· Text Categorization:
Given a set of predefined categories, text categorization (topic spotting or text classification) is the process of labelling text documents by their corresponding category/categories based on their content – we consider endogenous knowledge (knowledge extracted from the document) and not exogenous knowledge (knowledge extracted from external resources). Categories are chosen to correspond to the topics or themes of the documents. The ultimate purpose of text categorization is automatic organization. Some classification systems (or classifiers) return one category for every document while others return multiple categories. In both cases, a classifier might return no category or some categories with very low confidence; in these cases, the document is usually assigned to a category labelled unknown for manual classification later.
The early days of text classification where mainly driven by knowledge engineering. Given a set of predefined categories, a set of rules for each category is manually defined by experts. Those rules specify the conditions that a document must meet in order to belong to the corresponding category. In the 90s, machine learning started to be more popular and to take over the categorization process. Machine learning categorization proved to be as accurate as expert-driven categorization, at the same time it is faster and requires no experts. Here, we are only considering machine learning categorization. See [21] for a full description on text categorization.
Text categorization applications can be categorized in different ways.
· Single-label VS Multi-label categorization
Single-label categorization assigns each document to one and only one category; on the other hand, multi-label returns a set of k – where k is predefined – categories to which a document can belong. In the former case, we have nonoverlapping categories while in the latter we have overlapping categories. Most application tend to use a special case of the former case called the binary case where we have two complementary categories; a document can belong to only one of those categories [21].
· Category-pivoted VS Document-pivoted categorization

Category-pivoted classification (CPC) finds all documents that can be filed under a specific category. On the hand, document-pivoted classification (DPC) finds all the categories under which a certain document can be filed. DPC is used in applications where the documents come as a stream (i.e. not available at the same time). An example is email filtering where a newly received email is assigned to a specific category. CPC is used when new categories can be added dynamically because a set of documents does not seem to classify under any of the given categories. DCP is more popular.

· Hard VS Ranking categorization
Given a document d to classify, ranked categorization returns a ranked list of categories – containing all categories – such that categories with higher probabilities to contain d are placed on the top of the list. This list might serve as a help to aid human experts in their classification because only categories on the top of the list will be considered. A variation of this might be when we are given a category c and the system returns a ranked list containing all documents such that documents on the top of the list have higher probabilities to belong to c. The former is case referred to as category-ranking and latter as document-ranking. Ranking categorization is referred as semiautomated categorization and is used in applications where the accuracy of the classifier is very critical and that results from a fully automated system are proven to be significantly less accurate than those of human expert.
Hard categorization is the process of returning a category given a document. Hard categorization is fully automated and is more popular.

· Text Categorization Applications:
Applications in Text categorization (TC) date back to the 1960s. TC spanned a lot of other fields like IR and IF until it became a separate research area in the 1980s. The following is a summary of major application areas in TC:

· Automatic Indexing for IR systems: Each document is given is represented by a set words and/or phrases (one or more) that describe its content. The selected terms are pulled from a pool of terms called the controlled dictionary. The creation of such a dictionary is done by human experts and is very costly. Applications usually define two numbers U and L such that each document is assigned a number n of terms between U and L – i.e. L < n < U. Document-pivoted classification (explained previously) is very popular in those applications. See [27] for an example of suck applications.

· Document Organization: TC application involving document organization typically assigned a document to one (or more) category (ies) for tha purpose of organizing those documents be that for personal or corporate use. For example, newspapers receive a number of ads everyday and would benefit a lot from an automatic system that can assign those ads to their corresponding categories (Real Estate, Autos, etc…). An important purpose for document organization is ease of search. See [28] for an example.

· Text Filtering: TC applications are used to a very high degree in the IF field where documents in a stream are either forwarded to a specific user or filtered out based on the user’s profile which expresses the user’s interests. The source of the documents is referred to as the producer and user as consumer. For every consumer, the system blocks the delivery of any document in the streams that the consumer is not interested in. The system uses the user’s profile to classify the document as interesting or not to the user. Single-label binary TC is used for the purpose of text classification – the two categories are: relevant and irrelevant. The system might also be advanced in the sense that it classifies all forwarded (i.e. not blocked or filtered out) documents into a set of predefined categories as document organization. An example might be an email filter that blocks unwanted messages and organizes the received one to user defined categories – see [29]. In any case, the filter may either sit on the producer’s side where it routes documents to all non-blocking consumers, or it can sit of the consumer’s side where it blocks unwanted documents.

· Word Sense Disambiguation: Word Sense Disambiguation (WSD) is a process thru which a system is able to find the sense of an ambiguous word (i.e. having more than one meaning) based on its occurrence in the text. For example, the word “class” might mean a place where students study or a category; given a text containing this word, a WSD application must return which of the meanings is intended by the given text. WSD is used in natural language processing (NLP) and indexing documents by word senses rather than words from the document collection. This is a single-label document-pivoted TC task. See [31] for more details.

· Hierarchical Categorization of Web Pages: Hierarchical categorization of Web pages classifies web pages or websites to predefined a hierarchical set of categories hosted by portals. Instead of using search engines to find documents cross the internet, one can instead follow an easier path thru the hierarchy of document categories to search for his/her target only in the specified category. CPC is used to enable dynamic adding and/or deleting of new and unwanted documents respectively. See [30] for an example.

· Dimensionality reduction in Text Categorization:
In classification application, dimensionality reduction can be applied in two ways depending on whether the task in performed per category (locally) or across all categories (globally). In the case of local DR, a set of terms T’ where T’<<T is chosen for categorization under every category. In global DR, a set of terms T’ where T’<<T is chosen for categorization under all categories. Usually global DR is more famous.

· Creating Text Classifiers:
Regardless of the application, a text classifier can be either eager or lazy. In the former case, a set of pre-classified documents is used to build the classifier. This data set is randomly divided into a training set, TR, and testing set, TS. The two partitions need not be equal. The TR is used to build or train the classifier and then the TS is used to test the accuracy of the classifier. This process is repeated until an acceptable classifier is developed. On the other hand, a lazy classifier does not build a classifier ahead of time. Whenever a new unlabelled sample n is received, the classifier finds the k most similar labelled samples, where k is predefined, to decide on the label of the n. Many algorithms that fit the above two categories have been devised. A general view of most of those algorithms follows next.

· Probabilistic Classifiers: Probabilistic classifiers represent the probability that a documents dx belongs to category cy by P(cy|dx) and compute it by the following formula:

P(cy|dx) = P(cy)P(dx|cy)/P(dx)

where P(cy) is the probability that a randomly selected document belongs to category cy, P(dx) is the probability that a randomly selected document has dx as a vector representation and P(dx|cy) is the probability that category cy contains document dx. The calculation of P(dx|cy) is made easier by using the independence assumption or Naïve Bayes assumption which stated that any two coordinates of a document vector are statistically independent. Thus P(dx|cy) is calculated as:

 T

P(dx|cy) = P(Wzx|cy)

 k=1

where is the Wzx is the weight of the zth term in vector dx.

Refer to [32] for a detailed discussion.

· Decision Tree Classifiers: Decision tree classifiers (DTC) try to overcome the difficulty of interpreting probabilistic classifiers which are quantitative by using symbolic representations. A DTC is basically a tree with internal nodes representing terms, edges representing tests on the weight that a corresponding term might, and leaf nodes representing categories. This classifier classifies a document by traversing a path to the appropriate leaf node – i.e. class or category. Refer to chapter 3 in [33] for further details. Some examples of such a classifier include ID3, C4.5 and C5.

· Decision Rule Classifiers: Decision rule classifiers create a disjunctive normal (DNF) rule for every category ci. The premise of the rule is composed of literals signifying either the presence or the absence of a keyword in the document dj, while the clause denotes the decision of classifying dj to ci should the premise be satisfied by di. One DNF rule learner that has been applied to Tc is CHARADE [34].

· Regression Classifiers: An example of a regression-derived algorithm is the linear least squares fit (LLSF) where each document dj is associated with an input vector I(dj) of T weighted terms and an output vector O(di) of C weights (one for each class). Classification here is done by producing the output vector of a sample given its input vector. A CxT matrix M is constructed to accomplish this task such that M(dj)=O(dj). According to [35], LLSF is one of the best-known classifiers; however, it suffers from the high cost of computing the matrix M.

· The Rocchio Classifiers: Each category is represented by a profile (a prototypical document) which is created using the Rocchio method [21] where gives appropriates weights to the terms in the terms space such that result profile vector is most useful for discriminating the corresponding class. This profile is then used for classification of other documents. See [36] for an example.

· Neural Networks: A neural network (NN) has a set of nodes divided into layers. The first layer is the input layer, followed by zero or more middle layers, followed by an output layer. Each node receives an input weight and produces an output. The input nodes will be used to represent all the terms and the output terms represent the set of categories. To classify a document dj, the term weights representing dj are fed into the input nodes. This will propagated thru the network until finally the result is received by output nodes. [37] presents a nonlinear NN.

· Example-based classifiers: So far, all the classifiers that we’ve seen are eager classifiers – i.e. a classifier is built and trained and then used for classifying new samples. Example-based classifiers are lazy classifiers. They do not build a classifier ahead of time but use the labelled samples to classify new samples. One such classifier is the k nearest neighbours (KNN) [38] which, given a new sample dj, tries to find k documents that are most similar to dj among the given set samples. Then a process – such as plurality voting – is performed by the selected neighbours to give dj the most appropriate label.

· Classifiers based on Support Vector Machines (SVMs): SVM was first applied in TC in the late 1990s [39]. SVMs divide the term space in hyperplanes or surfaces separating the positive and negative training samples – sometimes are surfaces are referred to as decision surfaces. Then the surface that provides the widest separation (widest possible margin between positive and negative samples) is selected.

· Classifier Committees: A classifier committee is classifier that embeds a number of other classifiers (from the list described so far), uses them to do the classification, compares their outcomes and then selects the most appropriate result (using plurality voting for instance).

