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1. Automated Text Categorization
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1. Automated Text Categorization

• Text Categorization (TC) = assignment of 
documents to SUHGHILQHG classes

• 'RFXPHQWV can be news stories, technical 
reports, web pages, e-mail messages, books

• &DWHJRULHV are most often subjects or topics 
(e.g. ARTS, ECONOMY), but may be based on 
style (genres), pertinence (spam e-mail, adult 
web pages), etc
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1. Automated Text Categorization

• It is D�7H[W�0LQLQJ�VXEWDVN [Hearst99], as Information 
Retrieval or Filtering, Document Clustering, etc.

• Taxonomy of Text Mining subtasks based on 
[Lewis92], according to several dimensions
– Size of text

– Involve supervised or unsupervised learning

– Text classification vs. understanding
• Assigning documents or parts to a number of groups vs.
• More complex access to document content

• Note it is not a sharp division
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1. Automated Text Categorization

• Sample text classification tasks

Document Clustering, 
Topic Detection and 
Tracking

Latent Semantic 
Indexing, Automatic 
Thesaurus 
Construction, Key 
Phrase Extraction

Unsupervised 
learning

Text Categorization, 
Filtering, Topic 
Detection and Tracking

POS Tagging, Word 
Sense Disambiguation

Supervised 
learning

DocumentsWords
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1. Automated Text Categorization

• Sample text understanding tasks

SummarizationWord Sense DiscoveryUnsupervised 
learning

Information ExtractionSupervised 
learning

DocumentsWords
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1. Automated Text Categorization

• TC is often manual, requiring skilled 
specialists
– Library cataloguers (e.g. National Library of 

Medicine has more than 200) 
– Web directory editors (e.g. dmoz.org (>3000), 

Yahoo! (>100)) 

• The goal is to (semi) automate it for
– Reducing cost
– Improving performance (including accuracy and 

consistency)
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1. Automated Text Categorization

• The two main trends for automation are
– .QRZOHGJH�EDVHG approach

• Knowledge about classification is obtained from experts 
and codified in the form of classification rules

– /HDUQLQJ�EDVHG approach
• Experts are requested not to explain but to classify 

examples

• Information Retrieval (IR) and Machine Learning (ML) 
techniques used to induce an automatic classifier

• The knowledge acquisition problem is reduced

EACL’03 Tutorial on Text Representation for Automatic Text Categorization
José María Gómez Hidalgo – Universidad Europea de Madrid – April 12, 2003 10

1. Automated Text Categorization

• The problem can be defined as
– Given a set of documents D and a set of 

categories C
– To approximate an unknown classification function 

Φ:DxC→Boolean defined as

– For any pair (G�F) of document and category



 ∈

=Φ
otherwise    

 if      
),(

IDOVH

FGWUXH
FG
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1. Automated Text Categorization

6DPSOH�RI�UXOH�>$SWH��@��VLPLODU�WR�WKRVH�XVHG�LQ�WKH�

&RQVWUXH�V\VWHP��GHYHORSHG�E\�&DUQHJLH�*URXS�IRU�

5HXWHUV�>+D\HV��@��IRU�FDWHJRU\�:+($7
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1. Automated Text Categorization

• Kinds of categories
– Organization

• Hierarchical (e.g. Yahoo!, MEdical Subject Headings -
MESH, personal e-mail folders)

• Flat (e.g. newspaper sections, Reuters-21578 topics)

– Membership of documents (a documents belongs 
to exactly one or to several categories)

• Overlapping (e.g. Reuters-21578 topics, MESH)

• Disjoint (e.g. personal e-mail folders, newspaper 
sections)
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2. Applications
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2. Applications

• Information/knowledge access/management
– Maintaining a directory of documents

• Helps to provide an uniform communication vocabulary 
(e.g. for intranet/Internet portals [Adams01, Chen00, 
Labrou99])

• Helps to search by providing context to results (e.g. the 
category links provided by Google) [Hearst94]

– Yahoo! demo [Mladenic98]
– SWISH [Chen00]
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2. Applications

• Information/knowledge access/management
– (Semi)automatic library cataloging (e.g. patent 

filing in [Larkey99], med records in [Larkey96])
– Information Filtering

• Recommendation
– Setting filter profile in terms of categories (e.g. News 

Stories in Mercurio & Hermes [Diaz01, Giraldez02])

• Blocking
– Blocking spam e-mail (e.g. [Gomez02]) and adult Web 

content (e.g. POESIA [Gomez02c])
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2. Applications

• Information/knowledge access/management
– Personal information management

• Organizing files (e.g. SONIA [Sahami98])
• Organizing e-mail messages in folders (e.g. SwiftFile [Segal99, 

Segal00])

• Language [Cavnar94], genre [Kessler97, 
Stamatatos00] and authorship [Forsyth99, Teahan00] 
identification

• Automatic essay grading [Larkey98]
• See [Sebastiani02] for more
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2. Applications

Yahoo! Planet [Mladenic98]
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2. Applications

SWISH [Chen00]
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2. Applications

Hermes [Giraldez02]

0XOWL�GLPPHQVLRQDO

XVHU�SURILOH
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2. Applications

Hermes
[Giraldez02]
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2. Applications
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2. Applications

SONIA
[Sahami98]
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2. Applications

SwiftFile
[Segal99,00]
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2. Applications

TextCat
(based on

[Cavnar94])
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3. A blueprint for learning-based ATC
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3. A blueprint for learning-based ATC

• A simple model for learning based ATC 
(following Salton’s blueprint for automatic 
indexing [Salton89])
– As effective as manual thematic TC
– Based on IR & ML techniques
– Requires a set of manually classified documents 

(training collection)
• Depends on the number and quality of training 

documents
• Assumes that new documents will be training-like
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3. A blueprint for learning-based ATC

• Process (Belkin’s way [Belkin92])

Categorized
documents Analysis

New
documents Analysis

Classifier

Representation
of new

documents

Classification

New
documents
classified

Categories
RII�OLQH

RQ�OLQH

Evaluation,
feedback
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3. A blueprint for learning-based ATC

• Evaluation must be addressed first!
• As in IR, most evaluation issues in NLP 

systems (e.g. [SparckJones95]) are ignored
• ATC researchers focus on

– Effectiveness
• Addresses the quality of the approximation to the 

unknown Φ function

– Efficiency
• Theoretical and practical time and memory 

requirements for learning and classification
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3. A blueprint for learning-based ATC

• Effectiveness
– Some available (manually classified) benckmark

collections include
– Reuters-21578
– The Reuters Corpus Volume 1
– OHSUMED
– 20-NewsGroups
– Ling-Spam

– The collection is split into two parts, one for 
training and one for testing

– Cross-validation is not frequent
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3. A blueprint for learning-based ATC

• Effectiveness
– Standard IR & ML metrics

tnfn¬C

fptpC

¬CCSystem

&RQWLQJHQF\�PDWUL[

Actual

fntp
tp

)r( recall
+

=
fptp

tp
(p) precision

+
=

tnfpfntp
tntp

accuracy
+++

+=

r
1

)1(
p
1

1
F

β−+β
=β

rp
pr2

F1 +
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3. A blueprint for learning-based ATC

• Effectiveness
– In multi class situations, at least report F1 by

• 0DFUR�DYHUDJLQJ (0) – averaging on the number of classes
– All categories are equally important

• 0LFUR�DYHUDJLQJ (P) – computing over all decisions at once
– More populated categories are more important

– Scarce statistical testing (intro in [Yang99])

– $FFXUDF\ and HUURU do not fit well TC because class 
distribution is usually highly biased

– Now increasing use of cost-sensitive metrics for specific 
tasks (e.g. cost, ROCCH method [Gomez02])
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3. A blueprint for learning-based ATC

• Effectiveness (an example)
– Given categories C1, C2, and 100 test docs

5510¬C1

530C1

¬C1C1Sys

Actual

853¬C2

102C2

¬C2C2Sys

Actual

14013¬C

1532C

¬CCSys

Actual

75.)1( =&U

85.)1( =&S

80.)1(1 =&)

60.)2( =&U

20.)2( =&S

30.)2(1 =&)

69.1 =
�

)

55.1 =
�

)
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3. A blueprint for learning-based ATC

• The process again

Categorized
documents Analysis

New
documents Analysis

Classifier

Representation
of new

documents

Classification

New
documents
classified

Categories
RII�OLQH

RQ�OLQH

Evaluation,
feedback

EACL’03 Tutorial on Text Representation for Automatic Text Categorization
José María Gómez Hidalgo – Universidad Europea de Madrid – April 12, 2003 34

3. A blueprint for learning-based ATC

1. Analysis of training documents
1. Building a representation (LQGH[LQJ)

1. Obtaining a set of representing concepts (terms, words...) 
– features, and weights – values

2. Reducing the dimensionality (term selection & extraction) 

2. Learning a classifier

2. Analysis of new documents according to the 
training documents representation

3. Classifying new documents with the learned 
classifier
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3. A blueprint for learning-based ATC

1. Basic representation
– Often named EDJ�RI�ZRUGV

– Corresponds to Salton’s Vector Space Model 
(VSM) [Salton89]

– Each document is represented as a term-weight 
vector in which
• Terms or concepts are usually (stemmed, stoplist

filtered) words

• Weights are binary (0 or 1), TF (term-frequency) or
TF.IDF (term-frequency, inverse document frequency)
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3. A blueprint for learning-based ATC

1. Basic representation
– Basic concepts are words (minimal meaningful 

units)
– IR Stoplist filtering aims at eliminating low 

content words (adverbs, prepositions, etc.)
– IR Stemming (e.g. [Porter80]) aims at obtaining 

canonical word forms (analyzing, analyzer, 
analysis => analy)

– Side effect => reducing vocabulary size
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3. A blueprint for learning-based ATC

1. Basic representation
– Stoplist filtering and stemming may hurt 

categorization accuracy
��������� 	�
����� ������
���� ��� ���
joint,  venture 93.3% 88.9% 
tie-up 2.5% 84.2% 
venture 95.5% 82.8% 
jointly 11.0% 78.9% 
joint-venture 6.4% 73.2% 
consortium 3.6% 69.7% 
joint,  ventures 19.3% 66.7% 
partnership 7.0% 64.3% 
ventures 19.8% 58.8% 
 

– E.g. [Riloff95]

1200 news stories 
dealing or not with
JOINT VENTURES

EACL’03 Tutorial on Text Representation for Automatic Text Categorization
José María Gómez Hidalgo – Universidad Europea de Madrid – April 12, 2003 38

3. A blueprint for learning-based ATC

1. Basic representation
– Given a set ' of documents and a set 7 of terms, 

the weight ZG � � of term W � in document G� can be

 
otherwise   0

 in occurs  if    1





=
��

� � GW
ZG

 � �� � WIZG =

 log2 









⋅=  

 ! !
GI

'
WIZG

Being
WI � � the # of times
that W � occurs in G�
GI � the # of documents
in which W � occurs

ELQDU\

7)

7)�,')
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3. A blueprint for learning-based ATC

1. Basic representation
– Assuming that

Stoplist = {are, and, be, by, or}
Stemmed concept set T = {available, currenc, 
dollar, earn, pound}
|D| = 200
df1 = 100, df2 = 200, df3 = 50, df4 = 100, df5 = 25
(=> idf1 = 1, idf2 = 0, idf3 = 2, idf4 = 1, idf5 = 3)
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3. A blueprint for learning-based ATC

1. Basic representation
– The document “Available currencies are US 

dollars, UK pounds and HK dollars” is 
represented as

3 ,0 ,4 ,0 ,1

1 ,0 ,2 ,1 ,1

1 ,0 ,1 ,1 ,1

 

. =
=
=

��������

���

�	� 


G

G

G

&

&

&
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3. A blueprint for learning-based ATC

2. Dimensionality Reduction (DR)
– The goal is to reduce the number of concepts to

• Keep or increase effectiveness
• Reduce learning time
• Avoid over fitting

– Not all learning methods require it (e.g. Support 
Vector Machines)

– It can be
• Feature selection – a subset of the original set
• Feature extraction – a set of new features
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3. A blueprint for learning-based ATC

2. (DR) Feature (concept, term) Selection
– Keep best features according to a quality metric
– The metric should score high the most 

informative-predictive-separating concepts
– Given a category &, a “perfect” concept should 

occur in a document G if and only if G�∈ &, or if 
and only if G�∉ &
• e.g. Most spam messages claim “this is not spam”, and 

none of personal messages do
• e.g. delete low frequency terms
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3. A blueprint for learning-based ATC

2. (DR) Feature Selection
– Some effective quality metrics include

• Information Gain - IG

Being W a concept and F a category
• Document Frequency – DF, the number of 

documents in which the concept occurs
– Highly related to IR’s discrimination power

∑ ∑
∈ ∈

⋅
⋅=

},{ },{

2 )()(
),(

log),(),(
��� ��� \3[3

\[3
\[3WF,*
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3. A blueprint for learning-based ATC

2. (DR) Feature Selection
• Several more including odds ratio, χ2

[Sebastiani02], with variable effectiveness
• For instance, from [Yang97]

– IG and χ2 are very effective (allow to eliminate 99% 
of concepts without effectiveness decrease in 
classification)

– DF is quite effective (90% elimination)

– Mutual Information and Term Strength are bad
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3. A blueprint for learning-based ATC

2. (DR) Feature Selection
– class dependent metrics can be averaged over 

all classes
– Given a metric denoted by Q(t,c), being t a 

concept and c a class in a set C, several possible 
averages including

∑
∈

=
��

����� FW4F3W4 ),()()(

)},({max)(max FW4W4 �� ∈
=
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3. A blueprint for learning-based ATC

2. (DR) Feature Extraction
– Concept clustering as usual in IR (e.g. 

[Salton89]) = automatic thesaurus construction
• Class #764 of an engineering related thesaurus

(refusal) refusal declining non-compliance rejection denial

– Latent semantic indexing (e.g. [Dumais92])
• a way to capture main semantic dimensions in a text 

collection, avoiding V\QRQ\P\ and SRO\VHP\ problems
• Mapping a high-dimensional space into a low-

dimensional one, iteratively choosing dimensions 
corresponding to the axes of greater variation
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3. A blueprint for learning-based ATC

3. Learning TC classifiers
• In order to approximate Φ, many learning 

algorithms have been applied, including
• Probabilistic classifiers as Naive Bayes [Lewis92]
• Decision tree learners as C4.5 [Cohen98]

• Rule learners as Ripper [Cohen95]

• Instance-based classifiers as kNN [Larkey98]

• Neural networks [Dagan97]

• Support Vector Machines (SVM) [Joachims98]
• etc. 
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3. A blueprint for learning-based ATC

3. Learning TC classifiers (example)
– Category EARN (HDUQLQJV) in the Reuters-21578 

benchmark collection (ModApte split)
– 9,606 training documents (2,879 in EARN)
– 3,299 test documents (1,087 in EARN)
– Documents represented as binary vectors

– Selected top five χ2 scoring terms (“cts”, “net”, 
“lt”, “loss”, “vs”)
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3. A blueprint for learning-based ATC

3. Learning TC classifiers (example)

A (part of a) decision tree generated by ID3 using the WEKA
[Witten99] package (WKH�WUHH�FDSWXUHV�FRQWH[W�LQIRUPDWLRQ)

lt = 0

cts = 0 cts = 1

net = 0 net = 1

lt = 1

n

lt = 0 lt = 1

y

vs = 0 vs = 1

y
lt = 0 lt = 1

y... ......
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3. A blueprint for learning-based ATC

3. Learning TC classifiers (example)

A list of rules produced by PART using WEKA
(UXOHV�FDSWXUH�FRQWH[W�LQIRUPDWLRQ)

($51

($51

($51

($51

($51

($51

($51

→
→∉
→∉
→∈
→∉∧∉∧∉
→∉∧∉∧∉
→∈∧∈

T

D)  (“loss”

D)  (“net”

D)  (“lt”

D)  (“cts”  D)  (“vs”  D)  (“lt”

D)  (“loss”  D)  (“cts”  D)  (“net”

D)  (“vs”  D)  (“cts”
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3. A blueprint for learning-based ATC

3. Learning TC classifiers (example)

A linear function generated by SVM using WEKA

Assign a document d to EARN if and only if fEARN(d) ≥ 0
(which means EARN is the default case unless “cts” or 
“net” occur in the document)

(WKH�OLQHDU�IXQFWLRQ�GRHV�QRW�FDSWXUH�FRQWH[W�LQIRUP.)

1,002   wd· 0,002 -  wd· 0,001 -                 

   wd· 0,001 -  wd· 1,998 -  wd· 2,000 -  (d)f

54

321EARN

+
+=
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3. A blueprint for learning-based ATC

3. Learning TC classifiers (example)

$OJRULWKP 3U 5H )� $FF

NaiveBayes 0,916 0,927 0,921 0,947

,'� ����� ����� ����� �����

3$57 ����� ����� ����� �����

1NN 0,613 0,926 0,737 0,782

2NN 0,913 0,938 0,926 0,950

�11 ����� ����� ����� �����

SVM 0,866 0,936 0,899 0,930
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4. Advanced document indexing
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4. Advanced document indexing

1. Introduction
2. Statistical and linguistic phrases
3. Information Extraction patterns
4. Using WordNet
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4. Advanced document indexing
�����,QWURGXFWLRQ

• A number of approaches aim at enriching text 
representation for general purpose ATC
– To better capture text semantics

• They can be seen as feature extraction
• Typically, mixed results in experiments
• We will not cover

– Using unlabelled documents for improving word 
statistics (e.g. [McCallum98, Zelikovitz01])
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Many works have proposed the use of 
phrases as indexing concepts

• Phrases = good indexing concepts in IR when
– Text collections are specialized (e.g. Medicine, 

computer science)
– Individual terms are too frequent [Salton89]

• Phrases can be
– Statistical – Normalized n-grams
– Linguistic – Noun phrases
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Statistical phrases [Caropreso01]
– Defined as n-grams normalized with stoplist

filtering, stemming and alphabetical ordering, e.g.

– May show
• Over-generalization – No valid concepts
• Under-generalization – Valid concepts missed

retriev” “inform

retrieval” ve“informati

n”informatio “retrieved

n”informatio of “retrieval

retrieval” on“informati

⇒
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Statistical phrases [Caropreso01]
– Classifier independent evaluation as penetration 

of 2-grams
• Percentage of selected concepts that are 2-grams, by 

using several selection metrics (IG, χ2, DF, etc.) per 
category or averaged

– It is shown that
• Penetration levels are high – 2-grams valuable

• Increasing reduction decreases penetration
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Statistical phrases [Caropreso01]
– Direct evaluation with the Rocchio algorithm
– Results are

• In 20 of 48 cases, adding 2-grams hurts performance
• Most improvements are got at bigger concept number

– Some 2-grams may be redundant, and force the 
elimination of valuable 1-grams

• E.g. “inform”, “retriev” and “inform retriev” are all selected
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Statistical phrases
– More work for ATC in e.g. [Furnkranz98, Lewis92, 

Mladenic98b, Mladenic98c, Scott98, Scott99]
– Work in IR is also relevant (specially from 

[Fagan87, Fagan89] ahead)
– Mixed results, maybe because indexing languages 

based on phrases have, with respect to word-only 
indexing languages

• superior semantic qualities

• inferior statistical qualities
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Linguistic phrases
– Concepts RIWHQ include Noun Phrases, 

recognized by statistical methods, involving 
POS-Tagging and
• Chunking (shallow parsing)

– E.g. In [Lewis92, Lewis92b], the SDUWV bracketer
[Church88] is used

• Finite state methods (e.g. regular expressions)
– E.g. [Scott99]

NP = {A, N}* N
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4. Advanced document indexing
�����6WDWLVWLFDO�DQG�OLQJXLVWLF�SKUDVHV

• Linguistic phrases
– In [Lewis92], syntactic phrases do not outperform 

terms as indexing concepts, for a Naive Bayes
classifier for Reuters-21578

– In [Scott99], there is a slight improvement for the 
rule learner Ripper [Cohen95] for Reuters-21578

– Remarks on statistical phrases hold also here
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4. Advanced document indexing
�����,QIRUPDWLRQ�H[WUDFWLRQ�SDWWHUQV

• Riloff’s relevancy signatures [Riloff94,Riloff96]
– Signatures are <word, semantic_node> pairs
– Words act as semantic node triggers

– Semantic nodes are manually defined for a domain

– Patterns are detected with the CIRCUS sentence analyzer

e.g. Terrorism incidents (MUC)
��� �����	��
��� ������ ��� ��������� �
< �! " "�! " "# $%��& # '	$ , $murder$> .84 the assassination of Hector Oqueli 
< �! " "�! " "# $%��& # '	$% , $murder$> .49 there were 2,978 political assassinations in 1988 
< (%)!�%( , $found-dead-pasive$> 1.00 the major was found dead 
< (%)!�%( , $left-dead$> .61 the attack left 9 people dead 
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4. Advanced document indexing
�����,QIRUPDWLRQ�H[WUDFWLRQ�SDWWHUQV

• Riloff’s relevancy signatures [Riloff94,Riloff96]
– The relevancy signatures operates as follows
– 7UDLQLQJ (being & a category, 6 a signature)

• Collect all signatures from training texts
• Select those with 3�&_6� > 5, and occurring more than 0

times => a set 6 of “relevancy signatures”

– Signatures in S have reliable statistics (0) and guarantee 
high precision (5)

– &ODVVLILFDWLRQ

• Collect signatures from the document ' to classify

• Classify it in & if and only if a relevancy signature occurs in '
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4. Advanced document indexing
�����,QIRUPDWLRQ�H[WUDFWLRQ�SDWWHUQV

• Riloff’s relevancy signatures [Riloff94,Riloff96]
– Evaluation results on several kinds of problems

• Detecting terrorist attacks
• Detecting joint venture events

• Finding microelectronic processes linked to specific 
organizations

– Results consistently show high precision for low recall 
levels

– The main drawback is manually writing semantic nodes (a 
knowledge acquisition bottleneck) alleviated with 
semiautomatic programs (AutoSlog)
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4. Advanced document indexing
�����,QIRUPDWLRQ�H[WUDFWLRQ�SDWWHUQV

• [Furnkranz98]
– The AutoSlog-TS [Riloff96] IE system is used for 

extracting phrases matching syntactic patterns

In “I am a student of computer science at Carnegie Mellon 
University”, 3 features are extracted (QRXQ�PHDQV�LQ�
VLQJXODU�IRUP)

���������
	��� 	�������������� ���������
��� �������!����

noun aux-verb <d-obj> I am <_> 
<subj> aux-verb noun <_> is student 
noun verb <noun-phrase> student of <_> 

student at <_> 
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4. Advanced document indexing
�����,QIRUPDWLRQ�H[WUDFWLRQ�SDWWHUQV

• [Furnkranz98]
– The representation is evaluated on a Web 

categorization task (university pages classified 
as STUDENT, FACULTY, STAFF, DEPARTMENT, etc.

– A Naive Bayes (NB) classifier and Ripper used
– Results (words vs. words+phrases) are mixed

• Accuracy improved for NB and not for Ripper
• Precision at low recall highly improved
• Some phrasal features are KLJKO\�SUHGLFWLYH for certain 

classes, but in general have ORZ�FRYHUDJH
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Using WordNet for ATC
– See e.g. [Buenaga00, Fukumoto01, Junker97, 

Petridis01, Scott98, Suzuki01]
– WordNet is a lexical database for English with

• high coverage of English lexical items (N, V, Adj, Adb)
• information about lexical and semantic relations 

including
– Synonymy (“car”, “automobile”)
– Hyponymy – D�NLQG�RI (“ambulance”, “car”)
– Meronymy – KDV�SDUW (“car”, “accelerator”)
– Etc.



35

EACL’03 Tutorial on Text Representation for Automatic Text Categorization
José María Gómez Hidalgo – Universidad Europea de Madrid – April 12, 2003 69

4. Advanced document indexing
�����8VLQJ�:RUG1HW

• WordNet’s organization
– The basic unit is the synset = synonym set
– A synset is equivalent to a concept
– E.g. Senses of “car” (synsets to which “car” 

belongs)
{car, auto, automobile, machine, motorcar}
{car, railcar, railway car, railroad car}
{cable car, car}

{car, gondola}
{car, elevator car}
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• WordNet’s organization
– Separated tables (files) for syntactic categories 

(N, V, Adj, Adb)
– Links from words to synsets, and between

synsets (representing semantic relations)
{person, individual, someone, somebody, mortal, human, 

soul}
D�NLQG�RI {organism, being}

D�NLQG�RI {living thing, animate thing}
D�NLQG�RI {object, physical object}

D�NLQG�RI {entity, physical thing}
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• WordNet is useful for IR
– Indexing with synsets has proven effective 

[Gonzalo98]
– It improves recall because involves mapping 

synonyms into the same indexing object
– It improves precision because only relevant 

senses are considered
• E.g. A query for “jaguar” in the car sense causes 

retrieving only documents with WKLV�ZRUG�LQ�WKLV�VHQVH
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Concept vs. sense indexing (with WordNet)
– In concept indexing, the features are the 

concepts (e.g. the full synset {cable car, car})
– In sense indexing, the features are words tagged 

with senses (e.g. car_N_sn3 meaning the word 
“car” as noun, in its third sense)
• In this case, synonymy relation is lost, with a decrease 

of recall

e.g. car_N_sn3 ≠ cable_car_N_sn1
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Concept indexing with WordNet
– [Scott98, Scott99] ↓↑

• Using synsets and hypernyms with Ripper

• Fail because they do not perform WSD

– [Junker97] ↓↓
• Using synsets and hypernyms as generalization 

operators in a specialized rule learner

• Fail because the proposed learning method gets ORVW�LQ�

WKH�K\SRWKHVLV�VSDFH
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Concept indexing with WordNet
– [Petridis01] ↓↑

• Perfect WSD (using Semcor for genre detection) with a 
new Neural Network algorithm

• Senses marginally improve effectiveness

– [Liu01] ↓↑
• Presented a Semantic Perceptron Network (trainable 

semantic network) with cooccurrence, and WordNet 
based correlation metrics for links

• As often, slight improvement on less populated 
categories
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Concept indexing with WordNet
– [Fukumoto01] ↓↑

• Sysnets and (limited) hypernyms for SVM, no WSD
• Improvement on less populated categories

– In general
• Given that there is not a reliable WSD algorithm for 

(fine-grained) WordNet senses, current approaches do 
not perform WSD

• Improvements in those categories less available 
information

• %XW�,�EHOLHYH�WKDW�IXOO��SHUIHFW :6' LV�QRW�UHTXLUHG
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4. Advanced document indexing
�����8VLQJ�:RUG1HW

• Query expansion with WordNet
– Often, highly relevant names are available for 

categories (ARTS, WHEAT, etc.)
– This information, enriched with synonymy and

WSD, has been used for ATC with
• linear classifiers [Buenaga00, Gomez02b]

• semi-supervised learning [Benkhalifa01]

– Small to medium improvements 
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5. Task oriented features
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5. Task oriented features

• In a number of TC tasks, features for learning are 
also stylometric or structural

• Language identification (e.g. [Cavnar94, Sibun96, Teahan00])
• Genre identification (e.g. [Copeck00, Finn02, Karlgren94, 

Kessler97, Stamatatos00, Teahan00])

• Authorship attribution (e.g. [DeVel01, Kindermann00, 
Stamatatos00, Teahan00])

• Plagiarism detection (see the survey [Clough00])

• Spam detection ([Gomez00, Sahami98b])
• Pornography detection

• We are concerned with easy to compute features
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5. Task oriented features

• Language identification [Cavnar94]
– Character n-grams (n=1..5)
– Zipf’s law and “out-of-place” similarity metric 

between distributions (made of 300 top n-grams)
– Language identification effectiveness

• 99,8% accuracy

– Also ATC robust to typographic errors
• 80% thematic newsgroup classification
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5. Task oriented features

• Genre identification [Finn02]
– Identify the degree to which a text is subjective (express 

author’s opinions instead of facts)
– C4.5 on bag of words (BW), POS tags freq. and 76 hand 

crafted (HC) features as
• Counts of certain stop words
• Counts of various punctuation symbols
• Average sentence length
• Number of long words
• Keywords expressing subjectivity

– Effectiveness
• In a single domain  HC > BW > POS
• In domain transfer POS > HC > BW



41

EACL’03 Tutorial on Text Representation for Automatic Text Categorization
José María Gómez Hidalgo – Universidad Europea de Madrid – April 12, 2003 81

5. Task oriented features

• Genre identification [Kessler97]
– Learning algorithms are logistic regression and neural 

networks
– Features include

• Lexical
– Terms of address (Mr.)
– Latinate affixes
– Words in dates

• Character
– Counts of question marks
– Counts of exclamation marks
– Counts of capitalized and hyphenated words
– Counts of acronyms
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5. Task oriented features

• Genre identification [Kessler97]
– Features also include

• Derivative
– Normalized ratios of

» Average sentence length

» Average word length
» Words per type

– Variations

» Standard deviation is sentence length

– Effectiveness is reasonable
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5. Task oriented features

• Authorship attribution [DeVel01]
– On email for forensic investigation
– SVMs on 170 features which include (being M the number 

of words and V the number of distinct words)
• Stylistic (sample)

– Number of blank lines/total number of lines

– Average sentence length
– Average word length (number of characters)
– Vocabulary richness i.e., V=M

– Function word frequency distribution (122 features)
– Total number of short words/M
– Word length frequency distribution/M (30 features)
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5. Task oriented features

• Authorship attribution [DeVel01]
– More features

• Structural
– Has a greeting acknowledgment

– Uses a farewell acknowledgment
– Contains signature text
– Number of attachments

– Position of requoted text within e-mail body
– HTML tag frequency distribution/total number of HTML tags (16 

features)

– Promising accuracy for DFURVV and PXOWL�WRSLF author 
detection
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5. Task oriented features

• Spam detection [Sahami98b]
– A Naive Bayes classifier trained on stemmed words and

• 35 hand crafted phrases from texts (“only $”, “be over 21”)
• Domain of sender address
• The name of sender is resolved by the email client
• Received from a mailing list
• Time of reception
• Has attached files
• Percentage of non-alphanumeric characters in subject
• About 20 like these latter

– Specially the latter features (not phrases) greatly increase 
performance reaching 96-100% precision and recall levels
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5. Task oriented features

• Spam detection [Gomez00]
– Features (9) regarded as heuristics are

• Percentages of special characters “;”, “(“, ”[“, “!”, “$”, “#”
• Frequencies of capital letters

– Several learning methods (Naive Bayes, N
Nearest Neighbors, C4.5, PART - rules)

– With PART (best), heuristics clearly improve over 
word stems
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5. Task oriented features

• Pornography detection (POESIA [Gomez02c])
– We need to get more semantics

• Metaphoric meaning of words like “screw” for erotic tales

– Promising features include e.g.
• Named entities (“nude pictures of <person>”)
• Keyphrases (“be over 21”)

• Riloff’s like syntactic signatures (“be over <number>”)

– We expect combination of knowledge sources (images, 
JavaScript code analysis, etc) will improve text-based 

methods
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6. Summary

• General IR-ML approach works well for 
thematic ATC

• Features are more and more semantic
Characters → character n-grams → word stems →
phrases → syntactic patterns → concepts

• Stylistic and structural features work well for 
a range of useful applications

• In a real world application, approach as 
Knowledge Discovery in (Text) Databases
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6. Summary

• The standard KDD process (borrowed from 
[Fayyad96])
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6. Summary

1. Build or get a representative corpus
2. Label it
3. Define features
4. Represent documents
5. Learn and analyize
6. Go to 3 until accuracy is acceptable
(ILUVW�IHDWXUHV�WR�WHVW��VWHPPHG�ZRUGV)
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