), or perhaps that it actually flattens the tree structure of the cat-
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egory hierarchy into a flat list of its leaves, and imposes the tree structure only

afterwards. Whichever case is true, it must be noted that the interfaces of the

categorizer allow hierarchical categorization even if the internal workings are

flat.

Another interesting aspect of Teragram’s categorization technology is their

Rule-Based Categorizer. Using this system, “each category within the directory

is associated with a set of rules that describe documents within that category.”

This may be motivated by a need to integrate older hand-maintained lists of

rules into newer applications, or it might be meant to address situations like

email categorization in which most documents are indeed best categorized by

simple rules (usually because the sender and receiver have agreed upon a tag-

ging scheme to mark documents’ important properties). It’s not clear whether

Teragram’s Rule-Based Categorizer and Automatic Categorizer can cooperate

on a single taxonomy, but they indicate that the two systems are complementary

rather than exclusive.

Teragram also offers separate licensing for many of the tools that make up

its products. In this sense, it has a strategy similar to one employed in AI::-

Categorizer’s design, in which useful pieces of functionality created for AI::-

Categorizer should be split off into their own products whenever possible.



Chapter 2

Background: Text

Categorization

This chapter gives an overview of Text Categorization’s terminology, method-

ology, and common contexts. Section 2.1 provides formal definitions of the

foundations of TC methods, and the terms defined in this section will be used

throughout the rest of this thesis. Section 2.2 introduces several aspects of TC

that an application developer or researcher may need to control in a TC appli-

cation or experiment. Section 2.3 discusses three machine Learning techniques

common in TC, and Section 2.4 defines some typical ways of evaluating the

performance of a TC system.

2.1 Formal Definitions

The goal of automatic Text Categorization is to automatically produce special-

ized functions that can process natural-language documents, assigning zero or

more user-defined labels to them based on their content [38, p. 3] [26, ch. 16] [27,

sec. 6.10]. More formally, given a set of labels (i.e., categories) C = {c1, . . . , c|C|}

and a set of previously unseen documents D = {d1, d2, . . .}, a categorizer is a

function K that maps from D to the set of all subsets of C. Figure 2.1 shows a

11
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d1
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c2
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Documents Categories

K

Categorizer

...

Figure 2.1: The action of a categorizer on a set of documents

simple diagram of this action.

In some applications, categorizers assign only a single label to each docu-

ment, so a categorizer is often a function that maps directly from D to C [38, p.

3]. Often an intermediate function is useful for soft or rank-based categoriza-

tion, mapping from D×C to the set of real numbers R in order to assign a score

to each category cj for each document di [38, p. 4]. The scored categories may

then be presented to a human expert in decreasing order, and the human may

then make the final decision on the document’s category membership. Alterna-

tively, the system may make a decision itself based on a threshold for category

membership, transforming the problem back into the hard categorization shown

in Figure 2.1.1

The standard modern approach to creating new categorizer functions is to

build them using Machine Learning techniques from a set of training documents

T r [38, p. 2]. This is a set of user-provided, pre-labeled documents that follows

a category distribution similar to the distribution of D, and whose contents

provide information about what sorts of documents should be mapped to what

sorts of categories. Algorithms can then be developed that make generaliza-

tions about the relationship between document content and document category,
1This is the internal approach taken by the AI::Categorizer framework—see the descrip-

tion of the Hypothesis class in Section 3.4 for more details.
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encoding these generalizations in the learned function K.

2.2 The Text Categorization Process

In order to train a categorizer in the above manner, the user must begin with

a training corpus, hereafter referred to as T r. This is a set of documents which

are pre-labeled with categories that are considered to be fully correct—typically,

they have been manually assigned by a domain expert, i.e. a person who is

familiar with the type of material contained in the documents and who knows

how to assign a set of categories to each document based on the documents’

content.

The basic outline for creating Text Categorization applications is relatively

simple: the documents in T r are presented to the TC system, the system pro-

cesses the documents’ content, and a specific categorization function K is pro-

duced that may be used to categorize future documents from the set D. In an

application, however, many details of this process need to be managed in spe-

cific and often varying ways. Sections 2.2.1 through 2.2.10 describe the stages

of this process.

2.2.1 Document storage

In an organization that needs a TC application, documents may have many dif-

ferent origins. They may originate from plain-text or formatted email messages,

they may be raw or pre-processed web pages, they may be collections of data

from a database (see Section 3.2.4), or they may not have a straightforward

representation outside of the TC system at all. It is therefore important to

recognize that the notion of varying document storage media, and the process

of converting from those media to a medium accessible to the TC system, is an

important part of the TC process.

In addition, many Text Categorization data sets are quite large. In their raw

format, they may commonly be larger than the amount of available memory on
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the machine processing them. This has two important implications. First,

converting the documents to a special storage format (for instance, as a set of

files on the local filesystem) so that the TC system can access them may be

impossible or undesirable for reasons of time, space, and/or data redundancy.

Second, a mechanism that can deal with iterating through the native storage

medium of the documents without reading all document data into memory is

probably necessary in a TC system.

2.2.2 Document format

Although most of the academic TC literature considers a document to be a

simple plain text string of data, this may rarely be the case in an application

environment. Documents may be stored in many different formats, including

plain text, HyperText Markup Language (HTML), Adobe’s Portable Document

format, (PDF), Extensible Markup Language (XML), Microsoft Word .doc for-

mat, MIME-encoded email messages, and so on. The internal data in each

document may also be considered part of its format when nontrivial amounts

of information extraction or other transformations need to be applied to the

document data in order to make it accessible to the TC system. For example,

digit-strings in some document collections may be useful as terms to consider

when categorizing, whereas in other collections they may only add noise to the

data.

For reasons similar to those mentioned in the previous section, it may be

desirable for a TC system to deal with these issues directly, or to provide a

mechanism to extend the system to recognize new formats, rather than forcing

the conversion of all data to a format recognized by the system.

2.2.3 Document structure

Separate from the issue of document format is that of document structure.

In an age when XML data is increasingly more common as a data exchange

and storage format, the structure of a document, i.e. the way the constituent



CHAPTER 2. BACKGROUND: TEXT CATEGORIZATION 15

parts of a document interrelate and nest to create the entire document, may be

important in understanding the document’s meaning.

In the TC literature, little is currently made of document structure, except

that a TC system may assign importance weights to the terms in a document

according to pre-set importance weights of the sections in which those terms

were found. For instance, a term found in the title of a document might be

considered twice as important as a term found in the body. However, as research

into categorization of structured documents progresses, this may be an fruitful

area to consider in building TC systems.

2.2.4 Tokenizing of data

In order to convert the text of a document into data that may be analyzed by a

Machine Learning algorithm, it is necessary to break the text into discrete units,

each usually corresponding to a word in the text. This is called tokenization. In

this discussion, the term word refers to a linguistic entity exactly as it appears

in the original text, and token refers to a string extracted by the TC system.

The segmenting of text data into chunks representing individual words may

seem like a straightforward task, but in fact there are many variations on how

this process can be performed [26, sec. 4.2.2]. It is not sufficient to split the

data into tokens by using whitespace (spaces, tabs returns, and the like) as

delimiters, because this does not deal with punctuation characters. It is also

not obvious whether words with punctuated suffixes like boy’s or doesn’t, or

hyphenated words like ready-made ought to be treated as one token or multiple

tokens—this decision will usually need to be made with some knowledge of the

document set D. In addition, many non-European written languages such as

Japanese or Korean do not contain spaces indicating divisions between words,

so a sophisticated tokenizer may be required when dealing with languages like

these.

The tokenization process may remove from the data any token in a pre-

defined “stop list,” which contains tokens that occur very commonly in the
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domain (such as “the” or “and” in most English texts) and are assumed to

contain little or no relevance to the categorization problem at hand [38, p. 15]

[28].

In order to address these issues, a TC system needs to allow variations in

the tokenizing process. This may involve adjusting a set of control parameters,

or in some cases the application developer may need to write custom code to

handle domain-specific cases.

2.2.5 Dimensionality reduction

Like many Language Processing research fields, much of Text Categorization

has to do with the problem of high dimensionality [38, p. 13] [21]. The dimen-

sionality of the space in which the Machine Learning algorithm operates can be

as large as the total number of distinct terms in T r.

High dimensionality may present two problems. First, some Machine Learn-

ing algorithms may be efficient on low-dimensional data, but they may require

more time or memory than is practical when the dimensionality of the data

set is too high [6]. Second, the T r data in a high-dimensional space may be

too sparse, with not enough nonzero data points to make any useful inductive

leap during training. This is particularly true in some highly morphological

languages like Finnish, in which a single word stem may have thousands or mil-

lions of inflected forms, and most forms may only be seen one time in all of T r,

making them almost useless for inductive learning.

One way to address the problem of high dimensionality is by applying a lin-

guistic stemming algorithm to the terms found in T r and D. These algorithms

transform words by removing prefix and suffix morphemes, so that words like

running and runner collapse to their linguistic stem run. Although the use

of such processing has occasionally been reported to harm overall system per-

formance [1], availability of such an algorithm is usually seen as a necessary

component of a TC system [38, p. 12].

Another way to reduce dimensionality in a TC system is to apply feature
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cj occurs
Yes No

fk Yes A B
occurs No C D

Table 2.1: Contingency table for category cj and term fk. The quantities A-D
represent the number of documents with the given properties.

selection and/or feature extraction. Both are statistical techniques to transform

the entire set of document terms into a smaller feature set with less sparsity.

The former does this by choosing the “most relevant” terms using some statisti-

cal criterion. The latter applies some transformation such as singular value de-

composition (used in the “Latent Semantic Indexing” technique [9]) or grouping

terms into clusters in order to create a new, lower-dimensional space of features.

Three of the most commonly used feature selection criteria are the document

frequency (DF), χ2, and information gain (IG) metrics [51].

DF(fk) is simply the number of documents of T r in which the feature fk

occurs. It is fairly effective as a feature selection criterion, and it has been found

by [51] that other well-performing criteria have a bias favoring terms with high

DF.

χ2 is defined in Equation 2.1. A, B, C, and D are defined as the terms in

the contingency table shown in Table 2.1. χ2(fk, cj) has a value of zero when

fk and cj are independent, and of 1 when they are perfectly correlated.

χ2(fk, cj) =
|T r|(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(2.1)

In order to find the overall χ2(fk) metric, the terms χ2(fk, cj) may either be

averaged (typically weighted by the frequency of each category), or the maxi-

mum value for any category may be adopted [51].

IG is defined in Equation 2.2. P (fk) and P (fk) are the probabilities that a

document does or does not contain fk, respectively. Cfk
and Cfk

are the category

sets in the subsets of D containing fk or not, respectively. H(x) is the standard
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entropy function from Information Theory [26, ch. 2].

IG(fk) = H(C)− P (fk) H(Cfk
)− P (fk) H(Cfk

) (2.2)

Information Gain has a natural value of zero for non-informative features,

and values increase for features that correlate more strongly with certain cate-

gories. It has been found in [51] to be a very effective feature selection criterion.

2.2.6 Vector space modeling

The discussion in the previous section suggests that each document may be

viewed as a vector in a global vector space whose dimensions represent the

set of all unique features from T r. This idea forms the basis for several Ma-

chine Learning techniques, including Support Vector Machines and k-Nearest-

Neighbor categorizers. It also allows for arbitrary vector processing algorithms

on the document data to improve categorization results.

A common set of algorithms used for this purpose in Information Retrieval

is the TF/IDF term-weighting scheme of Salton and Buckley [36], which allows

for several different ways to represent a document as a vector in the global

vector space. Terms may be weighted by their frequency in the document, by

the logarithm of that frequency, or by a boolean figure representing only the

presence or absence of the term. Term weight may also be reduced by a factor

representing the term’s prevalence in other documents, on the theory that any

term present in most corpus documents possesses little discriminatory power

between categories. Finally, the overall length of the document vector may

be scaled in several different ways. The TF/IDF vector weighting techniques

are used commonly in TC systems, and their availability is desirable for the

AI::Categorizer framework.
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2.2.7 Machine Learning algorithm

Many different Machine Learning algorithms are actively studied in the TC

research literature, and new algorithms or variations on existing algorithms are

continually being developed. In addition, the choice of algorithm may depend on

the specific application—algorithms differ not only in their ability to perform

accurately on differing data sets, but also in the resources they may require

during training and when categorizing documents. Therefore, it is not possible

to choose a single Machine Learning algorithm for incorporation into the AI::-

Categorizer framework. As a TC system, it needs to allow for selection among

several standard algorithms and for incorporation of novel algorithms developed

by researchers.

Section 2.3 gives an overview of three well-studied Machine Learning algo-

rithms and compares some of their relevant characteristics. Section 3.5.4 in

Chapter 3 shows how the architecture of AI::Categorizer allows for flexibility

in this aspect of categorization.

2.2.8 Machine Learning configuration

Even within a single Machine Learning algorithm there may be several param-

eters that a supervisor may vary to influence the training and categorization

processes. For instance, the k-Nearest-Neighbor algorithm has an adjustable

parameter k, the SVM algorithm allows for several variations in the type of

kernel used, and most categorization algorithms admit some type of control to

trade off precision and recall against each other (see Section 2.4 for an expla-

nation of these terms). In order to achieve the appropriate performance for a

given task, application developers need simple ways to vary these parameters.

In fact, this issue is not unique to the Machine Learning component of the

TC process. Several of the previously discussed aspects of the TC task, includ-

ing feature selection, dimensionality reduction, and vector space transformation,

may be controlled by parameters that the supervisor may wish to vary. Con-
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sistency in the system’s handling of parameters may therefore be an important

part of its design. This issue will be discussed again in Section 3.5.5.

2.2.9 Incremental learning

In some TC applications, it may be desirable to incorporate feedback from the

user about whether the system’s categorization decisions have been correct or

incorrect [38, p. 28]. This may allow for a relatively small initial training set

T r, or for categorization on concepts which may change over time. This process

is called incremental or on-line learning.

Unfortunately, incremental learning is not possible with all Machine Learn-

ing methods, since some algorithms (e.g. Neural Network categorizers) may not

be able to incorporate new evidence into their model without going through the

entire training process again. For those algorithms which can support it, how-

ever, the use of incremental learning may be considered important in building

a TC application, and is therefore considered a goal of the AI::Categorizer

project.

2.2.10 Hypothesis behavior

Most of the standard Text Categorization literature assumes that the goal of

TC is to assign each document to one of two mutually exclusive categories,

otherwise known as binary categorization [38, p. 3]. Of course, real-world prob-

lems often involve ontologies (category hierarchies) that consist of more than

two categories, and membership may not be mutually exclusive. For instance,

some applications may require assigning only the most appropriate category

from C, some may require assigning any appropriate category, and some, such

as rank-based tasks, may require an appropriateness score linking each category-

document pair.

This situation does not represent a theoretical disconnect between research

and practice, because each multi-category TC problem can be re-posed as a

series of binary problems. Most application builders, however, will not want to
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actually re-pose their problems in this manner because it requires extra work and

it may obscure the true nature of the application under development. Therefore,

it is desirable for a TC system to offer support for all the scenarios described

in the previous paragraph without requiring the implementers of the Machine

Learning algorithms to explicitly code for them. The way in which this is

achieved is discussed in Section 3.3.

2.3 Machine Learning techniques

This section describes four Machine Learning techniques that are common for

Text Categorization: Näıve Bayes categorizers, Support Vector Machines, k-

Nearest-Neighbor categorizers, and Decision Trees. These techniques were cho-

sen for inclusion here because they currently have implementations in the AI::-

Categorizer framework and because the first three are included in the well-

known study [50]. Their performance is revisited in Chapter 5.

2.3.1 Näıve Bayes

NäıveBayes categorizers are extremely well-represented in the TC literature,

with many papers published examining their theory and performance [25, 50,

38]. Their theory rests on Bayes’ Theorem of conditional probability, shown in

Equation 2.3. For those unfamiliar with conditional probabilities, the notation

P (a|b) means “the probability of a given b.”

P (x|y) =
P (y|x)P (x)

P (y)
(2.3)

The quantity of interest when determining the relevance of a particular doc-

ument di to a category cj is P (cj |di). Any category with a high enough con-

ditional probability will be considered assigned to di. In particular, the “best”

category will be ArgMaxcj∈C P (cj |di). This probability is usually impossible to

compute directly, however, because di has likely never been encountered before.
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Therefore, Bayes’ Theorem can be applied to change the probabilistic expression

to one whose terms may be estimated from the training data T r as follows.

ArgMax
cj∈C

P (cj |di) = ArgMax
cj∈C

P (di|cj)P (cj)
P (di)

(by (2.3))

= ArgMax
cj∈C

P (di|cj)P (cj) (P (di) is constant)

P (cj) may be easily estimated from the frequency with which documents

appear in cj in T r. To estimate P (di|cj), di may be considered equivalent

to the string of its features fi1fi2 . . . fik. ArgMaxcj∈C P (cj |di) may then be

estimated as follows.

ArgMax
cj∈C

P (cj |di) = ArgMax
cj∈C

P (fi1 . . . fik|cj)P (cj)

≈ ArgMax
cj∈C

P (fi1|cj) · . . . · P (fik|cj)P (cj)

This final step, which gives this algorithm its “näıve” moniker, involves two

conditional independence assumptions: first, that the features fi1, . . . , fik are

conditionally independent given the category cj , and second, that the position

of features within document di has no effect on the probability. These features

may not be true in general—features may in fact correlate in complex ways

in real-world documents. Nevertheless, the Näıve Bayes categorizer tends to

produce fairly good results, and an analysis of this phenomenon can be found

in [12].

The conditional probabilities P (fi1|cj), . . . , P (fik|cj) are typically estimated

by measuring the relative frequencies of the features fi1, . . . , fik in the docu-

ments belonging to cj . For features found in the documents of D which were

not encountered in T r, it would be inappropriate to use this estimate, however,

because it would yield a probability of zero and render the rest of the terms use-

less. For this reason, unknown terms are typically assigned some small nonzero
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probability in a process known as smoothing.

The Näıve Bayes algorithm is fairly fast and non-memory-intensive. Because

its training process consists merely of counting the features of the training doc-

uments, its training time scales linearly with |T r|. Categorization is also fairly

fast because all the pre-computed probabilities P (fil|cj) may simply be looked

up in an array. Categorization of a single document therefore scales linearly

with |C|. Because the system need only store feature information on a per-

category basis instead of a per-document basis, the size of the trained catego-

rizer will stay fairly small compared to more resource-intensive categorizers like

k-Nearest-Neighbor.

2.3.2 k-Nearest-Neighbor

The k-Nearest-Neighbor algorithm (kNN) is one of the most conceptually simple

TC algorithms in the literature. All documents in T r are considered as vectors

in a space with a similarity measure m : D×D → R. To determine whether an

unseen document di is assigned to a category cj , the k most similar documents to

di using the measure m are determined, where k is a user-adjustable parameter.

If the number of these k documents that belong to cj (possibly weighted by

the similarity measure m for each similar document) is greater than some pre-

defined threshold, then di is assigned to cj , and otherwise not. This technique

has been described in [38, p. 28], [50], and [51], among others.

The choices for the k parameter, the category-membership threshold, the

similarity function m, and how to map from the similarity scores m to the

overall score for cj provide for many variations on the standard algorithm. For

instance, a single membership threshold may be used for all categories, or a

different threshold may be used for each category, possibly learned by optimizing

performance on a validation set. In addition, if more than one document is being

categorized in a batch operation, several differing strategies for thresholding may

be employed that take advantage of the overall proportions of documents that

belong to each category [49].
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Although the k-Nearest-Neighbor algorithm is conceptually simple, it is com-

putationally intensive. Unless thresholds are learned from a validation set, there

is no actual training stage when building a categorizer—all decisions are made

by computations performed during categorization. The time to train a kNN cat-

egorizer is therefore minimal or null, but the time to categorize a single unseen

document scales linearly with |T r| and must be performed in full for each cate-

gorization. In addition, the entire training corpus T r must be preserved in the

categorizer’s model, so memory or storage requirements may be prohibitively

high in some environments.

2.3.3 Support Vector Machines

Support Vector Machines (SVM) are another extremely active area of research

in the Text Categorization literature. Their use in TC was introduced by [21],

and several studies, including [21] and [50], have found their results to be highly

competitive with other Machine Learning methods on the standard benchmark

corpora.

SVM techniques are similar to kNN in that they view the training documents

as vectors in a vector space, and that they require a similarity function (called

the “kernel” function) that plays a role similar to the function m in Section

2.3.2 [37, ch. 1]. However, instead of considering the documents most similar

to the document to be categorized, SVM algorithms learn a decision surface

during training which divides the vector space into regions that indicate category

membership. Categorization then simply consists of determining which side of

the decision surface each document lies on.

One key advantage of SVMs is that they can deal well with very large feature

spaces, both in terms of the correctness of the categorization results and the ef-

ficiency of the training and categorization algorithms. This implies that little or

no feature selection may need to be performed on the training data, removing a

possibly time-consuming aspect of the TC process. Unfortunately, a disadvan-

tage of many SVM training algorithms is that they scale poorly with |T r|, in
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some cases requiring as much as O(|T r|3) or O(|T r|4). This may make their use

with large numbers of documents prohibitive unless the standard algorithms are

modified.

2.3.4 Decision Trees

Decision Trees (DT), developed during the 1960s and applied to Text Catego-

rization by [31], are a popular Machine Learning technique in the TC literature

[27, ch. 3] [38, p. 22] [26, sec. 16.1]. DT algorithms involve the construction

of a tree structure to be used in categorizing documents. Each node in the tree

refers to a feature from the training corpus, each branch entails a test on the

feature’s weight in the given document, and each leaf indicates a category to

assign to the document [38, p. 22].

The automatic construction of Decision Trees can be a difficult and time-

consuming task. The main benefit provided by DTs is that the tree structure is

easily interpretable by humans, making the categorizer’s decision-making pro-

cess transparent to the user. The tree may also be converted into a set of

boolean rules [27, sec. 3.7.1.2], which may help a user further understand the

process.

Because of a need to limit the scope in which testing was performed, and be-

cause [50] does not evaluate Decision Tree categorizers, the discussion in Chapter

5 does not include the Decision Tree categorizer in AI::Categorizer.

2.4 Performance Measures

Several statistical measures have become standard in the area of evaluating

Text Categorization systems [38, p. 33]. Some of the most prevalent are based

on the notions of precision and recall from the field of Information Retrieval

[41]. Precision, often denoted by the symbol π, measures the probability that

a document assigned by the TC system to a given category actually belongs to

that category. Conversely, recall, denoted by ρ, measures the probability that
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Expert choice
Yes No

System Yes Ai Bi

choice No Ci Di

Table 2.2: Contingency table for category ci

a document actually belonging to a certain category will be assigned during

testing to that category [38, p. 33].

The probabilities mentioned above can be estimated during testing by com-

paring how often the TC system’s category choices match the correct categories.

A valuable tool for this analysis is the “contingency table,” which summarizes

the results of the experiment for a given category. Table 2.2 shows a contin-

gency table for the category ci, i.e. any arbitrary category in the categorization

scheme of the corpus. Here, Ai, etc. represent the number of documents that

fall into the given situation, i.e. Ai is the number of test documents assigned to

category ci by both the expert and the TC system.

This allows us to estimate π and ρ, whose true values are P (Expert =

Y |System = Y ) and P (System = Y |Expert = Y ), respectively, in terms of the

entries in the contingency table. Since the number of documents assigned to

category ci by the TC system is Ai +Bi, and the number assigned by the expert

is Ai + Ci, our estimates for π and ρ are Ai

Ai+Bi
and Ai

Ai+Ci
, respectively.

π and ρ give valuable information about the performance of a TC system,

but neither provides an isolated rating of the system’s quality. The reason

is that either measure can usually be improved in a system to the detriment

of the other [38, p. 35]. For instance, the trivial acceptor categorizer, which

assigns every document to every category, will have a perfect ρ score of 1, but

its precision will be unacceptably low on any nontrivial task.

Therefore, a measure that combines π and ρ is desirable as an overall measure

of the quality of the TC system. One such measure is the Fβ measure, first

introduced to the Information Retrieval literature by van Rijsbergen [41, ch. 7].

It is defined by the equation Fβ = (β2+1)πρ
β2π+ρ , where 0 ≤ β ≤ ∞. The β parameter
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provides a continuous way to balance between the importance of π and ρ, with

values closer to 0 emphasizing π, values closer to ∞ emphasizing ρ, and a value

of 1 balancing the two measures equally. Without specific knowledge of an

application’s requirements (for instance, whether false positives for a certain

category are more problematic than false negatives), one may presume that π

and ρ are equally important, and therefore the literature often uses F1 as a

measure of the quality of a TC system on a particular category.

F1i may be derived in terms of the entries of the per-category contingency

table as in Equation (2.4).

F1i =
2πiρi

πi + ρi

=
2Ai

2

(Ai+Bi)(Ai+Ci)

Ai

Ai+Bi
+ Ai

Ai+Ci

=
2Ai

2

Ai(Ai + Ci) + Ai(Ai + Bi)

=
2Ai

2Ai + Bi + Ci

(2.4)

Two other measures of categorization quality, error and accuracy, are also

sometimes encountered in the TC literature. These are simple measures which

can also be defined in terms of the contingency table in Table 2.2: error =

Bi+Ci

Ai+Bi+Ci+Di)
, and accuracy = Ai+Di

Ai+Bi+Ci+Di)
. In other words, error is the

proportion of the system’s decisions that matched the expert’s choices, and

accuracy is the proportion that did not. As summarized in [38, p. 34], these are

not always useful measures of categorization quality, because the trivial rejector

(a system that never assigns any documents to any category) will often have a

lower error and higher accuracy than most nontrivial categorizers. Nonetheless,

error will be measured for the evaluation tasks here, because it may give insight

into the character of the system’s performance.
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2.4.1 Combining Measures Across Categories

Section 2.4 introduced several performance measures that may be defined to

evaluate a categorizer on a single category. In order to evaluate the categorizer’s

overall performance on the entire set of test documents it is desirable to combine

the per-category scores πi, ρi, and F1i into overall scores for the entire category

set.

Two methods for doing this are standard in the literature. The first is called

micro-averaging, which sums the terms in the contingency table for all categories

simultaneously rather than in per-category tables. In other words, the micro-

averaged π, ρ, and F1, notated πµ, ρµ, and Fµ
1 , are defined in terms of the

per-category contingency tables by the equations in (2.5).

πµ =
∑|C|

i=1 Ai∑|C|
i=1 Ai + Bi

ρµ =
∑|C|

i=1 Ai∑|C|
i=1 Ai + Ci

(2.5)

Fµ
1 =

∑|C|
i=1 2Ai∑|C|

i=1 2Ai + Bi + Ci

Micro-averaging gives equal weight to each categorization decision made by

the system, or equivalently, to each document in the corpus, regardless of how

many categories it belongs to.

An alternative to micro-averaging is macro-averaging, in which the per-

category scores πi, ρi, and F1i are simply averaged to find the macro-averaged

π, ρ, and F1, notated πM , ρM , and FM
1 . The equations in 2.6 describe this

procedure.

πM =
∑|C|

i=1 πi

|C|
ρM =

∑|C|
i=1 ρi

|C|
FM

1 =
∑|C|

i=1 F1i

|C|
(2.6)

Macro-averaging gives equal weight to each category in the corpus, regardless

of how many documents it contains. Thus it provides a good counterpart to
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micro-averaging; macro-averaging will place more emphasis on rare categories

than micro-averaging, so reporting both scores is typically useful to evaluate the

system as a whole.

Because micro-averaging emphasizes performance on common categories,

and categorizers will typically perform better on categories with more training

examples, micro-averaged performance scores are usually higher than macro-

averaged scores. The size of the gap between the micro- and macro-averaged

scores can be a good indicator of the difference in performance of the system on

common and rare categories.

Note that the error and accuracy measures are unaffected by micro- vs.

macro-averaging, as shown in Equation 2.7. This uses the observation that

Ai + Bi + Ci + Di = |T e|, a consequence of the fact that exactly one of the

terms on the left side will be incremented with each decision about whether or

not a document from the test set belongs to ci.

errorM =
∑|C|

i=1 errori

|C|

=

∑|C|
i=1

Bi+Ci

Ai+Bi+Ci+Di∑|C|
i=1 1

=

∑|C|
i=1

Bi+Ci

|T e|∑|C|
i=1 1

=
∑|C|

i=1 Bi + Ci∑|C|
i=1 |T e|

=
∑|C|

i=1 Bi + Ci∑|C|
i=1 Ai + Bi + Ci + Di

= errorµ

(2.7)



Chapter 3

AI::Categorizer Framework

Design

Framework design is a difficult task in general, because a well-designed frame-

work must allow for several kinds of growth [15, p. 11]. The framework interface

must be usefully applied to several different use cases, including ones that the

framework designer may not be able to foresee. The framework must also be

extensible by subclassing, and must therefore have enough structure that the

relationships among classes are well-defined, yet flexible enough that the appli-

cation developer can make appropriate modifications.

In designing the AI::Categorizer framework, attention has been paid to

three primary areas: the framework’s audience motivates the interface, use cases

motivate the functionality, and algorithms and data structures motivate the

implementation. In this chapter the functionality and interface decisions will be

discussed in detail. Implementation will be discussed primarily in Chapter 4.

However, some implementation issues inevitably motivate design, so they will

be mentioned in this chapter as appropriate.

For brevity, the AI::Categorizer:: prefix will be omitted from class names

in this discussion. It is to be understood that any class within the AI::Categor-

30
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izer framework (except the top-level class AI::Categorizer itself) is prefixed

by AI::Categorizer::.

3.1 Audience

The design process for any sufficiently complicated software system benefits

from consideration of its users and the specific ways they will want to interact

with the system [2, ch. 16]. This provides both a motivation for the design

of the system’s interfaces, and a way to evaluate the system during and after

its development, by ensuring that the users can use the system to perform the

required functionality.

The main users of Text Categorization software may be generally divided into

three categories: TC researchers, application developers, and domain experts.

Of course, one person may play several of these roles simultaneously, but it is

helpful during the design process to separate these roles for analysis.

3.1.1 Researcher

A researcher is interested in exploring novel approaches to machine learning or

document processing. This professional is often not interested in implementing

a real-world application, but wishes to improve existing Text Categorization

algorithms and methodologies.

A researcher will often extend the framework with custom code that im-

plements new functionality. For instance, the researcher may implement new

machine learning algorithms or variations on existing algorithms. Researchers

will also need tools for comparing the results of categorization experiments and

may find it convenient to have a graphical interface for running common kinds

of experiments.

Although a researcher will often need to write low-level framework extension

code, that code will often be called from a high level. A researcher’s application

programs may be extremely simple, in effect training a categorizer and testing
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it on a set of test documents.

3.1.2 Application Developer

An application developer is a professional such as a web developer or engineer

that needs to add automatic categorization features to a software application.

The application developer may have no prior experience with Text Categoriza-

tion, but may still need to control the TC process closely because of specific

application needs. An application developer may want to treat a TC system as

a library or set of libraries, providing no custom code of his or her own. Alterna-

tively, the developer may add custom code for accessing data in the application’s

native formats or integrating with the application’s environment.

While the application developer may write less custom framework code than

the researcher, framework usage may be more complicated. The application

developer is often interested in very specific aspects of the categorization process,

such as which/how many categories are assigned to any given document. Thus

the application developer will typically create more complex applications using

the framework than the researcher, exercising the framework API to a greater

extent.

3.1.3 Domain Expert

Complex applications often require a domain expert who dictates project re-

quirements and has expertise in the application domain (for example, financial

documents or knowledge management). The domain expert often makes high-

level decisions about when Text Categorization could be effective in the given

domain, and may need to exert fine control over the Text Categorization pro-

cess. The domain expert may delegate actual software development to the other

members of a business team. The domain expert may also be responsible for

building and maintaining the training set T r on which the performance of the

TC system depends.
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3.2 Use Cases

In order to better understand and document how the framework will be used,

an analysis of use cases is often helpful [2, ch. 2]. Use cases provide details of

the required functionality of a project. They can also provide a starting point

for design of the project’s architecture. In this section, several common use

cases for a Text Categorization application are discussed. The design of the

framework should be directed toward satisfying these use cases.

3.2.1 Scientific investigations

Much of the academic work on Text Categorization is scientific investigation

into various techniques for document processing [38]. This work may include

investigations into methods for preprocessing document content, feature selec-

tion and extraction, or machine learning methods. Most often, researchers will

develop or adopt a measurement for the quality of results, then compare two

or more document processing methods and present the measurements for each

method.

A typical use case for this type of investigation is as follows. The researcher

obtains one or more corpora of documents on which to perform his or her ex-

periments. If the corpus data is not in a format compatible with the tools

being used, the data must be transformed into a different format. The data

is then loaded into one or more systems that process the data. In a research

setting, at least one of these systems will likely have components developed by

the researcher, as novel work is usually under investigation. The outcome of the

systems’ processing is then collected and analyzed using the measurement for

quality of results, and the work is presented to others for review.

Variations on this use case may arise from the specific area under investiga-

tion. For instance, if the researcher is investigating feature selection, different

elements of the TC software will be used or customized than if the researcher

is investigating machine learning techniques. The process flow may also vary



CHAPTER 3. AI::CATEGORIZER FRAMEWORK DESIGN 34

depending on whether the researcher is repeating the same process many times

on different data sets, different processes many times on the same data set, or

using a different methodology.

In most cases, the researcher will also need a way to keep track of exper-

imental procedures and settings so that results under different conditions can

be compared. This functionality may be directly provided by a categorization

framework, or it may be provided by application layers written on top of the

framework.

3.2.2 Embedded applications

In order to be useful in real-world applications, a categorization framework may

need to function in multiple kinds of embedded environments. For example,

a web-based application might embed categorization functionalities directly in

the web server, or a categorization-enabled database might embed a catego-

rizer directly in the database engine. A TC framework that can exist in these

environments will increase its usefulness.

3.2.3 Client-server applications

An alternative to the embedded applications described in Section 3.2.2 is to use

a client-server model. In this model, the application developer creates a dedi-

cated categorization server which communicates over a data socket with clients.

The main application (such as the web server or database described above)

communicates over a data socket with the categorization server. Recent stan-

dardizations in protocols such as SOAP [3] and XML/RPC [40] have provided

commonly-available, easy-to-use tools for creating these kinds of applications.

Since a single categorization server can provide services to multiple application

clients, developers may reduce development time when building TC applications

in this manner. In addition, using the client-server model allows organizations

to separate the categorization system from the front-end application, which may

be necessary when the document data is sensitive or proprietary.
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3.2.4 Database cooperation

Since organizations often store important data in a relational database, a TC

framework can provide important services by cooperating directly with the data-

base. This cooperation may involve retrieving documents from the database,

retrieving document-category membership information from the database, using

the database as a storage medium for the learned categorization model, or pro-

viding categorization services to database queries in the form of SQL functions.

A fellow student at the University of Sydney, David Bell, has created an

interface between the PostgreSQL relational database and the AI::Categor-

izer framework, allowing the retrieval of documents from the database and

access to categorization functionality via SQL functions [45]. Although the

SQL interface functions will need to be rewritten for each database system (e.g.

Oracle, Sybase, MySQL), the core framework functionality can be reused.

3.3 Overview of AI::Categorizer class hierarchy

In order to understand the structure of the AI::Categorizer framework, mul-

tiple kinds of analysis are helpful. We can examine the inheritance relationships

of the classes that participate in AI::Categorizer and indicate which classes

inherit from each other. Since a class generally is a representation of certain

responsibilities and capabilities, this lets us see how the set of responsibilities for

one class may be implemented in different ways or extended by its subclasses.

Figure 3.1 explains the notational elements used in the diagrams in this sec-

tion. Because [18] is heavily drawn upon throughout this chapter, a notation

closely following its notation is used here, with some elements borrowed from

common UML [2, ch. 4-5]. Abstract classes (classes in which key functionality

is left undefined, and which must be subclassed before being used in an applica-

tion) are represented using italic font faces, and concrete (non-abstract) classes

are represented using bold font face.

Figure 3.2 shows the inheritance relationships among classes in the AI::Cat-
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inheritance
Subclass

Class

AbstractClass

inheritance
Class

attribute1
attribute2
Type1 method(Argument)
Type2 abstract_method() one

many

creation

aggregation

reference

Figure 3.1: Diagrammatic notation for object relationships

Collection

AI::Categorizer

Document::Text

Learner

Experiment

Collection::Files

Document::SMART

KnowledgeSet

Document

FeatureSelector::DocFrequency

Learner::SVM

Category

Collection::InMemory

Hypothesis

Learner::NaiveBayes

FeatureVector

FeatureSelector

Learner::KNN

Collection::SingleFile

Collection::DBI

Learner::DecisionTree

Learner::Boolean

Learner::Weka

Learner::Rocchio Learner::Guesser

Document::XML

Figure 3.2: Inheritance diagram for AI::Categorizer
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egorizer framework. Note that this diagram illustrates the capabilities of the

framework more than it illustrates its architecture. For instance, the framework

currently understands several document types, including plain text documents

and documents stored in the format used by the SMART Information Retrieval

system [4]. If the framework is extended by writing additional subclasses of

existing classes, the capabilities increase without changing the basic architecture

of the framework.

Note that the inheritance diagram is not particularly enlightening about how

various classes cooperate to perform text categorization tasks. The inheritance

relationships are set at compile-time and do not change while the framework

is in use. Note also that in any given application, only one member of each

inheritance hierarchy will typically be instantiated; an application using the

SVM algorithm for categorization will not instantiate other Learner classes. So

while the inheritance hierarchy diagram provides information about the capa-

bilities of the framework, it provides little information about the structure of

an application that uses the framework.

Another way to examine the framework is to examine the run-time relation-

ships between its classes. This often provides a much more enlightening analysis

of a framework, since modern framework design often favors object composition

over class inheritance for its important structural relationships [18, p. 20].

The diagram in Figure 3.3 shows the most important run-time relationships

between classes in the AI::Categorizer framework. In this diagram, no in-

heritance relationships are shown—any inheritance hierarchies are represented

only by their parent classes. In general, a class and its subclass will share an

interface and have identical relationships to other classes, but will differ in im-

plementation. Therefore, the relationships indicated in this diagram indicate

stable aspects of the framework that do not change when the framework is

extended by subclassing.
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AI::Categorizer

KnowledgeSet

Experiment

Hypothesis

Learner

FeatureVector

Category

Collection

Document

FeatureSelector

Figure 3.3: Class composition diagram for AI::Categorizer

3.4 Framework classes

Some examination of the basic relationships between classes and the responsi-

bilities of each class is helpful before looking at the design in more detail. The

following classes form the main framework roles in AI::Categorizer. For ex-

position purposes, the UML class specification boxes do not list every attribute

and method of each class, rather only the most important ones for this discus-

sion. In particular, all classes define new() constructor methods, not shown in

the UML specifications, that accept various parameters (usually corresponding

to the member attributes). For a complete reference, please see the AI::Cate-

gorizer documentation.
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3.4.1 KnowledgeSet

KnowledgeSet
Document[] documents
Category[]categories
FeatureSelector feature selector
void documents()
void categories()
void scan features(Collection)

The KnowledgeSet class represents a set of processed documents, a set of

categories, and a many-to-many mapping between the two sets. Processing may

involve tokenization, stopword removal, linguistic stemming, feature selection,

and vector weighting. Note that the term “knowledge set” is somewhat unique

to this project, though the term “knowledge” is often used to describe an or-

ganization’s collection of data used as the training set T r when building a TC

application.

A KnowledgeSet contains references to many Document objects and Cate-

gory objects. It uses Collection objects to instantiate Document and Category

objects. It uses a FeatureSelector object to perform feature selection. It also

contains a FeatureVector object representing the features present in all docu-

ments.

3.4.2 FeatureSelector

FeatureSelector
number features kept
FeatureVector reduce features(FeatureVector)
FeatureVector select features(KnowledgeSet)
FeatureVector rank features(KnowledgeSet)
FeatureVector scan features(Collection)

Feature selection is performed by subclasses of the abstract FeatureSelec-

tor class. Each KnowledgeSet object contains a FeatureSelector object—the

KnowledgeSet provides the information necessary to do feature selection, and

the FeatureSelector performs the desired feature selection algorithm. A fea-
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tures kept parameter sets an attribute of the same name in the FeatureSe-

lector class which controls how aggressively the features will be reduced.

The abstract rank features() and scan features() methods must be im-

plemented by concrete subclasses of FeatureSelector. They provide two ways

to create a ranked list of the features in a corpus. rank features() will examine

a KnowledgeSet object which has already been populated with document data,

returning a FeatureVector object representing the relevance of each feature in

the corpus according to the feature selection criterion. The scan features()

method has the same result, but operates on a Collection object so that the

most relevant features can be determined without first having to read the entire

collection into memory. A concrete FeatureSelector::DocFrequency subclass

implements these methods, and may therefore be used in a blackbox manner

for feature selection.

3.4.3 Collection

Collection
hash category hash
int count documents()
Document next()
void rewind()

Because data sets in text categorization may be very large, and because their

documents may exist in several different underlying storage mechanisms (e.g.

as files in a filesystem, sections of a larger XML file, or fields in a database),

a Collection class provides an abstract interface to a set of stored documents

together with a way to iterate through the set and return Document objects.

A concrete subclass of Collection must implement the next() and re-

wind() methods for the specific kind of iteration handled. next() should return

the next document in the collection, and rewind() should reset the collection’s

iterator. This might mean re-executing a database query or moving to the

beginning of a file or directory stream.

The default implementation of count documents() simply calls next() un-



CHAPTER 3. AI::CATEGORIZER FRAMEWORK DESIGN 41

til all documents in the collection have been exhausted, counting how many

documents are returned. This can typically be replaced by a more efficient

concrete implementation that doesn’t need to instantiate each document as an

object.

The type of iteration to be performed, as well as the location of the document

resources, will be specified by parameters to concrete subclasses. Because the

locations may not have any uniform structure across subclasses (for instance, one

subclass could use a path on the local filesystem, another could use a username,

password, and query for a database, and another could use a Uniform Resource

Locator for network collections), the determination of the exact parameters to

specify is left to the subclass implementations.

A category hash parameter lets the caller supply a hash relating document

names to categories—if this is not provided, category information will be de-

termined while iterating through the collection and processing the document

data.

A Collection object may be used in several contexts within the framework.

For instance, a KnowledgeSet instantiates its Document and Category objects

through a Collection object. A Learner object may also mass-categorize the

Documents in a Collection object.

3.4.4 Document

Document
string name
Category[] categories
FeatureVector features
void parse(string)
void parse handle(filehandle)
void create feature vector()
FeatureVector features()

Each text document is represented by a Document object, or an object of one

of its subclasses. Each document class contains methods for turning document

data into a FeatureVector. Each document also has a method to report which
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categories it belongs to.

In the standard methodology, the parse() or parse handle() methods cre-

ate plain-text data from the native format of the document, and the create -

feature vector() method creates a FeatureVector object (stored as a data

member) from the text data. A default implementation of parse() is not sup-

plied in the base class.

Note that the Document class is not purely an abstract class, because a

Document object may be constructed and supplied directly with a Feature-

Vector object. Perl does not enforce the concept of abstract classes, so an

unimplemented parse() method is not a problem in this case. This can make

subclassing unnecessary for special-purpose types of “documents” like images

or sequences of biological data.

3.4.5 Category

Category
string name
Document[] documents
Document[] documents()
boolean contains document(Document)
void FeatureVector(features)

Each category is represented by a Category object. Its main purpose is to

keep track of which documents belong to it, though it also contains methods for

examining statistical properties of an entire category.

Every category must have a name string, because Collections will usually

use the string to map between documents and categories. The string name is

also shown to users when presenting categorization decisions.

The features() method returns a vector representing the sum of all vectors

of documents that belong to the category. This may be used during a Machine

Learning process. If the learner requires a different kind of aggregate represen-

tation of a Category than a simple vector sum, then the documents() method

should be used to construct it manually.
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3.4.6 Learner

Learner

void train(KnowledgeSet)
void create model(KnowledgeSet)
Hypothesis categorize(Document)
float get scores(Document)

The abstract Learner class provides an interface to train on a set of pre-

categorized documents using the train() method and subsequently categorize

previously unseen Document objects using the categorize() method. Its con-

crete subclasses implement specific categorization algorithms like Näıve Bayes,

SVM, Decision Tree, and so on.

The create model() and get scores() abstract methods need to be imple-

mented in concrete Learner subclasses. They are called internally by train()

and categorize(), respectively. The get scores() method returns categoriza-

tion information in terms of per-category scores and a membership threshold.

categorize() translates this data into a Hypothesis object representing the

categorization.

3.4.7 FeatureVector

FeatureVector
hash features
float euclidean length()
void scale(float)
FeatureVector intersection(FeatureVector)
float dot(FeatureVector)

As discussed in Section 2.2.6, most categorization algorithms don’t deal di-

rectly with a document’s data, they instead deal with a vector representation of

a document’s features. Most often, documents are represented using the “Bag

of Words” model [38, p. 10], i.e. a non-ordered, weighted set of features. The

FeatureVector class provides an interface to the operations one may perform

on these vector representations, such as querying features’ presence or absence

in a document, finding sums of vectors, and so on.
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The default implementation of the FeatureVector class stores its data in a

Perl hash. See Section 4.3.1 for discussion of an alternate approach.

3.4.8 Hypothesis

Hypothesis
Category[] all categories
hash scores
float threshold
Category[] categories()
Category best category()
boolean in category(Category)

The result of asking a Learner to categorize a previously unseen document is

a Hypothesis object. It may be queried for information about which categories

were assigned, which category was the single most appropriate category, what

scores were assigned to each category, and so on.

In order to support this range of behaviors, the Learner is required to create

the Hypothesis object by specifying an appropriateness score for each category

and a threshold for category membership. Any category whose score is above

the threshold is considered assigned by the system to the given document.

3.4.9 Experiment

Experiment
Category[] categories
void add hypothesis(Hypothesis)
float micro F1()
string stats table()

The Experiment class can examine the results of many categorization deci-

sions (i.e., many Hypothesis objects) and may be queried for aggregate infor-

mation about the results. This is often used in order to determine the quality

(as measured by precision, recall, error, etc.—see Section 2.4) of a Learner on

a collection of test documents.

The Experiment class uses the external module Statistics::Contingency

from CPAN to store and compute its results. The Statistics::Contingency
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module was created for the AI::Categorizer project, but was split from the

framework code because it is useful for projects not involving the rest of the

framework. The framework’s Experiment class is therefore quite small, inher-

iting most of its functionality from the more general-purpose module.

Experiment contains an add hypothesis() method for adding Hypothesis

objects to the set of data to be summarized, and implements a stats table()

method for showing a summary of the data in table format with a specified

number of significant figures.

3.4.10 AI::Categorizer

AI::Categorizer
KnowledgeSet knowledge set
Learner learner
Collection test set
void scan features()
void read training set()
void train()
void evaluate test set()
void run experiment()

An umbrella class AI::Categorizer sits above the rest of the classes pro-

viding a convenient interface to a complete system for text categorization. Most

applications built using the framework will instantiate an object of this class.

Note that the term AI::Categorizer can refer either to the framework as a

whole, or to the umbrella class. The distinction will be made clear in this text

where it is necessary to do so.

The main benefits of having an umbrella class in the framework are that

the object constructor mechanism described in Section 3.5.5 can operate con-

sistently across the entire framework, and that it provides a very high-level in-

terface, requiring very little application-specific code to invoke the framework’s

functionality.

The most important attributes of the AI::Categorizer class are a Learner,

a KnowledgeSet that the Learner trains on, and a Collection of documents
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that the Learner can be tested on. Because not every usage of this class need

involve both training and testing, the KnowledgeSet and Collection attributes

may be null if they are not needed by the particular application.

The scan features() method invokes feature selection using the Knowl-

edgeSet’s FeatureSelector. The resultant list of desired features can be used

by the read training set() method which populates the KnowledgeSet with

data from the training corpus. The train() method invokes the Learner’s

train() method on the KnowledgeSet, and the evaluate test set() method

invokes the Learner’s categorize collection() method on the test collection.

A run experiment() method automates the running of these four methods and

shows the user a summary of the results.

3.5 Design Patterns in AI::Categorizer

The real power and intellectual content of any framework lies not in the design

of its individual classes, but in the interfaces between the classes and the way

objects collaborate to solve problems in the framework’s application domain [15,

p. 31]. These relationships can be quite complicated and difficult to explain,

yet understanding them is essential to understanding the framework.

In this section, certain important local structures in the AI::Categori-

zer framework design will be discussed using the language of design patterns

(see Section 1.2.1). The “Iterator,” “Composite,” “Adapter,” “Strategy,” and

“Factory Method” patterns are discussed, and specific examples from AI::-

Categorizer show how they are applied within the framework. These are not

by any means the only instances of common design patterns in the framework,

nor do the specific patterns in [18] provide a complete catalog of all possible

patterns in software. This discussion also does not give complete coverage to all

design-related issues involved in AI::Categorizer. But patterns often provide

a starting point for design discussion, and their use has been found beneficial

in many diverse arenas [19], so they are used here in the hope that they clarify
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the important design issues.

3.5.1 Iterator

The Iterator pattern provides “a way to access the elements of an aggregate

object sequentially without exposing its underlying representation.” [18, p. 257]

Its main purpose is to decouple the traversal process on an object’s aggregate

members from the object’s internal data structure implementation. In this

way, clients can iterate through aggregate objects without knowing the objects’

internal structure.

In the AI::Categorizer framework, it is often necessary to iterate through

collections of documents and perform some action on them. For example, the

documents may form a training set for a Learner to base a model on, or they

may form a test set on which to evaluate the model.

The Collection class implements the Iterator pattern [18, p. 257] over

documents in the framework. Figure 3.4 shows the main relationships involved

in this pattern.

[18, p. 259] suggests that the most common reasons for using a formal

custom iterator are:

• to access an aggregate object’s contents without exposing its internal rep-

resentation.

• to support multiple traversals of aggregate objects.

• to provide a uniform interface for traversing different aggregate structures.

The first and third reasons are most germane to the TC document iteration

process. As explained in section 2.2.1, it is important that the framework can

directly import documents from their various underlying storage mechanisms in

order to prevent unnecessary duplication of data. In order to hide the details

of the storage mechanism from the rest of the framework, a Collection object

retrieves documents from the storage mechanism and returns them as Document
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Collection::Files
Document next()
void rewind()

Filesystem

Collection::SingleFile
Document next()
void rewind()

Collection::DBI
Document next()
void rewind()

file Database
Document

read()
parse()

Document::Text

Document::XML

Document::Word

Collection
document_class
Document next()
void rewind()

Figure 3.4: The Iterator pattern in the Collection class

objects. It provides a unified interface to iteration over stored documents so

that the various classes that need to perform this iteration (chiefly Learner

and KnowledgeSet) don’t need to be aware of storage issues. In this sense,

the “internal representation” of the aggregate structure is often external to the

framework itself—it may be files in a filesystem, entries in a database, records

in an XML document, or another mechanism.

In addition to providing a generic interface to a stored collection of docu-

ments, the Iterator pattern allows clients of the Collection class to use memory

efficiently. A Collection object will typically defer creation of its Document

objects until its client calls its next() method. In this way, the Collection

doesn’t store all the Document objects in memory simultaneously—if the client

needs to do so, it can, or it can merely query properties of each document and

dispose of them in turn.

Note that the Collection class defines a next() method, but no previ-
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ous() method. This is largely because common document storage mechanisms

like filesystems or databases typically only have one-directional iterators. In-

sisting that Collection classes needed to implement a previous() method to

support bidirectional iteration would impose an unreasonable burden on them.

In order to decouple the storage mechanism from the internal format of docu-

ments (see section 2.2.2), Collection classes can cooperate with any subclass of

the Document class. The client of the Collection class informs it that it should

instantiate documents using a certain Document subclass. Since the Document

subclasses share a common interface, Collection may remain ignorant of all

internal document formatting issues, passing data to the proper constructors in

order to instantiate Document objects.

3.5.2 Composite

The Composite pattern “lets clients treat individual objects and compositions

of objects uniformly.” [18, p. 163] It is often used to represent trees or other

data structures in which the form of a subset of the structure is not qualitatively

different from the form of the entire structure. In simple terms, this means that

the same kinds of operations—iteration over sub-nodes, inspection of the root

node, and so on—can be performed on the entire tree, a subtree, or even a single

node.

In fact, the Composite pattern does not apply only to tree structures. It

applies whenever a self-similarity exists between the whole and the parts in a

part-whole hierarchy.

One instance of this kind of structure in Text Categorization is in so-called

“ensemble learners,” also known as “classifier committees.” An ensemble learner

is a categorizer that combines the results of a set of other categorizers in some

way to arrive at a categorization result of its own [38, p. 30]. Often, an en-

semble learner may outperform each of its constituent members on the general

categorization task [39].

To implement ensemble learners within AI::Categorizer, the Composite
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Learner
train()
categorize()

Learner::DecisionTree
train()
categorize()

Learner::Weka
train()
categorize()

Learner::SVM
train()
categorize()

Learner::Ensemble
train()
categorize()

members

foreach m in members
m->train()

foreach m in members
   m->categorize()
combine_results()

Figure 3.5: The Composite pattern in the Learner::Ensemble class

pattern may be applied to the Learner class to create a Learner::Ensemble

subclass. Figure 3.5 shows the classes participating in this pattern.

Since Learner::Ensemble is a subclass of the abstract Learner class, it

conforms to the Learner interface. This is crucial to implementation of the

Composite pattern—it means that clients may use the Learner::Ensemble class

without knowing that it implements an ensemble learner behind the scenes. In

this way, transparent ensemble learning is achieved through polymorphism.

According to [38, p. 30], ensemble learning techniques can be specified by (1)

a set of individual learners (the “members” in Figure 3.5), and (2) a mechanism

for combining the output of the individual learners. The Learner::Ensemble

class can provide generic support for creating the member learners of the en-

semble, but the combination mechanism may take many different forms. Such

algorithms are an active area of Machine Learning research. As such, Learn-

er::Ensemble may be subclassed in order to implement different combination

mechanisms. Since these subclasses implement the combination algorithm in

different ways, they may themselves be seen as carrying out a Strategy pattern

(see section 3.5.4).
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3.5.3 Adapter

The Adapter pattern “converts the interface of a class into another interface

clients expect.” [18, p. 139] It is commonly used when an existing resource

provides the functionality necessary for a certain task, but the interface of that

resource doesn’t match the interface necessary for the environment in which

that task must be performed. For example, a framework may require that a

particular role is implemented by subclasses of a certain abstract class. This

helps unify functionality by taking advantage of polymorphic abstraction [15,

p. 5]. That functionality may already be present in an existing body of code

outside the framework. An Adapter can help bridge the gap between the two

code bodies by letting the external code function inside the framework.1

Many developers in the text categorization community create their software

as demonstrations of novel algorithms, or as stand-alone libraries that imple-

ment one small part of the overall text categorization task. The majority of

cutting-edge research will be implemented in this way, if a public implementa-

tion is available at all. In order to leverage this work for a categorization frame-

work, some adaptation is invariably necessary. Unless a developer happened to

be using AI::Categorizer as a development environment, her implementation

will not be directly usable as a framework element. Thus Adapters provide a

mechanism for keeping the framework current with advances in the field of text

categorization.

Figure 3.6 shows how the Adapter pattern is present in AI::Categorizer’s

Learner class. The abstract Learner class specifies a common interface that

all subclasses must conform to. Several of its concrete subclasses implement

their functionality using a framework-external resource. For example, Learn-

er::DecisionTree uses the stand-alone module AI::DecisionTree for imple-

mentation. Learner::Weka is a wrapper around the “Weka” Machine Learning

system. Learner::SVM is a wrapper around a framework-external Algorith-
1An Adapter may sometimes be called a Wrapper. Both terms will be used in this discus-

sion.
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Learner
train()
categorize(Document)

Learner::DecisionTree
train()
categorize(Document)

AI::DecisionTree
add_instance(hash)
train()
string get_result()

Learner::Weka
train()
categorize(Document)

Weka

Learner::SVM
train()
categorize(Document)

Algorithm::SVM
train(A::S::DataSets)
predict()

libsvm

Figure 3.6: The Adapter pattern in the Learner class

m::SVM module, which is itself a wrapper around the libsvm[7] C library.2

Note that these four Adapter examples exhibit three very different applica-

tions of the Adapter pattern. Learner::DecisionTree exhibits a very straight-

forward Adapter usage as presented in [18]—an existing stand-alone class exists

that implements the needed functionality, and its interface is adapted to the

framework requirements by a simple wrapping subclass. The Learner::SVM

wrapper is also fairly straightforward. The other two wrappers, however, reflect

the highly heterogeneous nature of the text categorization domain. The main

reason for the adaptation in the Algorithm::SVM class is to provide a Perl inter-

face to a C library. The Learner::Weka adapter combines language adaptation

(in this case, Java to Perl) with functionality transformation (mapping Weka’s

methods to the required Learner interface).

Adapters can create design flexibility. The current implementation of Learn-

er::Weka interfaces with Weka through its command-line interface, but this is
2Note that Learner::SVM, Weka, and libsvm are not part of the contributed work of this

thesis, as they are written by other authors.
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not a design constraint. Future implementations may embed the Weka system

inside the Learner::Weka module for reasons of efficiency or platform compat-

ibility. Because this interface is hidden using an Adapter pattern, the imple-

mentation may be changed freely.

The differences in interfaces between the Adapter and the Adaptee may be

merely historical, or they may reflect different needs in different domains. The

Adapter must conform to the interface of its abstract superclass, which is typi-

cally designed to be independent of subclass abilities and implementations. The

Adaptee may be designed for use in a different arena, with extra functionality

or an interface that takes full advantage of its capabilities.

Using Adapters may bring major benefits in the area of reusability. Ob-

viously, classes won’t have to be re-implemented if the functionality can be

adapted from an existing implementation. Second, and perhaps more impor-

tantly, classes initially implemented for a framework may be converted into

Adaptee classes that are usable in isolation. This can bring them better expo-

sure in other projects and thus more feedback, maturing them quickly. This can

be a major win, because iteration is considered a limiting factor in framework

development [15, p. 75], so any process that speeds up maturity in framework

components can have a large impact. Adapters can also force a more robust

encapsulation of design in the Adaptee, bringing benefits in the conceptual and

technical segmentation of the framework.

3.5.4 Strategy

The Strategy pattern defines “a family of algorithms, encapsulates each one, and

makes them interchangeable” [18, p. 315]. It is used when a domain task needs

to be carried out, but there may be several ways to carry out that task, and it

is important to let the user or client choose from among these alternatives.

An important concept in the Strategy pattern is that of “behavior.” In [18],

the Strategy pattern is recommended when “many related classes differ only in

their behavior.” In this context, a distinction is made between an algorithm’s
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Learner
train()
categorize(Document)

Learner::NaiveBayes
train()
categorize(Document)

Learner::DecisionTree
train()
categorize(Document)

Learner::Weka
train()
categorize(Document)

KnowledgeSet

Hypothesis

AI::Categorizer

Figure 3.7: The Strategy pattern in the Learner class

purpose and its behavior. For example, a set of algorithms for finding line-

break points in text paragraphs have a common purpose (to accomplish the

line-breaking task), but they may carry out their task in different ways. The

algorithms may make different trade-offs in terms of speed and memory, or they

may try to optimize different aspects of the task. Since it is impossible to satisfy

all clients in all situations with a single choice of algorithm, it is desirable to

encapsulate each algorithm in a class that can be chosen or extended by the

client.

The field of text categorization has several natural applications for the Strat-

egy pattern. One of the primary concerns of most TC researchers is the devel-

opment of novel algorithms for various aspects of the categorization task, so it is

essential for these algorithms to be easy to vary in a categorization framework.

In the language of [15], these algorithms are framework “hot spots.”

The most obvious Strategy application in AI::Categorizer is the Learner

class and its subclasses. These classes all have a common task to perform:

that of training a categorizer and categorizing unseen documents. The various

subclasses represent very different ways to accomplish that task. Importantly,

the results of the task, and not just the internal mechanism that performs it,

may be different depending on which Learner subclass is used.

Figure 3.7 shows how the Strategy pattern appears in the Learner class and

its subclasses. Three concrete subclasses are shown that implement specific Ma-
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FeatureSelector
select_features()
scan_features()

FeatureSelector::
DocFrequency

select_features()
scan_features()

FeatureSelector::
ChiSquared

select_features()
scan_features()

FeatureSelector::
MutualInformation

select_features()
scan_features()

FeatureVectorKnowledgeSet

Figure 3.8: The Strategy pattern in the FeatureSelector class

chine Learning algorithms (see Figure 3.2 for other Learner subclasses currently

implemented). From the point of view of the client AI::Categorizer object,

all Learners have the same interface and may therefore be treated uniformly.

The framework user or application designer, however, may choose judiciously

among subclasses depending on the particular needs of the application. Cus-

tomizability of the Machine Learning algorithm is of paramount importance to

the framework since it would be useless to most researchers if this were not the

case. Many researchers may wish to write their own Learner subclasses using

this portion of the framework in the “whitebox” paradigm. Other researchers,

and most application developers, will want to use existing framework classes in

a “blackbox” framework usage style [15, p. 10]. Either method is supported.

Each Learner subclass must implement the abstract train() and catego-

rize() methods in order to perform the two essential tasks of any Learner.

The train() method examines a KnowledgeSet object and builds an internal

(and opaque) model that will be used to categorize future documents. The

categorize() method takes a Document object as an argument and returns

a Hypothesis object representing the outcome of categorization based on the

model.

Another application of the Strategy pattern is shown in Figure 3.8. Here,

the varying algorithm performs feature selection, another framework hot spot.

There has been much activity in current research on improving feature selection

for different scenarios [49, 51], so customization in this area is also essential.
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To perform feature selection, a KnowledgeSet object invokes either the se-

lect features() or scan features() method of the FeatureSelector object,

depending on whether a complete KnowledgeSet or a Collection object should

be examined. Examining a Collection iteratively requires less memory because

the documents don’t have to be loaded into memory all at once, but it requires

a separate pass through the data. The choice of which method to run is made

in response to user specification.

Because select features() and scan features() are virtual methods in

the parent class, any concrete subclass must implement these methods according

to the particular algorithm the subclass represents. As of this writing, only

the FeatureSelector::DocFrequency subclass is implemented, but the other

subclasses in the diagram are planned.

3.5.5 Factory Method

In any framework of sufficient size and customizability, attention must be paid

to the issue of how specific classes are chosen for the various framework roles,

how these classes are instantiated, and how the instantiated objects are con-

nected to each other. In the simplest possible case for the framework developer,

the framework client code must create all objects and manually connect them

to each other. For instance, in AI::Categorizer, the client code might cre-

ate a KnowledgeSet object, a Learner object, an AI::Categorizer object, a

Collection object, then populate the AI::Categorizer object with Knowl-

edgeSet and Learner objects, and the KnowledgeSet with a Collection, thus

satisfying the structural relationships indicated in Figure 3.3 on page 38. An

approach like this is diagrammed in Figure 3.9.

This approach works, but it is error-prone and cumbersome. It forces every

client to specify the framework relationships explicitly, when in fact these are

fundamental relationships of the framework, not of the client code. It makes

little sense for this structural code to be outside the framework and even less

sense for it to be duplicated in every application that uses the framework. Note
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AI::Categorizer

KnowledgeSet

Learner

Collection

client code

c = new Collection(...);
k = new KnowledgeSet(c, ...);
l = new Learner(...);
a = new AI::Categorizer(k, l, ...);

Figure 3.9: A client-side approach to object construction

too that Figure 3.9 only shows a small part of the framework being used—in

reality, the client code would have to accept responsibility for creating all the

objects in the framework, not just the four pictured here.

For these reasons, it is often better if the framework can provide support for

object creation and enforcement of the framework relationships. An example of

this situation is pictured in Figure 3.10. Here, the patterns of object creation

more closely follow the class relationships that will be used at runtime. This

design is moving closer toward a factory-style pattern in which object creation is

delegated to another object [18]. defines two specific kinds of factory patterns:

“Factory Methods” and “Abstract Factories.” Figure 3.10 does not fit either

of these patterns exactly, but it does fall under the general category of factory

object creation.

A scheme like that in Figure 3.10 has both advantages and disadvantages

compared with that in Figure 3.9. One obvious advantage is that the client code

is greatly simplified, because it needn’t create any framework objects except

the top-level object, and because it doesn’t have to link the objects to each

other. This eliminates redundancy in multiple client code bases and allows the

framework designer greater flexibility in redesigning the framework hierarchy.

Another advantage is that the framework objects are created by the objects that

use them, so class code can accept responsibility for its subordinate objects’
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AI::Categorizer

KnowledgeSet

Learner

Collection

client code

c = new AI::Categorizer(...);

Figure 3.10: A framework-side approach to object construction

entire life cycles.

However, these properties can also be seen as disadvantages. If each frame-

work object assumes all responsibility for creating its subordinate objects, then

the client may not be able to control the creation process effectively. This is a

problem for at least two important reasons. First, the client may wish to change

some properties of the objects it creates. If it passes all constructor parameters

to the top-level class constructor, then this constructor must have knowledge

of all of its subordinate classes’ parameters in order to affect their construction

correctly. This would couple the framework classes too closely. Second, the

client may (and frequently will) change which classes are participating in the

framework hierarchy. If the KnowledgeSet class always creates a certain class

of Collection object, then in order to substitute a different Collection class,

the KnowledgeSet class would need to be subclassed—this means the top-level

AI::Categorizer class would also need to be subclassed in order to create

the new type of KnowledgeSet, leading to a proliferation of subclasses just to

manage object creation. Clearly a better solution is needed.

In order to create a proper solution, some analysis of the problem is war-

ranted. Part of the reason these creational issues are difficult is that no stan-

dard method exists to translate the framework’s design relationships into code.

Common programming languages have no built-in support for managing the
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AI::Categorizer

KnowledgeSet
Learner

Collection

client code

c = new AI::Categorizer(...);

ObjectFactory

Figure 3.11: A centralized approach to object construction

patterns of creation necessary in frameworks. Contrast this with inheritance

relationships, which are directly supported by object-oriented languages. For

instance, a C++ or Java class declaration lists its superclasses explicitly, and

Perl specifies inheritance via each class’s @ISA array. Because inheritance is

directly implemented by the language, it is easy for framework users to under-

stand inheritance relationships, and these relationships are expressed straight-

forwardly in the framework code. For support of this point, consider object-

oriented programming in languages like C that don’t have inherent OO support.

Understanding the inheritance structures can be much more challenging in this

situation [15, p. 7].

With this perspective in mind, one solution is to create a way for each class

to explicitly declare its constructor parameters and its relationships to other

classes, and then let the framework manage object creation in a consistent, cen-

tralized manner based on these declarations. In a sense, this approach extends

the implementation language to be able to express the important framework

relationships directly rather than letting them emerge implicitly from patterns

of usage in the code. Client code then supplies parameters that inform the top-

level object about which classes should be instantiated and what parameters

should be passed to each class’s constructors, and the framework itself directs

the object creation process.
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Because many users of an application framework will be hesitant to depend

on a modified, nonstandard version of the implementation language, AI::Cate-

gorizer uses inheritance to add these explicit declaration capabilities to every

class participating in the framework hierarchy. Figure 3.11 shows an example

of how this inheritance functions. The abstract ObjectFactory class3 adds the

ability for any class derived from it to declare the relationships discussed in the

previous paragraph. It also manages the creation of subordinate objects. For

instance, the top-level AI::Categorizer class declares that it contains both a

KnowledgeSet and Learner object in an aggregation relationship. When an

AI::Categorizer object is created, KnowledgeSet and Learner objects will

automatically be created by the ObjectFactory according to the client code’s

parameters. The KnowledgeSet also declares that it will need to create Col-

lection objects on demand, and calls creational methods provided by its Ob-

jectFactory superclass when it needs to create them.

It is important to note that this is not a direct application of either the

Factory Method or Abstract Factory patterns in [18]. The standard Factory

Method pattern requires separate subclasses to create the concrete subclasses.

A closer variation is the “Parameterized Factory Method” [18, p. 110], which

lets the specific subordinate class be determined by switching among several

known classes. This is closer to the data-driven approach employed in AI::Cat-

egorizer, but it doesn’t address the issue of how the subordinate classes must

actually be created at runtime. The Abstract Factory pattern is also similar in

that the creation of multiple objects is centralized, but in AI::Categorizer a

separate factory object is not necessary.

This approach effectively solves the problems with the first two approaches

considered here. The client code is freed from having to create multiple frame-

work objects, and the framework relationships are expressed explicitly in the

framework code, not in the client code or implicitly in the framework imple-

mentation. Clients are also able to easily change which classes participate in
3The ObjectFactory name is used here only for discussion purposes. See Section 4.2 for

the actual implementation details.
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use AI::Categorizer;
my $c = new AI::Categorizer(...parameters...);
$c->run_experiment;

Figure 3.12: Highest-level interface to AI::Categorizer

the framework hierarchy and can specify constructor parameters without in-

voking the constructors directly. Framework code doesn’t create subordinate

objects directly, but defers creation to factory methods inherited from super-

classes. In this way, subclassing is kept to a minimum, and the framework

runtime structure can be highly parameterized.

3.6 Examples

Effective documentation is essential for the use and dissemination of any frame-

work [15, ch. 21]. The AI::Categorizer distribution contains complete doc-

umentation of the user-visible classes. That documentation will not be repro-

duced here. Of use to the present discussion, however, are some simple examples

of using the framework. Example code often forms one of the most important

kinds of framework documentation since it shows concrete examples of frame-

work usage [15, p. 498].

Figure 3.12 shows the highest-level interface usage, in which an entire experi-

ment—training on a training corpus, testing on a test set, and showing results

to the user—is performed by setting appropriate parameters in the constructor

of the highest-level AI::Categorizer object. These parameters may include

learner class for specifying the class of machine learner that should be used,

stopword file for specifying a file containing a list of stop words, or stemming

to indicate what type of linguistic stemming, if any, should be performed on the

document data. The generic Factory Method mechanism described in Section

3.5.5 ensures that each parameter becomes an argument to the appropriate

object constructor method.
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use AI::Categorizer;
my $c = new AI::Categorizer(...parameters...);

# Run the separate parts of $c->run_experiment
$c->scan_features;
$c->read_training_set;
$c->train;
$c->evaluate_test_set;
print $c->stats_table;

Figure 3.13: Separate invocations of experimental phases

my $l = AI::Categorizer::Learner->restore_state(...);
while (...) {

my $d = ...create a document...
my $h = $l->categorize($d);
print "Best category: ", $h->best_category, "\n";

}

Figure 3.14: Using AI::Categorizer for direct categorization of documents

Figure 3.13 shows a slightly lower-level interface to the framework. Here,

the individual stages of the run experiment() method from Figure 3.12 are run

separately, and may in fact be run in separate programs on different machines if

the progress file parameter is used in order to save state between the stages.

In an applied setting, the application developer may need much finer con-

trol over the object behavior. For instance, the developer may not be very

interested in the overall performance on a test set, but rather in the specific de-

cisions of the trained categorizer on documents presented to it by users. Figure

3.14 demonstrates one simple such application, in which the trained catego-

rizer is loaded into memory using the restore state() method (see Section

4.3.3), then repeatedly asked to categorize documents using the categorize()

method. Here the application uses the best category() method to select only

the single category with the best score, but another application may require

different information from the Hypothesis object $h.
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3.7 Limitations

In any software design process, choices must be made that determine the scope

and direction of the project. In designing AI::Categorizer, these choices have

been made in a way that tries to maximize the usefulness for the intended

audience, the reuse of framework components, the framework’s efficiency and

flexibility, and the rapid development of applications. In some cases, these

decisions may limit the capabilities of the framework. This section describes

some of these limitations, explains the reasons for them, and proposes alternative

ways to deal with the problems they present.

3.7.1 Structured Feature Vectors

The basic data model representing documents in the AI::Categorizer frame-

work is the feature vector. In this model, certain features of each document

(typically counts of words or word stems) are measured, and their values are

represented as vectors in a vector space encompassing all document vectors in

the training set. Each document vector is flat, i.e. an n-dimensional vector

with no internal structure, where n is the total number of features in all the

training documents. This representation has been shown to be very effective for

Text Categorization applications [38, p. 10] and is crucial for such common TC

algorithms as k-Nearest-Neighbor and Support Vector Machines.

However, many environments routinely use richer data models for docu-

ments. For instance, researchers in the Linguistics community often represent

documents as hierarchical data structures indicating each syntactical element’s

relationship to the other syntactical elements in the document [26, ch. 11 &

12] [34]. Additionally, many structured HTML and XML business documents

are represented using the Document Object Model, which provides a common

programmatic interface to the logical structure of documents [48].

Because few TC techniques in the common literature take advantage of doc-

ument structure, and because several techniques depend on unstructured vector
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representations, the FeatureVector class only provides an interface to unstruc-

tured feature vectors. This class does leave the implementation of the vectors

unspecified, however, so that different internal representations are possible (see

Section 4.3.1 for more on this topic).

In an application using structured documents, two options exist for taking

advantage of this structure using AI::Categorizer. One option is to “flatten”

the structure of the document into a traditional feature vector representation.

Unfortunately, it is not always clear to the developer how this flattening should

be done, and the flattening process may lose valuable information about docu-

ment structure, making categorization results sub-optimal.

Another option if the document structure is just a sequence of document

sections and not arbitrarily nested structures is to use the AI::Categorizer

framework’s content weights parameter. This allows each document to be di-

vided into an arbitrary number of sections such as title, abstract, body, and so

on, assigning “importance” weights to each section. These weights will be used

when creating a feature vector from the document content, in effect automati-

cally flattening the document into a traditional feature vector.

Neither of these two solutions allow the framework to truly deal with arbi-

trarily structured documents in any natural way. It is therefore to be under-

stood that the framework is not currently capable of exploiting this structure

very deeply, and this is a possible area of future work.

3.7.2 Hierarchical Categorization

Hierarchical categorization is the process of categorizing documents into a set

of categories possessing a treelike structure. The hierarchical nature of the cat-

egory set may be exploited for both increased efficiency and improved accuracy

[13]. Because some common categorization problems are inherently hierarchi-

cal, the field of hierarchical categorization has seen significant attention in the

research literature [38, p. 7].

In the AI::Categorizer framework, hierarchical categorization has not ex-
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plicitly been supported in the architecture. The set of categories in any frame-

work categorization task is assumed to be a simple list of named sets of docu-

ments with no hierarchical structure. However, there are at least two ways of

dealing with hierarchical categorization tasks using the framework.

The first way is to simply transform the hierarchical set of categories into

a simple flat list, by prepending each category’s name with the names of all

its parent categories. In this way, the framework will assign any category in

the flat list of categories, and then the results can be transformed back into

members of the hierarchical category set. The main advantage of this technique

is that it is simple to apply, with a natural and transparent transformation

between structured and flat category sets. The main disadvantage is that the

system is not really performing hierarchical categorization at all, so it is not

taking advantage of any of the hierarchical category structure for efficiency or

accuracy improvements.

The second way to achieve hierarchical categorization using AI::Categor-

izer is to manually break the categorization task into several smaller tasks,

building a separate machine learner for each splitting node in the category

hierarchy. This is a common approach to hierarchical categorization in the

literature [13, 24, 6], and it seems to naturally map the hierarchical problem

into a hierarchical solution. The main disadvantage with this method is that

the framework provides no direct support for creating a hierarchy of categorizers,

so the client must create and maintain code for the hierarchical aspect of the

task. This is another possible area of future work, and a fellow student in the

Web Engineering Group at Sydney University is currently working toward a

solution for using AI::Categorizer in hierarchical categorization.
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Implementation

With the functionality requirements and class designs in Chapter 3 as a guide,

the AI::Categorizer framework has been implemented and released under an

open source license [32, 11] as a part of this thesis and as a continuing project

in Text Categorization. This chapter describes some of the implementation

decisions that have been made in AI::Categorizer and provides some of the

reasoning behind them.

4.1 Implementation Language

In order to provide maximum support for the kinds of real-world scenarios de-

scribed in Section 3.2, it was determined that a broad-coverage, widely-used pro-

gramming language should be used to implement the AI::Categorizer frame-

work. Three extremely common object-oriented languages fulfilling these cri-

teria are C (or rather its object-oriented derivatives like C++ and Objective-C),

Java, and Perl. Each of these languages has its advantages and disadvantages,

and a full comparison between them is beyond the scope of this thesis. Perl

was ultimately chosen for the AI::Categorizer project, providing the follow-

ing benefits:

• Perl is widely known to be a powerful text processing tool [17, 29] [26,
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p. 121], hence it should be relatively easy for users of the framework to

customize its processing capabilities.

• A large number of contributed Perl modules are freely available for many

different tasks on the CPAN [42], extending the domain of applicability of

the framework.

• Perl is an expressive high-level language that allows for rapid prototyping,

so the framework developers and application developers can experiment

with several alternative designs fairly quickly.

• Perl is widely deployed and is part of all standard Unix distributions. It

is available for most platforms that have a C compiler, and because of

common high-level interfaces, Perl code written on one platform is often

more portable to other platforms than the equivalent C code would be.

• Perl can be embedded within applications written in other languages, par-

ticularly in C/C++ applications using Perl’s embedding interface, or in Java

applications using the JPL toolkit. This allows for maximum reusability

of the framework as described in Section 3.2.2.

• Code from other languages can be embedded within Perl applications using

either the XS extension mechanism for C code, or the Inline embedding

mechanism for several languages, including C and its derivatives, Java, Tcl,

Assembler, and Python, among others. This allows the framework to use

efficient data structures and algorithms implemented in other languages

if necessary, while keeping the convenient high-level interface in Perl. It

also allows integration with existing code libraries from various sources

without locking the developer into a language choice.

• There is an active community of users interested in using a Perl-native

text categorization framework. Several community members have already

contributed feedback, bug fixes, and application ideas for the AI::Cate-

gorizer project.
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package AI::Categorizer::Learner;
use base ’Class::Container’;
use Params::Validate qw(:types);

__PACKAGE__->valid_params
(
knowledge_set => { isa => ’AI::Categorizer::KnowledgeSet’,

optional => 1 },
verbose => { type => SCALAR,

default => 0 },
);

__PACKAGE__->contained_objects
(
hypothesis => { class => ’AI::Categorizer::Hypothesis’,

delayed => 1 },
experiment => { class => ’AI::Categorizer::Experiment’,

delayed => 1 },
);

Figure 4.1: An example of Class::Container usage from the Learner class

4.2 Framework constructor methods

To implement the behavior discussed in Sections 2.2.8 and 3.5.5, the Class::-

Container module from CPAN1 implements the abstract parent class Object-

Factory shown in Figure 3.11. It provides the generic specification of object

constructor parameters as well as generic mechanisms for creating subordinate

objects within the framework.

Figure 4.1 shows a simplified example of Class::Container usage in the

Learner class from AI::Categorizer. The valid params() and contained -

objects() class methods are inherited from the superclass Class::Container,

and they provide the mechanism by which each class can declare its main con-

structor interface. In this case, the Learner class declares that it accepts two

constructor parameters, called knowledge set (a KnowledgeSet object which

will form the training set for the learner) and verbose (an integer specifying

1The Class::Container module was written by Ken Williams for a previous project [33]
and greatly extended for the AI::Categorizer project.



CHAPTER 4. IMPLEMENTATION 69

the amount of status information to show the user during the training process).

The contained objects() method lets the Learner class declare its sub-

ordinate objects in the framework architecture. In this case, each Learner will

create Hypothesis and Experiment objects at runtime; Hypothesis objects are

created in the categorize() method when any document is categorized, and

Experiment objects are created in the categorize collection() method to

organize and report the results of categorizing many documents. The Learner

will create these objects on demand using create delayed object(), also in-

herited from Class::Container, as a factory method. In the object specifica-

tion, the “delayed” flag indicates that the objects will be created on demand in

this manner—if this flag were not specified, the objects would be automatically

created during the new() method in an aggregation manner [18, p. 22].

4.3 Data Structures

To a large extent, the data structures used in AI::Categorizer are unspecified,

since the framework specification dictates only the framework interface methods

and the relationships among classes. However, the concrete implementations

of several classes must choose implementation details, and those details are

described here.

4.3.1 Feature Vectors

Many parts of the framework code must manipulate feature vectors, which we

define as a set of key-value pairs relating document features (which may be

words, word stems, 2-word combinations [bigrams], or other derivatives of doc-

ument data) to values (which may be frequency counts or other weighted mea-

sures of importance). Some examples of this include the features of an individual

document, the aggregated features of a knowledge set or of the documents be-

longing to a particular category, or a vector of features whose weights have been

assigned by a particular Learner implementation.
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The FeatureVector class provides both a concrete implementation of a fea-

ture vector interface and a base class from which other classes may inherit if

they wish to use a different internal representation of the data or extend the

capabilities of the base class. Perl provides hash tables (sometimes called “dic-

tionaries” in some languages) as a language-level data structure, and the default

implementation in FeatureVector uses these as its mapping between features

and values. This provides the following benefits:

• Insertions, deletions, and lookups are all O[1] operations, so the size of

the feature set can grow without any penalty on the time to perform these

operations.

• Hashes can store sparse information efficiently, meaning only nonzero en-

tries in a vector need to be stored. This can be important if the dimension-

ality of the ambient vector space is very large, because memory savings of

1-3 orders of magnitude may be realized.

• The hash data structure stores the key as a string. This may be the word

or word stem from the document itself, avoiding the need to use a separate

lookup table to translate from the actual document features to the keys

of feature vectors.

However, there are certain liabilities with this approach as well:

• Perl’s implementation of most data structures is fairly memory-greedy in

order to provide benefits like automatic memory allocation and transpar-

ent casting. This can cause low-level data structures to consume much

more memory than needed, as is the case for the base FeatureVector

class.

• The hash key in the feature vector is always stored as a string, but it would

be more compact to store it as a single integer representing an index into

a global array of all features in the knowledge set, and store the global

array separately.
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To address these liabilities, a developer might prefer a feature vector imple-

mentation that stores its data as integer/float arrays in C-level data structures in

the manner of [30]. This would be most useful when working with a large corpus

or when using a system with a relatively small amount of physical memory. The

drawbacks with using this approach would be that a separate structure mapping

document features to integers would need to be maintained, and that searches

through a feature vector for a specific feature would become an O[log(n)] opera-

tion, where n is the number of nonzero entries in the feature vector. In practice,

the latter issue is usually not important, because each document vector is fairly

small, and the difference between O[1] and O[log(n)] may be insignificant com-

pared to the constant overhead costs of the operations.

A FeatureVector subclass implementing the structure described in the

previous paragraph is currently under development by another researcher at

the University of Sydney, though it is not yet a part of the AI::Categori-

zer framework. Another FeatureVector subclass (FeatureVector::FastDot)

which uses a greatly simplified version of the same structure, optimized for

repeated dot-product calculations but otherwise identical to the standard Fea-

tureVector class, has been completed. However, because it will be rendered

largely obsolete by the other project underway, it will probably not become a

part of the framework distribution.

4.3.2 Sets of Documents or Categories

In several places in the AI::Categorizer code, sets of Document or Category

objects need to be created and manipulated. This needs to be done in such

a way that insertion, deletion, iteration, and retrieval are all very fast opera-

tions, because these operations will be fundamental to most Learners’ training

methods.

To fulfill the above requirements, a Perl hash structure is used to store sets

of objects, and this structure is encapsulated in the ObjectSet class. This

class imposes two restrictions on its usage. First, because the keys in Perl
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hashes must be strings, each object stored in an ObjectSet must be identified

by a string, which must be given by the value of the object’s name() method.

Second, because hashes store their elements in an order that makes each of the

four above-mentioned operations O[1] operations, any inherent ordering of the

Document or Category objects is lost.

4.3.3 Saving state

In order to store the state of a trained categorizer, of a KnowledgeSet containing

a training corpus, or of any other important object in the AI::Categorizer

framework, a generic interface has been created for the serializing of objects to

disk and the subsequent restoring of the serialized structure back into an object

in memory. Two object methods, save state() and restore state(), are

defined in the Storable class2, from which the other framework classes inherit.

The default implementation of save state() merely traverses the given

object’s internal data structure, storing the object’s Perl-level structure as a file

in a directory. The directory path is specified by the caller.

Classes that use non-Perl data structures (for instance, classes like Learn-

er::SVM or Learner::DecisionTree that use structures implemented in exter-

nal C code) may override the default save state() method in order to invoke

alternative serialization mechanisms.

2This discussion refers to the AI::Categorizer::Storable module, not the Storable

module available on CPAN. In fact, the Storable CPAN module is used internally by
AI::Categorizer::Storable to perform the data serialization, but this is not visible to the
developer.



Chapter 5

Evaluation

In order to evaluate the quality of the AI::Categorizer framework, several

aspects of the framework have been tested. The three main areas tested are

quality of categorization, efficiency, and ease of use. For testing the quality of

categorization and efficiency, performance is measured on categorization tasks

using several different data sets.

Section 5.1 describes the data sets used during testing. Section 5.2 presents

various measurements of how accurately the framework performs on these data

sets, and Section 5.3 discusses the computational efficiency of the framework.

Section 5.4 discusses the ease of use of the framework in different contexts.

5.1 Corpora

During development and testing, several data sets, or “corpora,” were used for

framework testing and application building. Since the framework will behave

differently on different data sets, it is important to understand the characteris-

tics of each corpus. For instance, different feature selection and categorization

algorithms may scale differently in relation to the size of the training corpus,

both in terms of efficiency and accuracy [6]. Also, the specifics of the catego-

rization problem in each corpus may be more amenable to one categorization
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technique or another.

The corpora used for evaluation are listed in this section. Each corpus

consists of a set of documents D, a set of categories C that documents may be

assigned to, and a domain-expert-made choice of category assignments for each

document. These category assignments are considered to be completely correct,

and they form a standard against which the TC system’s categorization on the

test documents can be measured. For each corpus, the set D is divided into a

training set T r and a test set T e.

Unless otherwise noted below, a list of common English words from [35] was

used as a “stoplist,” or a set of terms to completely ignore when processing

documents. This is a common technique from Information Retrieval [26, sec.

15.1.1], as it is assumed that these words possess little or no information about

the target categories, and that they will only slow processing and add noise to

the data.

5.1.1 ApteMod

The ApteMod version of the Reuters-21578 corpus has become a standard

benchmark corpus in evaluating Text Categorization systems [50, 21]. In terms

of evaluating the AI::Categorizer framework, it provides an opportunity to

compare the performance of AI::Categorizer with other implementations of

the same TC algorithms so that the correctness of the present implementation

can be verified.

ApteMod is a collection of 10,788 documents from the Reuters financial

newswire service, partitioned into a training set with 7769 documents and a test

set with 3019 documents. The total size of the corpus is about 43 MB. It is avail-

able for download from http://kdd.ics.uci.edu/databases/reuters21578/

reuters21578.html.

The distribution of categories in the ApteMod corpus is highly skewed, with

36.7% of the documents in the most common category, and only 0.0185% (2

documents) in each of the five least common categories. In fact, the original
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Figure 5.1: Category distributions for the test corpora

data source is even more skewed—in creating the corpus, any categories that

did not contain at least one document in the training set and one document in

the test set were removed from the corpus [50].

In the ApteMod corpus, each document belongs to one or more categories.

There are 90 categories in the corpus. The average number of categories per

document is 1.235, and the average number of documents per category is about

148, or 1.37% of the corpus.

Figure 5.1 shows the category distribution for the corpora discussed in this

section. The categories are plotted on the horizontal axis, and the number of

documents per category are plotted on the vertical axis using a logarithmic

scale.

5.1.2 Dr. Math

The “Ask Dr. Math” service [16] is one of many so-called ask-an-expert services

becoming common on the Internet. These services are generally staffed by

domain experts who answer questions about the domain sent by non-experts.
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Ask-an-expert services may be chiefly educational, as the Ask Dr. Math service

is, or they may be tied to businesses’ Customer Relationship Management or

support initiatives.

Since the domain experts in these services often have a single subdomain

of expertise, it is helpful if they can view only the subset of the questions that

relate to that subdomain. However, the non-experts may not know how to

properly categorize their own question when submitting it. For example, a user

of the Ask Dr. Math service may be a middle school student unfamiliar with

the particular mathematics taxonomy used by the service. It may therefore be

infeasible for the users to categorize questions during submission, and it is in

this situation that automatic categorization may be helpful.

The Dr. Math corpus is a collection of 6,630 English-language messages sent

to the “Ask Dr. Math” ask-an-expert service for students [16]. Each message

has been manually assigned by a domain expert to one or more categories,

with category names indicating both math topic and grade level, e.g. “High

School Geometry.” There are 95 categories in the category set. The ontology

is generally not separable into two separate category sets for independent topic

and level categorizations, in part because many topic and level combinations

like “Elementary School Calculus” don’t exist in the category scheme.

The 26 MB corpus is divided into a training set with 5,304 documents and

a test set with 1,326 documents. As with the ApteMod corpus, the category

distribution is skewed, with 13.2% of the documents in the most common cat-

egory and only 0.0452% (3 documents) in the least common category. The

average number of categories per document is 1.534, and the average number of

documents per category is about 107, or 1.61% of the corpus.

The Dr. Math corpus is an important data set for proving the effectiveness

of the AI::Categorizer framework, because it represents a potential real-world

application in the educational domain, one of the key target application areas

of the Web Engineering Group at the University of Sydney. Work with the Dr.

Math corpus has been previously published in [45].
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The Dr. Math corpus is not available for direct download, but interested

parties may contact the author for details.

5.2 Quality of Categorization

In order to evaluate the quality of the results generated by the AI::Categor-

izer implementation code, categorization experiments were performed on each

of the corpora described in Section 5.1 using the measures defined in Sections

2.4 and 2.4.1.

Several experimental parameters (e.g. category membership thresholds) can

be set for each experiment; for the ApteMod corpus these were set to match

the parameters used in [50], where known. For the other corpora they were

optimized to provide the best performance on the test set—in this sense, the

test set might be thought of more correctly as a validation set, because in a

strict testing environment the performance on the test set should not influence

training parameters. This methodology was adopted because it more closely

matches the procedure that would be used when building an application, in

which the true test set may consist of documents not yet possessed by the

developer, i.e. the set of target documents in the application domain. This is

the evaluation method used in several studies in the literature, such as [21].

Where a baseline score is given in the results, this refers to a simple prob-

abilistic categorizer that assigns categories to each document, weighting the

probability of assignment by the frequency of each category in the training set.

For instance, if a certain category was present in 40% of the training documents,

any document in the test set would have a probability of 0.4 of being assigned

to that category by the baseline categorizer.

It should be emphasized that this thesis does not claim to produce any new

results in the area of developing Text Categorization algorithms. Descriptions of

existing algorithms from the TC literature have formed the basis for developing

the AI::Categorizer framework. The results presented here should be consid-
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method ρM πM FM
1 ρµ πµ Fµ

1 error
NB .3659 .4969 .3959 .7238 .8514 .7824 .00555

SVM .0868 .3727 .1239 .5254 .9106 .6663 .00725
kNN .2655 .3856 .2903 .7650 .7975 .7809 .00591

Baseline .0135 .0142 .0137 .1645 .1664 .1654 .02287

Table 5.1: Results of AI::Categorizer on ApteMod corpus

method ρM πM FM
1 ρµ πµ Fµ

1 error
NB - - .3886 .7688 .8245 .7956 .00544

SVM - - .5251 .8120 .9137 .8599 .00365
kNN - - .5242 .8339 .8807 .8567 .00385

Table 5.2: Results from [50] on ApteMod corpus

ered successful if they align with results already published in the literature—

superior results should not be expected.

5.2.1 ApteMod

Table 5.1 summarizes the results of three different machine learning methods in

AI::Categorizer as compared with the baseline categorizer described above.

Table 5.2 gives similar scores from a well-known comparative study of common

categorization algorithms [50]. Where possible, the present study has attempted

to duplicate the findings in [50], though in some cases there is not enough

information to duplicate the findings exactly, and in some cases the AI::Cate-

gorizer framework lacks certain features mentioned in [50]. These differences

will be discussed below.

In the case of the Näıve Bayes categorizer (NB), the results match [50]

closely, with a slightly greater FM
1 and a slightly smaller Fµ

1 . To match the

experimental settings in [50], the size of the feature-set was set to 2000.

For the Support Vector Machine categorizer (SVM), the performance is sig-

nificantly worse than the findings in [50]. The reasons for this are not clear—

AI::Categorizer currently uses an SVM implementation based on the libsvm

C library [7], whereas [50] used SV M light as its implementation [22], and there

may be major differences in the behavior of these two libraries. Since the macro-
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averaged scores are particularly bad, it may be inferred that [7] is not perform-

ing well on rare categories. In both studies, a linear SVM kernel was used, and

10,000 features were considered when building the categorization model.

One possible reason for the poor performance of the SVM categorizer is that

for both micro- and macro-averaged scores, π is much larger than ρ, indicating

that this situation could be balanced by choosing more appropriate category

membership thresholds. However, libsvm doesn’t seem to allow tuning of these

thresholds, so a remedy for this situation isn’t clear.

For the k-Nearest-Neighbor categorizer (kNN), Fµ
1 results are comparable

with NB, but no scores are as good as the kNN results in [50]. The major differ-

ence between the two implementations is that the implementation in [50] finds

per-category membership thresholds by optimizing performance on a validation

set, while the implementation in AI::Categorizer uses a single membership

threshold for all categories, settable by the user. In this experiment the thresh-

old was set to 0.1, a value which is not meaningful in itself, but which seemed

to give the best performance. Note, that the macro-averaged precision is higher

than recall, but the micro-averaged recall is higher than precision, indicating

that it is not possible to simultaneously find the optimal threshold for both

rare and common categories. Thus using individual thresholds for each cate-

gory should increase F1 scores if optimized properly. The k parameter in this

experiment (indicating the number of similar documents to consider when cate-

gorizing) was set to 45, and the number of features considered was set to 2415,

both to match the values used in [50].

The kNN implementation in AI::Categorizer is fairly new, and is an adap-

tation of work by another researcher. The ability to optimize per-category

thresholds is considered a useful future addition to the framework, and will be

added soon.

For all three categorizers, the tfidf weighting parameter was set to xfx,

indicating that words are weighted by the logarithm of their inverse document

frequency. This is the same setting used in [50]. One other possible difference
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method ρM πM FM
1 ρµ πµ Fµ

1 error
NB .2338 .2677 .2358 .3766 .3542 .3651 .0215

SVM .3333 .1562 .1946 .4211 .2273 .2952 .0330
kNN .2372 .2824 .2154 .3607 .3572 .3590 .0212

Baseline .0156 .0176 .0161 .0406 .0421 .0413 .0310

Table 5.3: Results of AI::Categorizer on Dr. Math corpus

between [50] and the current experiment is that [50] used either a χ2 or in-

formation gain criterion (it is not clear which criterion was used with which

categorizer) for feature selection, while document frequency was used here. This

should not be a major factor in the results, as document frequency has been

shown to produce results competitive with other feature selection methods on

this corpus [51].

5.2.2 Dr. Math

Table 5.3 shows the categorization performance of AI::Categorizer on the Dr.

Math corpus. Note that the baseline micro-averaged scores are much lower than

on the ApteMod corpus (Table 5.1), indicating that this may be a more difficult

categorization task simply because the category distribution is flatter than in

ApteMod (Figure 5.1).

Because no other TC study has been done on the Dr. Math corpus, not much

can be said about the comparative results of the AI::Categorizer framework.

However, the noteworthy points will be discussed below.

Using the Näıve Bayes categorizer, the F1 scores are about 0.24 when macro-

averaged and 0.37 when micro-averaged. This is not as dramatic a difference as

seen on the ApteMod corpus, where the micro-averaged scores are approximately

double the macro-averaged scores. In this experiment, the number of features

considered was set to 20% of the training corpus, or 1764 features, though

varying this parameter between 1500 and 3000 seemed to produce similar results.

Using the SVM categorizer, F1 scores were again worse than with NB, but

in this case the recall with SVM was higher than the precision—the opposite
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of the situation on the ApteMod corpus. Again, a mechanism for trading off ρ

and π would be desirable. The best scores with SVM were obtained when using

no feature selection at all, i.e. using all 8824 features when building the SVM

models. This is an indication of SVM’s robustness to noise in the data sets it

considers.

With the kNN categorizer, results were competitive with the NB catego-

rizer. Note that FM
1 for kNN is lower than each of ρM and πM—this somewhat

counterintuitive situation, unique to macro-averaging, can arise when the per-

category scores ρi are sometimes greater than πi and sometimes less than πi.

The best results for this experiment were found when using a feature set with

3000 features and k = 15.

5.3 Efficiency

In order to assess the efficiency of the implementations in AI::Categorizer,

the running times and memory usage of the framework on the tasks in Section

5.2 are reported here. All tests were performed on a Sun Ultra-Enterprise server

running Solaris 7, with a processor speed of 400 MHz, and with 2040 Megabytes

of RAM. The software used was a pre-release version of AI::Categorizer ver-

sion 0.05, running under perl version 5.6.1.

The reader is cautioned that the resource usage numbers presented here will

be highly volatile from one system to another, and that they may even change

significantly with different versions of the software running on the same system.

The results presented here may give a rough indication of how the efficiency of

different techniques relate to each other, however, and how the sizes of the data

sets affect efficiency.

Each experiment is divided into four stages, each run as a separate system

process:

Scan The training corpus T r is scanned to determine the most relevant fea-

tures, using the document frequency feature selection criterion, and the
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Scan Read Learn Test
NB 128.6s 122.8s 22.9s 244.2s

ApteMod SVM 133.1s 126.6s 2332.3s 448.2s
kNN 126.9s 121.8s 21.5s 2616.2s
NB 44.8s 43.2s 7.2s 46.7s

Dr. Math SVM 43.7s 42.8s 734.5s 118.9s
kNN 43.8s 42.2s 6.6s 725.2s

Table 5.4: Time required for the experiments in Section 5.2. Measurements are
given in CPU seconds.

Scan Read Learn Test
NB 10.5M 48.7M 47.0M 13.6M

ApteMod SVM 12.2M 50.6M 876.6M 31.1M
kNN 10.8M 48.0M 64.4M 44.1M
NB 8.7M 24.1M 24.1M 11.0M

Dr. Math SVM 9.4M 26.3M 304.7M 21.5M
kNN 9.0M 25.1M 28.1M 21.9M

Table 5.5: Memory usage for the experiments in Section 5.2. Measurements are
given in megabytes of virtual memory usage.

list of relevant features is saved to disk.

Read The entire training corpus T r is read into memory as a KnowledgeSet,

using only the features determined in the “Scan” step, and saved to disk

as a data structure accessible for the next step.

Learn A Learner object is created, and its train() method is invoked using

the KnowledgeSet from the previous step. The Learner is saved for use

in the next step.

Test The Learner from the previous step is loaded into memory, and each

document from the test corpus T e is categorized using the Learner’s

categorize() method.

Table 5.4 shows the running times for each phase of the experiments con-

ducted in Section 5.2, and Table 5.5 shows their memory usage. Running time

is given in total CPU seconds consumed, and memory usage is measured by

reporting the total size of the process in virtual memory.1 Note that the run-
1On Unix operating systems, including the Solaris system on which these tests were per-
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ning times include both the loading of any data structures from the previous

stage and the saving of any data structures for the next stage. The memory

usage includes any data structures used by the application as well as the perl

interpreter itself.

Of course, the running times and memory usage during the “Scan” and

“Read” stages do not vary much when the Machine Learning algorithm is

changed, because this part of the process does not involve the Learner class.

The numbers are presented so that the reader may compare the measurements

on the different corpora, and any unexpected differences are likely due to the

state of other concurrent processes on the machine, caching of disk data, and

the like.

Among the most obvious characteristics of the results in Tables 5.4 and 5.5

is that the Näıve Bayes categorizer is very efficient in terms of both running

time and memory. The SVM categorizer is slower during the “Learn” phase

by a factor of about 100, and the kNN categorizer is slower during the “Test”

phase by a factor of 10–20. This is consistent with the theoretical properties of

the algorithms discussed in Section 2.3.

One other interesting property is that the SVM categorizer seems to take

roughly twice as much time and memory as the NB categorizer during the “Test”

phase. This is not necessarily supported by the theoretical properties of the two

algorithms, so this finding may be due to implementation issues in the SVM

code or the Adapter to the SVM engine.

5.4 Applications

Unfortunately, there are as yet no standard methods of objectively evaluating

the quality of a framework’s design. Such a method is not likely to appear in the

near future, because framework design is a highly subjective process requiring

formed, the term “virtual memory” when describing the size of a process means the total size
of the running process, including any memory segments in Random Access Memory and any
cached to the disk. It does not refer just to the portion that may be resident on the disk
cache, as the term is sometimes used to mean on Windows or older Macintosh systems.
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much expertise in the framework developer [15, sec. 1.5]. Some quality metrics

have been proposed, but they tend to rely on comparing different releases of

a framework as it evolves to meet application needs, interpreting any major

changes as flaws in the original framework design [15, ch. 25]. Because AI::-

Categorizer is a newly released framework, this kind of comparison between

releases is not possible.

In order to provide evidence of the framework’s usefulness, therefore, one

option is simply to build different kinds of applications using the framework

and judge whether the applications were successful or not, and whether the

framework seemed well-suited for the application. Ideally, the applications will

represent at least some of the use cases that the framework was designed to

support. This is what will be done here. Three applications using AI::Cat-

egorizer that were developed during the course of the candidature on which

this thesis is based will be discussed in the following sections.

5.4.1 Command-line categorizer

The first framework is a simple command-line script, distributed with the frame-

work code, which provides a relatively simple way to instantiate a top-level

AI::Categorizer object and invoke several of its methods. Its main purpose

is to support the kinds of scientific investigations described in Section 3.2.1.

Using this script, the user may specify the parameters for an experiment

either directly on the command line, or in a file of key-value pairs indicating the

parameter’s name and value. A sample file of this sort is shown in Figure 5.2.

This command-line application also provides support for storing the sets of

parameters and the categorization results to disk. In this way, the user keeps a

historical record of which parameter settings improved performance and which

had negative effects.

This application contains only 110 lines of Perl code, most of which deals

with benchmarking issues or parsing of the command-line options. This shows

that a data-driven application can be built on top of the framework fairly easily.
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--- #YAML:1.0
data_root: corpora/drmath-1.00
stopword_file: corpora/drmath-1.00/SMART.stoplist
progress_file: "/tmp/drmath-NB"
outfile: "results/drmath-NB.txt"
learner_class: "::NaiveBayes"
tfidf_weighting: xfx
stemming: porter
features_kept: 0.2
verbose: 1

Figure 5.2: Parameter specification file for testing the Näıve Bayes categorizer
on the Dr. Math corpus.

5.4.2 Database categorization

In order to support the categorization of documents inside a database as men-

tioned in Sections 3.2.2 and 3.2.4, David Bell of the Web Engineering Group

at the University of Sydney developed an application which embeds AI::Cate-

gorizer directly in the PostgreSQL database engine. Bell’s work involved the

kNN categorizer, but because the framework was used instead of a custom kNN

implementation, any of the framework’s categorizers could be used in the same

manner.

Using this application, categorization functionality was made available in

database insertions and queries through the use of embedded functions like

categorize(). This allows categorization of arbitrary text in the database,

because the input to the categorization function is any string that can be built

using the database query language.

This application demonstrates the ability of the AI::Categorizer frame-

work to provide functionality in embedded environments.

5.4.3 Client-server categorization

As part of a research project in the financial domain, Mark Aufflick of the

Web Engineering Group at the University of Sydney created a categorization
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server like that described in Section 3.2.3. In this application, the categorizer

resides in a long-lived server daemon process that accepts XML/RPC requests

for categorizing arbitrary documents. The server responds with the categoriza-

tion information as an XML/RPC response, which may contain the categories

assigned or the single best category assigned.

The application was built using standard Perl tools for constructing XML/

RPC servers, available from the CPAN. This demonstrates the ability of the

AI::Categorizer framework to build custom categorization servers for diverse

application needs.



Chapter 6

Conclusion

This thesis has presented the background, design, implementation, and evalu-

ation of a new object-oriented application framework for Text Categorization.

The framework has been designed to facilitate novel work in Text Categoriza-

tion research and rapid development of TC applications. The framework does

not include any novel work in Text Categorization algorithms, but it has been

designed with the intention of facilitating such novel work.

6.1 Evaluation and Outcomes

The evaluation in Chapter 5 shows that the Näıve Bayes implementation in

AI::Categorizer gives results consistent with the work of others in the TC

literature, and that the k-Nearest-Neighbor and Support Vector Machine im-

plementations are not yet comparable with the state-of-the-art implementations

of the algorithms referenced in the literature. It also shows the relative efficien-

cies of the three algorithms during the four main execution phases of a TC

application: the Näıve Bayes learner is fairly efficient in all phases, the SVM

learner requires significant resources during the training phase, and the kNN

learner requires significant resources during the test categorization phase. This

confirms facts about these core algorithms known from their research literature.

87
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The architectural quality of the framework is difficult to evaluate directly,

but several analysis approaches have been presented in this thesis. Several

aspects of the framework’s design have been presented as instances of Design

Patterns, indicating that they may align with current best-practices in frame-

work development. Example applications of several types have also been dis-

cussed, indicating that the framework can support the use cases presented in

Section 3.2.

6.2 Further Work

Since one of the main goals of framework development is that the framework

should be easily extensible and developers can add new functionality with a

minimum of effort, there are many avenues for further work with the framework.

For instance, adding common functionality in the core framework is helpful as

the framework progresses from a whitebox to a more blackbox style of usage.

A selection of some of the most desirable directions for further work is pre-

sented here, in no particular order.

• As mentioned in Section 4.3.1, different feature vector data structures may

be desirable in different situations. To provide framework users with the

flexibility to make trade-offs between speed, memory, and complexity, the

sparse C-level structure described there should be implemented.

• Many new algorithms are continually being developed and refined in the

TC literature, and the most promising and general-purpose of these should

be incorporated into the framework.

• In order to allow application developers to use and extend the framework

more easily, different kinds of documentation, such as tutorials and recipes,

should be written [15]. suggests that multiple kinds of documentation can

aid framework adoption.

• The current Support Vector Machine and k-Nearest-Neighbor categorizers
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should be investigated and improved so that they deliver performance

matching the published results in the well-known TC literature.

• It might be helpful if the functionality in the Näıve Bayes categorizer were

available as a separate module outside the framework, so that developers

interested in Machine Learning problems outside the TC domain could

apply the algorithms it implements. The implementation in AI::Cate-

gorizer could then become a simple Adapter to the outside module.

• The framework should be put to use in a hierarchical categorization ap-

plication, with possible hierarchical functionality added to the framework

to support such usage.

• Alternate feature selection algorithms, such as the χ2 and IG algorithms

discussed in Section 2.2.5, should be implemented and added to the core

framework.
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Proceedings of ECML-98, 10th European Conference on Machine Learning,

number 1398, pages 4–15, Chemnitz, DE, 1998. Springer Verlag, Heidel-

berg, DE.



BIBLIOGRAPHY 93

[26] Christopher D. Manning and Hinrich Schütze. Foundations of Statistical

Natural Language Processing. The MIT Press, 1999.

[27] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[28] Dunja Mladenic. Feature subset selection in text-learning. In European

Conference on Machine Learning, pages 95–100, 1998.

[29] Ted Pedersen. Machine learning with lexical features: The Duluth ap-

proach to Senseval-2. Proceedings of SENSEVAL-2: Second International

Workshop on Evaluating Word Sense Disambiguation Systems, July 2001.

[30] John C. Platt. Fast training of support vector machines using sequential

minimal optimization, chapter 12, pages 185–208. MIT Press, 1999.

[31] J. R. Quinlan and R. L. Rivest. Inferring decision trees using the minimum

description length principle. Information and Computation, 80(3):227–248,

1989.

[32] Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. O’Reilly and Associates, 1997.

[33] Dave Rolsky and Ken Williams. Embedding Perl in HTML with Mason.

O’Reilly and Associates, 2002.

[34] Ivan A. Sag and Thomas Wasow. Syntactic Theory: A Formal Introduction.

Cambridge University Press, 1999.

[35] Gerard Salton. Automatic Text Processing: The Transformation, Analy-

sis, and Retrieval of Information by Computer. Addison-Wesley, Reading,

Pennsylvania, 1989.

[36] Gerard Salton and Christopher Buckley. Term-weighting approaches in

automatic text retrieval. Information Processing and Management: an

International Journal, 24(5):513–523, 1988.



BIBLIOGRAPHY 94

[37] Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press,

2002.

[38] Fabrizio Sebastiani. Machine learning in automated text categorization.

ACM Computing Surveys (CSUR), 34(1):1–47, 2002.

[39] Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction

in ensemble classifiers. Connection Science, 8(3):385–404, December 1996.

[40] UserLand Software, Inc. XML-RPC Home Page. http://www.xmlrpc.com/,

2003.

[41] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Butterworths, 2

edition, 1979.

[42] Various authors. Comprehensive Perl Archive Network.

http://www.cpan.org/, 2003.

[43] C. S. Wallace and John D. Patrick. Coding decision trees. Machine Learn-

ing, pages 7–22, 1993.

[44] Ken Williams and Rafael A. Calvo. A framework for text categorization.

7th Australasian Document Computing Symposium, 2002.

[45] Ken Williams, Rafael A. Calvo, and David Bell. Automatic categorization

of questions for a mathematics education service. In Proceedings of the 11th

International Conference on Artificial Intelligence in Education, August

2003.

[46] Rebecca J. Wirfs-Brock and Ralph E. Johnson. Surveying current research

in object-oriented design. Communications of the ACM, 33(9):104–124,

1990.

[47] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations, chapter 8, pages 265–320.

Morgan Kaufmann Publishers, 1 edition, 1999.



BIBLIOGRAPHY 95

[48] World Wide Web Consortium DOM Working Group. Document Object

Model (DOM) Level 1 Specification. http://www.w3.org/TR/REC-DOM-

Level-1/, 1998.

[49] Yiming Yang. A study on thresholding strategies for text categorization.

In SIGIR, 2001.

[50] Yiming Yang and X. Liu. A re-examination of text categorization methods.

In 22nd Annual International SIGIR, pages 42–49, Berkley, August 1999.

[51] Yiming Yang and Jan O. Pedersen. A comparative study on feature se-

lection in text categorization. In Douglas H. Fisher, editor, Proceedings of

ICML-97, 14th International Conference on Machine Learning, pages 412–

420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco,

US.



Appendix A:
A Framework for Text Categorization

Ken Williams

Web Engineering Group
The University of Sydney

Bldg J03, Sydney NSW 2006

kenw@ee.usyd.edu.au

Rafael A. Calvo

Web Engineering Group
The University of Sydney

Bldg J03, Sydney NSW 2006

rafa@ee.usyd.edu.au

Abstract

In this paper we discuss the architecture of an
object-oriented application framework (OOAF) for
text categorization. We describe the system
requirements and the software engineering
strategies that form the basis of the design
and implementation of the framework. We show
how designing a highly reusable OOAF architecture
facilitates the development of new applications.
We also highlight the key text categorization
features of the framework, as well as practical
considerations for application developers.

Keywords Document Management, Text Cate-
gorization, Application Frameworks

1 Introduction

Automatic Text Categorization (TC) has been an
active research area for over a decade and is in-
creasingly being used in the development of com-
mercial applications. These commercial applica-
tions usually belong to one of two system types:
in-house systems implemented in order to solve a
particular company’s specific problems, and generic
systems marketed to corporations as ready-made
categorization solutions. The former tend to be
ad-hoc solutions not suitable for use by others, and
not made publicly available. The latter tend to
be proprietary, closed-source, expensive solutions
inaccessible to individuals, small companies, and
researchers.

One result of this situation is that many tech-
niques and design strategies are underdeveloped as
they are not well-known to research or application
communities. Systems such as Weka [14] or Lib-
bow [7] are widely used by the research commu-
nity, but tend not to focus on integration into real-
world applications. By contrast, the commercial
systems are often useless for research because they
are closed-source, generalize poorly to new prob-
lems, or cost more than most researchers can afford.
Therefore, researchers do not get the benefit of
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leveraging industry’s TC applications, and indus-
try doesn’t get the benefit of the latest develop-
ments and knowledge from the research community.

It is our aim to create first-rate customizable
tools for Text Categorization that apply equally
well to the problems of industry and research.
Our tools should also be accessible to the
casual or small-time developer interested in TC.
To accomplish this, we have implemented a
framework for Text Categorization.

Before discussing the details of the framework,
we will briefly look at some general background on
frameworks. Different software engineering archi-
tectures are used for different sets of requirements.
The most common kinds of software architectures
include:

Applications Application developers focus on
improving internal reusability and interfacing
with users. Developer or user extensibility
need not be considered–the application is
considered complete as delivered. A popular
example of a classification application is the
Weka Machine Learning system [14].

Toolkits and libraries Library developers
focus on generic reusability for multiple
applications. Examples include the
mathematical or networking libraries that
exist for most programming languages. The
“bow” library [7] is an example from TC.
Developers who use a library do not have
to learn its internal architecture, and the
library does not dictate the structure of
the application under development.[4] The
internal implementation of the library is
considered to be hidden from its users.

Frameworks A framework is a set of classes that
embodies an abstract design for solutions
to a family of related problems [4, Ch. 2].
Framework designers focus on applicability
to a certain set of problems, and on flexible
best-practices embodied in software. An
“inversion of control” puts the framework in
charge at a high level inside the application,
with custom application code playing a



subordinate role–therefore, interfaces between
framework classes must be documented and
stable. Common examples of frameworks
include generic application frameworks
like Apple’s “Cocoa.” Weka may also be
considered a framework when it is used to
implement new categorization algorithms
through subclassing.

Before deciding on one of these approaches it
is important to define the main user audience for
text categorization systems in order to determine
requirements for a useful TC system. We see typi-
cal TC users in terms of the following roles:

Application Developer A professional such as a
web developer or engineer that needs to add
automatic categorization features to a software
application. The application developer may
have no prior experience with Text Categoriza-
tion. The end user may have varying degrees
of control over the categorization process.

Researcher A TC researcher interested in novel
approaches to machine learning or document
processing. This professional is often not inter-
ested in implementing a real world application,
but wishes to improve existing TC algorithms
and methodologies.

Domain Expert Complex applications often re-
quire a domain expert who dictates project
requirements and has expertise in the applica-
tion domain (e.g. financial documents, knowl-
edge management). The domain expert of-
ten makes high-level decisions about when TC
could be effective in the given domain, and
needs to exert fine control over the TC process.

Of course, one person may play several of these
roles simultaneously.

A researcher will most often want to use a TC
system as a framework, because they need to inte-
grate custom code into the system at a low level.
A researcher may also find it convenient to use a
TC system as an application which provides a con-
venient user interface for running common kinds of
experiments. By contrast, an application developer
may want to use a TC system as a library or set
of libraries, providing no custom code of his or her
own.

Given these requirements, we decided to imple-
ment our software as a framework rather than as an
application or set of libraries. One reason for this
is that a framework can easily be turned into an
application by providing simple wrapper code, and
it can be turned into a library by providing con-
crete implementation classes. However, libraries
and applications can not typically be turned into
frameworks very easily. Therefore, a framework

provides the best coverage for the perceived needs
of the TC community.

The framework described in this paper includes
classes for managing documents, collections of doc-
uments, categorization algorithms, and so on. The
core framework includes both concrete classes like
“Näıve Bayes Learner” which may be used without
custom development, as well as abstract classes
like “Boolean Learner” which require the user to
implement certain behaviours before using them.
Abstract classes provide a starting point and an
interface for new development and reduce repeated
work.

2 Design Requirements

A framework must be able to accommodate func-
tionality in a number of essential areas, providing
common behaviour while allowing users and de-
velopers to customize behaviour through configu-
ration parameters and/or framework subclassing.
We summarize the design issues in this framework
as follows. Note that some of these issues are gen-
eral framework design issues, while others are more
specific to this particular domain.

Framework reusability The main reason
for building a framework rather than
a single text categorization application
is to increase reusability of design and
implementation. Framework research
literature provides guidelines on building
application frameworks.[4]

Modularity The components’ internal implemen-
tations should be able to change without af-
fecting the other components.

Integration The framework should be able to in-
terface easily with existing categorization so-
lutions (e.g. Weka, libbow, various Neural Net
libraries, and feature selection packages), unit-
ing many solutions under a common interface.

Rapid Application Development Prototyping
new applications should be very quick, with
a minimum of custom code in each case.
Custom code should generally implement new
behaviors rather than new structures within
the framework.

Rapid Research Cycle Researchers should be
able to quickly investigate new questions,
using the framework as a starting point.

Model Flexibility The framework structure
should be flexible enough to accommodate
the needs of many different categorization
algorithms that may operate on different
representations of the underlying data.



Computational Efficiency The data sets
involved can be quite large, so it is important
to have a design and implementation that
is efficient in memory, CPU time, and other
practical measures such as the time it takes
to load a categorizer from disk and generate a
hypothesis.

Separability Pieces of the framework should be
usable in isolation for users that only need
a feature selection package, a vector catego-
rizer, etc. The most separable pieces of the
framework should in many cases be completely
separated and available under separate distri-
bution, and used as a software dependency in
our framework.

With the above issues in mind, we have
chosen to implement the framework using the
Perl programming language. [13] A vast number
of Perl modules are freely available for many
different tasks, which extends the domain of
applicability for the framework. Many of these
modules are tools for processing text, and can
be used by the framework. Perl is widely used,
multi-platform and integrates well with other
languages, so it enables fast prototyping. Perl is
also natively object-oriented, with a very flexible
object model.[2]

In Perl, the basic unit of reusable code is called
a module; our framework is implemented as the
AI::Categorizer module.

3 Functional Areas

The framework supports several functional areas
of Text Categorization. We describe them here
together with the tradeoffs and design decisions
that may be useful to other researchers developing
TC systems.

Figure 1 shows the architecture of the frame-
work. Attributes and methods of each class have
been removed for the sake of brevity. Each of the
classes will be discussed in the context of their Text
Categorization function. Categorizer is the top
level class, which manages the data-related classes
(KnowledgeSet, Collection, Document and Cat-
egory), as well as the machine learning Learner
classes and Hypothesis, and a class for reporting
the results.

Data format

Since documents come in a wide variety of formats
such as XML, plain text, or PDF, the framework
should support the importing of knowledge in sev-
eral formats and have a mechanism by which the
user may extend these capabilities for a particular
environment. The base class Document allows the
user to specify the content as a string. The user

Categorizer

Learner

KnowledgeSet

Collection

Hypothesis

Experiment

CategoryDocument

FeatureVector

FeatureSelector

Figure 1: Simplified UML class diagram for the
framework

may also subclass the Document class, overriding
the parse() method for direct importing of data
in its natively stored format.

In the Collection class and its subclasses, the
framework also supports the notion of a collection
of stored documents, such as a directory of text
files, a database of stored documents, or an XML
file containing multiple documents. The most
common storage formats can be a part of the core
framework, while proprietary or unusual formats
can be implemented through subclassing. Note
that the document format and collection format
are independent characteristics; a project may
have a directory of text files, a directory of XML
files, or a directory of PDF files, but these would
all be handled by the Collection::Files class
with the appropriate Document subclass. Likewise,
a project may have a collection of XML documents
stored in a single file, as a directory of files, or
in a database, but these would all be parsed by
the Document::XML class with the appropriate
Collection subclass. Note that Document and
its subclasses exist mainly for the purpose of
importing data; after the data is read and parsed,
the rest of the system will throw away most of
the information in the Document object, keeping
only its FeatureVector object and the list of
Categories associated with the Document.

Structured documents

Each document may have several sections of
content, such as “body”, “subject”, “signature”,
and so on. In AI::Categorizer, the user specifies
the content by providing a hash of key-value pairs,
where the key indicates the name of the section,
and the value is a string containing the content
data. The user may also specify “weights” to
assign to the features found in each section. In the
future, other treatments for the different sections
of a document may be supported as we develop
effective ways to use this structure.



Tokenizing of data

The default implementation tokenizes document
data by extracting all non-whitespace byte
sequences between word-character boundaries.
This is usually sufficient in English, but non-
English language documents or documents with
unusual content will certainly necessitate custom
tokenization. To achieve this, the user may
subclass the Document class and override its
tokenize() method if a different algorithm is
required. We may also add other tokenizing
options to the default implementation, controlled
by parameters, if other common tokenizing needs
are found.

Linguistic stemming

The default implementation provides support for
the Porter stemming algorithm, a standard algo-
rithm for removing morphemes from English words
to obtain their “stems,” or root forms. By default
no stemming is performed, but a stemming param-
eter can be set to porter to activate stemming.
Alternatively, the user may override the stem -
words() method of the Document class for custom
stemming. This may be extremely important in
highly morphological languages or in certain appli-
cation domains.

Feature selection

Feature selection is handled by the abstract
FeatureSelector class and its concrete subclasses.
These classes implement scan features() and
select features() methods. The select fea-
tures() method works on an entire KnowledgeSet
in-memory at once. The scan features() method
can scan a collection of documents for the best
features without necessarily loading the entire
collection into memory. Both methods return a
FeatureVector object to the client (typically a
KnowledgeSet), which saves the list of highest-
ranking features to use when parsing future
documents.

The default implementation uses a simple
Document-Frequency criterion for selecting fea-
tures to use in model-building and categorization.
This is very efficient, and has been shown in [16]
to be competitive with more elaborate criteria
in many common situations. We will add more
criteria as the project develops.

Vector space modeling

The full range of TF/IDF weighting from [11] are
supported, controlled by a tfidf weighting pa-
rameter. If the user wants to employ a different
weighting scheme, the weigh features() method
in the KnowledgeSet class may be overridden.

Machine Learning algorithm

Choosing a machine learning algorithm is done by
choosing a subclass of the Learner class. Sev-
eral algorithms have already been implemented in-
cluding Näıve Bayes [6], Support Vector Machines
[12] [3], Neural Networks [1] [15], k-Nearest Neigh-
bors [15], and Decision Trees [9]. Any Learner
class needs to implement the virtual methods cre-
ate model() and get scores(), which supply the
semantics behind the train() and categorize()
methods, respectively. Since many Machine Learn-
ing algorithms are implemented as a series of binary
decisions concerning individual category member-
ships, an abstract Learner::Boolean class is pro-
vided to help developers of new categorizers–in this
case, one need only implement the smaller cre-
ate boolean model() and get boolean score()
methods.

Note that the Learner class does dual duty as
a learner and a categorizer. No class distinction is
made in the framework between a Learner before
and after it has been trained–they are objects of the
same class. This allows for the possibility of on-line
learning, in which a trained learner incrementally
uses additional training examples to improve its
current model.

Machine Learning parameters

Because each ML algorithm may have several
implementation parameters to control behavior,
each Learner subclass accepts different parame-
ters. To facilitate the wide variety of parameters
that different classes may require, we use the
Class::Container module1. This module allows
each Learner subclass to declare the parameters
it accepts, so that a Neural Network class can
declare arguments for number of input, hidden,
and output nodes, a k-Nearest Neighbor class
can declare arguments for k and for thresholding
strategies, and so on. These parameters are passed
through the framework transparently using a
variation on the “Factory Method” pattern. [5]

In fact, the Learner and its subclasses are not
the only pieces of the framework in which varying
parameters control operations. Because this
situation is common throughout the framework,
Class::Container is employed consistently for
all structural classes in the framework. This goes
a long way toward reducing the number of classes
necessary to implement varying behavior.

Hypothesis behavior

Certain applications (e.g. newswire categorizers)
may need to find “all categories that apply” for
each document, whereas other applications (e.g.

1available at http://search.cpan.org/author/
KWILLIAMS/Class-Container-0.08/



automatic email routers) may only be interested
in the “best N categories,” where N is often 1.
These scenarios are supported by the Hypothesis
class, which provides a generic interface to the
scoring decisions of the categorizers. Methods
like categories(), best category(), and
in category() provide application-level access
to categorization decisions based on the scores
assigned by the Learner class.

On-line training

Some machine learning algorithms can easily
integrate new knowledge into the knowledge base
without going through the potentially expensive
process of re-training the categorizer from
scratch. For instance, most kNN implementations
can do this, whereas most Neural Network
implementations cannot. For categorizers that
support this, a virtual add knowledge() method
in the Learner class is supplied. Currently no
Learner subclasses in AI::Categorizer support
on-line learning, but the architecture supports it
when an implementation is needed.

4 Framework Customization

Like C++ and Java, Perl is natively object-
oriented, but unlike them it does not have strict
separation of compilation and execution stages.
Rather, the compiler and interpreter work in
tandem, trading back and forth to execute a Perl
application, allowing runtime compilation of code.
In addition, Perl’s object model is fairly loosely
bound (similar in this respect to Objective-C’s
model), permitting class names to be stored in
variables and/or specified at runtime. Because
of these properties, the choice of specific classes
to be used in the framework can be made at
runtime, controlled by parameters, facilitated by
the Class::Container module. It allows several
classes to cooperate as a framework without
having to know about each others’ class names,
constructor parameters, and so on, and provides
the glue to do strict early checking of parameter
names and types, facilitating transparent factory
patterns within the framework.

For instance, to use the built-in SVM learner,
one could either create an AI::Categorizer::SVM
object directly, or one could specify the class name
by providing it as a value for the learner class
parameter. This behavior is implemented at
the framework level, so different Document,
Collection, FeatureVector, etc. classes can
be pressed into service by the document class,
collection class, and feature vector class
parameters, respectively. This helps facilitate
quick architectural changes, letting developers
drop their own subclasses into the framework with
relative ease.

5 Evaluation

Although the focus of this paper is the framework
discussion and design, we present here some basic
evaluation of its performance. We have evaluated
our framework by building classifiers in several
applications. We have implemented Näıve Bayes,
Support Vector Machine, k-Nearest-Neighbor, and
Decision Tree classifiers in the framework. We
have trained classifiers using the standard Reuters
ApteMod corpus and obtained similar results to
the ones described in [15]. We have also trained
and tested classifiers on other corpora in financial,
educational, and discussion group domains. Due
to space constraints and the proprietary nature of
some of our other corpora, we will only describe
results on the Reuters ApteMod corpus here, using
the Näıve Bayes algorithm.

In training categorizers, we typically use two
passes through the corpus when loading the data.
The first pass scans the documents in order to per-
form feature selection, while the second pass actu-
ally loads the data into memory. This allows mem-
ory to be used more effectively than if we only made
one pass over the data, because we avoid loading
extraneous features. On the Reuters corpus, using
Porter stemming [8] and a standard list of stop-
words [10], the first pass over the 7769 training files
may take roughly 59 CPU seconds and consume
11 MB of memory, while the second pass takes
about 57 CPU seconds and consumes 32 MB. The
memory figures reflect the total size of a running
program, not just the size of the document data in
memory.2

After the data is loaded, we pass it to a Learner
object for training. Our Näıve Bayes training pro-
cess takes 8.1 CPU seconds and consumes 40 MB
of memory. Categorizing the 3019 test documents
takes about 95 CPU seconds and consumes 14 MB.

With experimental settings similar to the ones
described in [15] (we used Document Frequency fea-
ture selection, since we have not yet implemented
χ2 or Information Gain selection algorithms), we
achieve recall, precision, and F1 scores of 0.724,
0.851, and 0.782 when micro-averaged, and 0.366,
0.497, and 0.396 when macro-averaged. We believe
any discrepancies with [15] are due to differences in
feature selection and/or document tokenizing, but
we have not tested this belief thoroughly.

6 Integration and Further Work

The framework has been used in a number of appli-
cations including an extension to the SQL language
of the PostgreSQL relational database. It has also

2Tests were performed on a machine with a Pentium
III 800Mhz chip, running Red Hat Linux release 7.0 and
Perl 5.6.1. Results are not comparable across different
architectures, but may be useful as a rough guide.



been used as distributed service for classification
using an XML/RPC architecture, and integrated
into multi-tier web applications and desktop appli-
cations.

We know that much work has been done by
previous developers and researchers in the area of
Text Categorization. While we are in one sense re-
treading ground by implementing generic TC soft-
ware, we see our work as a way to extend the reach
of others’ work, rather than as a replacement for
it.

To this end, we have tried to make the frame-
work very inter-operable and provide interfaces to
existing TC products. For instance, we have imple-
mented a Learner subclass called Learner::Weka
to provide an interface to any Weka classifier the
user would like to use. In this way, AI::Categor-
izer benefits when progress is made in Weka, as
well as the other way around.

We hope to create interfaces to other existing
products as well. If the AI::Categorizer project
gains enough momentum that other people wish
to contribute code to it, we will encourage this
code to be as independent and generic as possible
so that we may simply create an interface to it in
our framework. For instance, this is how the SVM
learner in our framework was created recently–our
AI::Categorizer::SVM class is just a thin wrap-
per around a generic Algorithm::SVM module by
another author we collaborated with, and this in
turn is a wrapper around the C library libsvm.

It is our hope that this strategy will extend the
reach of both our framework and related existing
and new TC software.

In designing the AI::Categorizer framework
architecture, we have focused on aspects of Text
Categorization that tend to remain common from
one task to the next, allowing for growth in aspects
that tend to change. For instance, we have speci-
fied that document features are encapsulated in a
FeatureVector object, but we have not specified
that object’s internal implementation. Likewise,
we have specified that the Machine Learning TC
algorithms are encapsulated by the Learner class,
but the specific algorithms will tend to vary from
task to task.

In the first public versions of the framework,
we have tended to implement the simplest versions
of each of these classes, with more elaborate or
optimized implementations deferred to later work.
For instance, our FeatureVector class is currently
implemented using Perl hashes, but other imple-
mentations (for instance, using C structs to imple-
ment sparse integer vectors) may be implemented
in order to improve memory usage and/or speed.
Other Learner subclasses may also be added, and
the existing subclasses may be improved to pro-
vide more feature-rich implementations or improve

efficiency. Because they are encapsulated in sub-
classes, these implementations may be traded at
will, allowing experimentation with different imple-
mentations. In particular, we expect the Learner
and FeatureSelector areas of the framework to
grow as new algorithms are added and existing
algorithms are informed by current research.

7 Conclusions

We have developed a new framework for Text Cat-
egorization which is publicly available and lever-
ages existing work as much as possible. We have
primary goals of providing usable TC software for
application developers, researchers, and domain ex-
perts, as well as providing bridges between exist-
ing and new TC software. Our framework design
endeavors to embody the key requirements which
are common to most work in TC, and thus should
improve reusability of design and implementation
in applications that use text categorization. The
analysis of its architecture may be useful to those
embarked in building their own TC systems, so we
have discussed the design decisions of the different
functionalities supported by the framework.

Periodic point-releases of AI::Categorizer are
available at http://www.cpan.org/modules/by-
authors/id/KWILLIAMS/ , and bleeding-edge
development versions are available via CVS
at http://www.sourceforge.net/projects/ai-
categorizer/ .
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Abstract

This paper compares the performance of several
machine learning algorithms for the automatic
categorization of corporate announcements in
the Australian Stock Exchange (ASX) Signal G
data stream. The article also describes some
of the applications that the categorization of
corporate announcements may enable. We have
performed tests on two categorization tasks:
market sensitivity, which indicates whether
an announcement will have an impact on the
market, and report type, which classifies each
announcement into one of the report categories
defined by the ASX. We have tried Neural
Networks, a Näıve Bayes classifier, and Support
Vector Machines and achieved good results.

Keywords Document Management, Document
Workflow

1 Introduction

The Australian Stock Exchange Limited (ASX -
http://www.asx.com.au/) operates Australia’s pri-
mary national stock exchange. Companies listed on
ASX are required under the Listing Rules to make
announcements about their activities ”in order to
ensure a fully informed market is maintained.” [1]
In order to guarantee access to this information,
stock exchanges such as the ASX publish all recent
and historical company announcements. Thanks to
language technologies such as automatic document
categorization, these corporate announcements can
provide new sources of valuable financial informa-
tion.

Historically, corporate announcements have
provided valuable information to traders and
the general public for decades. For this reason
these announcements are used by regulators as
the main tool to keep the market informed of
all important events. The law assumes that
these public announcements contain all the
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information needed by an individual trader to keep
a reasonable understanding of what is happening
with a particular company. This allows investors
to make decisions based on information that is up
to date and is equivalent to the information that
company insiders might have. There is little doubt
about the value of the information contained
in these announcements, and several research
groups are developing novel applications using this
data. We describe in this article the evaluation
of categorization techniques used to build these
applications.

The ASX Data Services is a financial
information service providing daily market
information from the Stock Exchange Automated
Trading System (SEATS), ASX futures and the
company announcement service. All daily stock
exchange activity is available in different electronic
data feeds that the ASX calls “signals.” In our
work, we have used announcements from the
ASX’s Signal G, which provides subscribers with
company announcements issued by companies or
the ASX in accordance with listing rules.

Section 2 of this paper describes the Signal G
data set. Section 3 describes the different machine
learning techniques and the categorization frame-
work that we have used to perform these types
of categorization tasks. Section 4 describes the
quantitative results and section 5 concludes.

2 Data Description

In this paper we assess performance on two tasks:
“report type” and “market sensitivity” categoriza-
tion. Report type is “a code to categorize company
announcements” [1] and may take one of 144 values
like “annual report” or “takeover announcement.”
Market sensitivity is a boolean category indicat-
ing whether an announcement contains information
that may influence trading in the issuing company.
This allows users of this data to select which an-
nouncements are critical.

Currently, both kinds of category assignments
on the Signal G documents are made manually by
the ASX. Table 1 shows the distribution of docu-



Sensitive Nonsensitive Total
Training 32458 63067 95525

Test 14072 27033 41405
Total 46530 90100 136630

Table 1: Sensitivity category distribution in Signal
G
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Figure 1: Report type category distribution in
Signal G

ments with respect to the sensitivity category, as
well as our split between training and testing doc-
uments. Figure 1 shows the report type category
distribution.

Note that the report type labels are highly
skewed across categories. The most common
category contains 10,064 documents, while ten
categories have fewer than five documents each.

Signal G is available to the public, member or-
ganizations, and information vendors. Our data set
was supplied by the Capital Markets Collaborative
Research Centre. For future groups who receive
permission from the CMCRC to work with this
data, we have converted it into an XML format.

3 Methods

We have compared three machine learning methods
that have provided some of the best performances
in other classification tasks [16]: Support Vector
Machines (SVM) [12] [6], Näıve Bayes (NB) [7], and
Neural Networks (NN) [5] [4]. It is not possible to
describe them thoroughly in this article, so we will
only summarize those issues that might be required
to reproduce the results. Our Näıve Bayes and
SVM implementations are described in [15].

Because of the inability of our SVM implemen-
tation to handle the size of our training set, we had
to only train on 8000 documents at a time in order
to finish the experiments in a reasonable amount
of time. The SVM was not able to perform the
report type task, only the sensitivity task. Future
work may dramatically improve training speed by
using recently developed training optimizations in

the literature, enabling us to train on a larger num-
ber of documents and presumably to improve our
correctness as a result.

Our Neural Network architecture [5] [4] used
a backpropagation algorithm that minimizes
quadratic error. The input layer has as many
units (neurons) as document features retained.
The number of hidden units is determined by
optimising the performance on a cross-validation
set. There is one output unit for each possible
category, with activation values between 0 and 1.
For each document, the classifier will assign any
category whose output unit is greater than 0.5.
In our experiment, we used 3-fold cross-validation
and averaged the weights of the three resultant
neural networks.

Each categorizer was trained on the 95,525
training documents for each task, report type and
sensitivity. For the Neural Network categorizer,
13,711 training documents were set aside from the
training set to function as a validation set when
tuning the weights of the network. The trained
categorizers were then evaluated on the 41,405
test documents. Since documents in the test set
have not been used to adjust the parameters of
the classifier, it is normally assumed that the
performance on new data would be similar.

Table 2 summarizes the general steps followed
in the preparation of the experiments. TF/IDF
weights are given in the notation followed by [11].
Our experimental process was as follows:

1. Linguistic dimensionality reduction: A list of
stopwords [10] was removed from the docu-
ment collection and the Porter stemming al-
gorithm was applied [8].

2. Statistical dimensionality reduction: Chi
Squared or Document Frequency criteria
were employed to reduce the feature vector
dimensionality [8] [13].

3. Vectorization and weighting: The resulting
documents were represented as vectors, using
TF/IDF weighting [11] [17].

4. Architecture: The selected terms were used as
input features to the classifier. Some of the
algorithms allow several architectures, and the
best algorithm was chosen by optimising the
results on a cross-validation set.

5. Training: We generated a cross-validation set
randomly. These documents were set aside
and the Neural Network was trained on the
remaining ones.

4 Results

In evaluating our classifiers on our data set, we
use the common statistical measures precision, re-



Stopwords Stemming Feature Reduction TF/IDF Architecture
NN SMART Porter χ2 tfc 1000 features, 50 hidden units
NB SMART Porter DF tfx 1000 features

SVM SMART Porter DF tfx 1000 features, linear kernel

Table 2: Comparative description of algorithms used

Micro Macro
p r F1 p r F1

NN 0.89 0.89 0.89 0.88 0.88 0.88
NB 0.83 0.84 0.83 0.90 0.90 0.90

SVM 0.82 0.82 0.82 0.80 0.79 0.80

Table 3: Performance for the market sensitivity
task

Micro Macro
p r F1 p r F1

NN 0.87 0.71 0.78 0.45 0.34 0.37
NB 0.62 0.67 0.64 0.46 0.61 0.46

Table 4: Performance for the report type task

call, and F1. [16] [14] When dealing with multi-
ple classes there are two possible ways of averag-
ing these measures, macro-averaging and micro-
averaging. The macro-average weights equally all
the classes, regardless of how many documents they
contain. The micro-average weights equally all the
documents, thus biasing toward the performance
on common classes. Since different learning al-
gorithms will perform differently on common and
rare categories, both micro-averaged and macro-
averaged scores are typically reported to evaluate
performance.

It is important to note that the performance
results are based on comparing the automatic cat-
egorization of each document with the tagging of
human experts at the ASX. The manual classifi-
cation is a subjective decision process affected by
the ASX’s legal liabilities and the normal human
classification disagreements. It has been shown in
various studies that there could be considerable
variation in the inter-indexer agreement [3] [2]. For
example, in a Reuters news collection correction
rates averaged 5.16% [9] with some editors being
corrected up to 77% of the time. Similar disagree-
ments can be expected in the ASX’s assignments
on the Signal G corpus. In the light of these dis-
agreements we can imagine that there might be a
limit to the performance that can be obtained by
automatic categorization.

Figure 2 shows a histogram of classes and docu-
ments for different performance ranges using the
Näıve Bayes classifier. It shows how most cat-
egories that do well have large number of docu-
ments, except for some that have very few docu-
ments (fewer than 5). This shows the well-known
result that the machine learning algorithms such
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Figure 2: Histogram of report type results for
different performance ranges

as Näıve Bayes perform better on well-populated
categories. Similar results can be obtained for the
other classifiers.

5 Conclusion

In this paper we have applied several machine
learning techniques (Neural Networks, Näıve
Bayes, and Support Vector Machines) to the
categorization of announcements of companies
publicly traded by the ASX. Two tasks were
evaluated: the categorization of documents as
sensitive or not, and the categorization in one
of the 144 report types defined by ASX. The
results show that is possible to obtain classifiers
with more than 88% precision and recall on the
sensitivity task and 86% precision, 74% recall on
the report type task.

The results are somewhat better than the ones
obtained by several researchers working on the
Reuters news cable database [5] [4]. This database
has fewer categories (90) than the report type task
but also fewer documents (10,000). Although it is
risky to try to extrapolate the results, we believe
that due to the similarity in the documents, other
financial databases with documents in English
should also have similar performance. Future work
includes testing adding statistical feature selection
to the classification framework, and improving the
efficiency of the algorithms so they can be used for
even larger data sets.

The excellent performance shows the possibility
to use these classifiers in commercial applications



for both tasks, sensitivity detection and report type
categorization.
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Abstract. This paper describes a new approach to managing a stream of questions
about mathematics by integrating a text categorization framework into a relational
database management system. The corpus studied is based on unstructured submis-
sions to an ask-an-expert service in learning mathematics. The classification system
has been tested using a Naı̈ve Bayes learner built into the framework. The perfor-
mance results of the classifier are also discussed. The framework was integrated into
a PostgreSQL database through the use of procedural trigger functions.

1 Introduction

Ask-an-expert services are becoming more common, spanning from standard customer rela-
tionship management to discussion forums in a particular discipline. In general, these online
services are supported by domain experts who attempt to answer questions posted via email
or web forms. Since these experts often have a single subdomain of expertise it is very help-
ful if they have only to read questions that relate to this subdomain. This can be done by
organizing the service in such a way that users are encouraged to post their question in the
appropriate area. However, this approach is not always successful as often the user will either
ignore the organization scheme or not know to which area their question belongs.

These problems are common within a number of domains. Our test was performed on
messages sent to a mathematics ask-an-expert service for students and teachers.[6] The is-
sues discussed also apply to other similar systems such as customer relationship management
(CRM) and e-learning systems in general. These systems can use an automatic text catego-
rization framework to categorize the questions into the experts’ areas of interest, or into the
appropriate customer support mailbox.

The downside of an automatic categorization approach is that integrating such function-
ality into existing systems can be very complex, and often involves an in depth understanding

Proceedings of the 11th International Conference on Artificial Intelligence in Education,
Sydney, Australia, July 20-24, 2003.Submitted January 7, 2003, accepted February 24, 2003.
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Implicit Differentiation

Find the slope of the tangent at the point
(3,4) on the circle xˆ2 + yˆ2 = 25.

My answer: I guess we would need to put it
in the y = mx + b form.

Thanks for any help,
Scott

Figure 1: An example document from the Dr. Math corpus

of text categorization techniques. Also, the content is normally stored in systems with a re-
lational database in the backend, as is the case for most content and learning management
systems. By building the categorizer into the database, the categorization framework[11] can
be made invisible to the users and is thus more attractive to the average system administrator
or application developer. Also, application developers, do not have to re-implement the clas-
sification software. They only need a machine learning professional to assist in training the
classifier, and once trained it can then be reused for different applications.

The applications of information retrieval have been well studied since the 1980s, as dis-
cussed by Salton [9, 8], and many of these methodologies have been integrated into com-
mercial database management systems that have free text search capabilities. However, this
integration does not seem to have penetrated the text categorization domain.

Section 2 of the paper discusses the data set that was used to test the system. Section
3 discusses the text categorization framework and the extensions made to it, including the
implementation within the database management system. Section 4 discusses the quantitative
results of the testing process and Section 5 concludes.

2 Dr. Math Corpus

For the evaluation of our system we have tested the performance of the categorization system
over a set of unstructured, informal documents from the Ask Dr. Math service.[6] These
documents are mostly written by students between the ages of 6 and 18, though question
submissions can come from any member of the general public. The documents vary in length
from a single sentence to several paragraphs. In addition to this, many examples contain
symbols and diagrams, making linguistic analysis very difficult. The Ask Dr. Math service
has about 300 volunteers (about 30-40 of which may be active in any given month), dealing
with hundreds of questions a day. The volunteers have expertise in different areas of math,
and the site has won a number of awards for its useful service. Figure 1 shows an example
submission to the service.

The filtering of questions is a major element of the Ask Dr. Math question answering
process. The service may receive about 7000 questions a month, about half of which are
eventually answered. The unanswered questions may be duplicate submissions, messages
of thanks, inappropriate questions, or other messages that don’t require a response. There
also may be some legitimate mathematics questions that go unanswered, simply because
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Figure 2: Category distribution for the 95 Dr. Math categories

the service is not fee-based for either the students or the experts, and thus can make no
guarantee that any particular question will be answered. The experts are currently responsible
for choosing their own questions to answer.

The Dr. Math corpus we used contains 6632 documents and was split into a training
set of 5305 documents and a testing set of 1327 documents. There are 95 categories in the
corpus, and the average number of documents in each category is 107.15. The categories are
structured in a 2-level hierarchy (“level” and “topic”), with a total of four levels (elementary
school, middle school, high school, and college) and 62 topics (for example, “geometry” or
“statistics”). The most popular category, high school-level geometry, contains 877 documents,
and the least popular category, elementary-level golden ratio, contains only 3 documents.
Each document may be a member of more than one category, and the average number of
categories per document is 1.53. Figure 2 shows the distribution of categories throughout the
corpus.

It may be important to note that our corpus was drawn from the public archive of an-
swered questions, not directly from the stream of incoming questions. Because the archiving
process is fairly intensive and not all questions are chosen for archiving, our corpus may
therefore differ significantly from the incoming question stream. For example, none of the
kinds of unanswered questions mentioned earlier are represented in the archive. Because of
this difference, it is difficult to extrapolate our experiments to performance on the incoming
question stream. However, because the incoming question stream is uncategorized, obtaining
a large enough number of categorized questions for our investigation necessitated drawing
them from the archived questions.
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INSERT INTO documents
(name, content, categories)

VALUES
(’my name’,

’my content’,
categorize(’my name’,

’my content’,
’documents’));

Figure 3: Example document insertion statement with categorization

3 Categorization Framework

Object Oriented Application Frameworks (OOAF) are software engineering artifacts that im-
prove reusability of design and implementation [4, 5].

The framework used in this project was designed to provide a consistent way to build
document categorization systems.[11] It allows the developer to focus on the quality of the
more critical and complex modules by allowing reuse of common, simple base modules. The
framework has implementations of k-Nearest-Neighbor (kNN), Naı̈ve Bayes (NB), Support
Vector Machine (SVM), and Decision Tree (DT) classifiers [12, 10]. Other methods such as
Neural Network [3, 2] classifiers are under development.

The framework architecture allows extensions to be built by subclassing its main classes
[11]. Class inheritance contributes to code reuse and quality. In this project we extended
the framework by adding an alternative Collection class to allow for the data to be read di-
rectly from a database instead of from a file system. Having a classifier that uses the data
directly from the database streamlines the management of questions and answers in this type
of system. In fact, it allows many content or learning management systems to natively use
automatic classification features. The framework also provides statistical analysis of experi-
mental results, and produced the performance measures discussed in Section 4.

The framework’s architecture and language choice enabled us to easily build the frame-
work into postgreSQL through postgreSQL’s PL/Perl and PL/perlU support. This support
allows the creation of procedural language functions through the use of the ”CREATE FUNC-
TION” SQL command. Using this support and the PL/perlU language we were able to build
a ”launching” function that invoked the categorization framework on the document to be
classified. This means that the only command necessary to categorize a document is a basic
insert statement with a function call in place of a value for the category of the document, as
shown in Figure 3. This statement can be further simplified through the creation of a pl/psql
trigger function which fires automatically on insertion and passes the necessary values to the
categorize() function.

If the categorization is to take place within a database, where categorized documents are
often going to be appended to the learning set, a learning algorithm which has very little
training overhead is ideal. This avoids the need to retrain a categorizer after each document
insertion. Two such algorithms are the Naı̈ve Bayes algorithm (NB) and the K-Nearest Neigh-
bor algorithm (kNN).

The training phase in NB consists only of counting term frequencies in each document
and using them to calculate conditional probabilities between terms and categories. These
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MaP MaR MaF1 MiF1 Error
NB 0.246 0.226 0.226 0.361 0.022

kNN 0.211 0.186 0.179 0.257 0.025
Baseline 0.019 0.018 0.018 0.042 0.031

Table 1: Macro- and Micro-averaged performance scores.

probabilities are then consulted when categorizing a new document, with conditional proba-
bilities for each term being multiplied to find the probability that a given document belongs
to a certain category.

kNN in its basic form has essentially no training phase. Each document is represented as
an n-dimensional vector, wheren is the number of unique terms in the training set. When
a new document is to be classified, it is compared to the vectors of the documents in the
training set. Thek training vectors which are closest to the test vector are found (with distance
defined as the cosine of the angle between any two vectors), and the most prevalent category
or categories amongst these is assigned to the new document.

In our testing, we have found that NB is a more accurate categorizer than kNN. The rest
of this paper will focus on the NB experiment and results.

Since the categorization performance is determined only by the classification framework,
all these methods should behave the same inside the database as they do outside the database.
What the integration into the database does is to make the functionalities of the framework
available as procedures in the SQL language. Since relational databases can be designed using
an object oriented methodology [1, 7], by integrating it in this way, the classification task (and
framework) can also be designed into larger OO systems.

4 Method and Results

The 5305 training documents in the Dr. Math corpus were loaded into a database table named
“documents.” This table consisted of 3 columns: name, content and categories. The testing
set was then inserted into the database, one document at a time using a statement similar to
that in Figure 3. A SELECT statement was then used to compare the assigned and actual
categories of each document. Through this comparison the performance of the categorization
in terms of precision and recall was measured.1 The precision and recall were then used to
calculate theF1 measure [2, 10].

The results in Table 1 show the performance of the categorization algorithms. The preci-
sion, recall, andF1 scores can be computed using macro-averaging, which gives equal weight
to each category, or micro-averaging, which gives equal weight to each document. [12, 10]
For the kNN algorithm, we used ak value of 15 and a categorization threshold of 0.12, which
seemed to perform the best in our investigations. We also include in Table 1 the results of a
baseline classifier, which assigns categories at random to each test document, weighting the
random generator by the frequency of categories in the training set.

Next, we turned our attention to ways of improving performance on the test set. As men-
tioned in Section 2, each category name is a combination of two components, a level and a

1Recall is the proportion of the target items that the system selected, i.e. tp/(tp+fn). Precision is the proportion
of selected items the system got right, i.e. tp/(tp+fp).
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Task MaP MaR MaF1 MiF1 Error
Level 0.524 0.626 0.570 0.671 0.223
Topic 0.339 0.314 0.313 0.440 0.026
Both 0.187 0.181 0.166 0.223 0.035

Table 2: Performance of Naı̈ve Bayes classifier on subtasks.

Task MaP MaR MaF1 MiF1 Error
Level 0.326 0.319 0.322 0.468 0.328
Topic 0.029 0.027 0.027 0.067 0.041
Both 0.015 0.010 0.011 0.035 0.027

Table 3: Performance of baseline classifier on subtasks.

topic. This suggests that separate categorizers could be trained to recognize the two compo-
nents separately, perhaps with more success than a single categorizer may have on the two
components together.

To test this hypothesis, we created three new categorization tasks: one that categorizes by
level alone, one that categorizes by topic alone, and one that uses the separate topic and level
categorizers to assign a combined category. In this combined process, each assigned level
was combined with each assigned topic, any nonexistent categories (such as “calculus.elem”
or “addition.college”) were filtered out, and all remaining categories were assigned to the
given document. This process was performed using the Naı̈ve Bayes and baseline categorizers
described above. Table 2 shows the performance for the Naı̈ve Bayes categorizer and Table 3
shows the baseline categorizer for comparison.

Comparing the combined task to the NB results in Table 1, we see that separating the cate-
gorization task into two subtasks adversely affected the overall performance on the combined
task. The performance for the level task seems good, but comparing it with the baseline cat-
egorizer shows that it may not be significantly better than random guessing. This is probably
due to the small number of categories. However, the performance on the topic task is notewor-
thy, because it is so far above both the baseline categorizer and the original NB categorizer.
In addition, the topic assignment may be more valuable in this application than the level as-
signment, because while most students will be able to indicate their own age or grade level
when asking a question, they may not be able to place their own question in an appropriate
category.

Because the math topics used in this experiment were generated from the category names,
we ended up with some duplication that may have decreased performance. For example,
there are categories called “probability.high,” “statistics.high,” and “prob.stats.middle.” This
means that the combined list of extracted math topics includes “probability,” “statistics,” and
“prob.stats.” The exact effect of this on the categorizers is unknown, but we might expect these
overlapping categories to confuse the categorizer. A service such as this one may therefore
benefit from using more consistent category names.
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5 Conclusion

We have described a system that integrates a categorization framework into a relational
database. The results show it is possible to integrate categorization techniques into the re-
lational databases used by learning and content management systems.

Two categorization algorithms were applied to the task of classifying messages sent to
an educational ask-an-expert service. A Naı̈ve Bayes classifier outperformed the kNearest
Neighbour classifier and was reasonably successful at categorizing the messages. Future work
includes testing classifiers that use other machine learning models such as Support Vector
Machines and Neural Networks. The classification performance of Naı̈ve Bayes was also
measured using the 2-level hierarchy of the corpus. In this case, the highest success rate was
found in classifying messages by math topic, instead of school level. This task could be useful
on the unstructured data sent to ask-an-expert services such as the one we discussed.
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