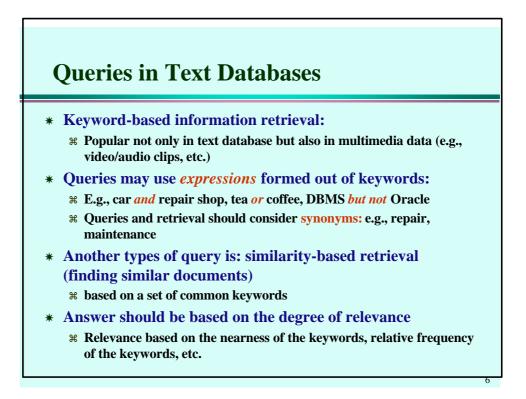

- ж Web Path Evaluator with Java
- **#** Intelligent Solutions for Enterprise Web Server
- 第 Data Mining技術在網站上之應用 (e-MakeUp)
- **#** Exploiting Data Mining in the Stock Market
- # An Adaptive Multi-Attribute Multi-Measurement Method for Mining Classification Rules
- # Mining Mobile Sequential Patterns in the Wireless E-Commerce Environment
- # Mining the Most Interesting Association Rule
- Mining Relevant Patterns from Personal Mobility in a Mobile Comm. And Comput. Environment

Information Retrieval and Text Databases

* Information retrieval:

- **# IR: A field developed in parallel with database systems**
- # Information is organized into (a large number of) documents
- Information retrieval problem: locating relevant documents based on user input, such as keywords or example documents.
- ***** Typical IR systems:
 - **#** online library catalogs, online document management systems
- * Information retrieval vs. database systems
 - **%** Some DB problem not in IR, e.g., update, transaction management, complex objects.
 - Some IR problem not addressed well in DBMS, e.g., unstructured documents, approximate search using keywords and relevance.

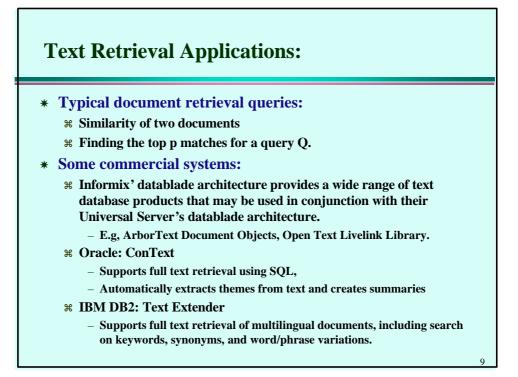


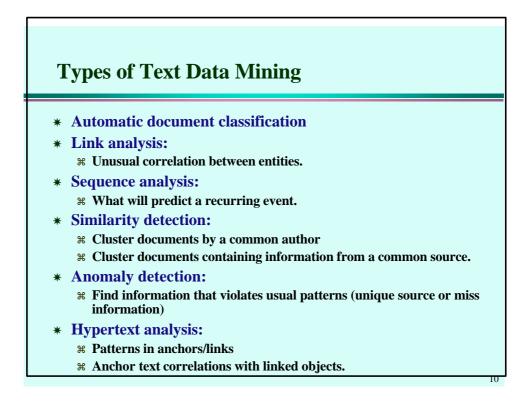
- * Information retrieval is not enough
 - **#** Too many documents that may contain useful information
 - Analyst may not even know what is needed without seeing documents (better retrieval not likely to help).
 - ***** Problem may not be finding the right documents but patterns/trends across multiple documents.

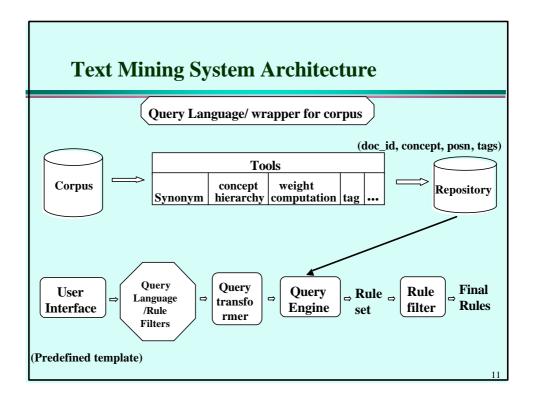
Text Database: Models and Retrieval Techniques

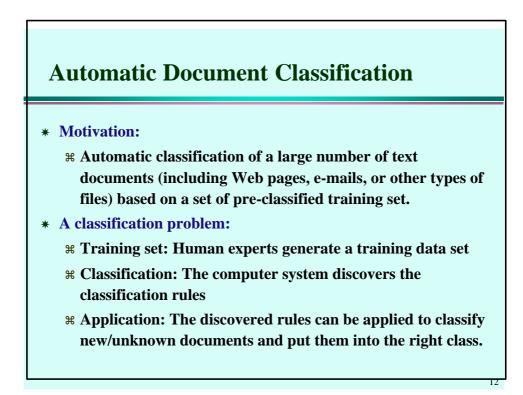
* A simple model:

- ***** A document is represented by a string, which can be identified by a set of keywords.
- * Major difficulties of the model:
 - Synonymy: A word T does not appear anywhere in the document, even though the document is closely related to T, e.g., data mining.
 - **Polysemy:** The same word may mean different things in different contexts, e.g., mining.
- * Basic measures for content-based text retrieval
 - **#** <u>*Precision*</u>: how many of the documents retrieved are in fact correct?
 - # <u>Recall</u>: how many documents that should have been retrieved were in fact retrieved?

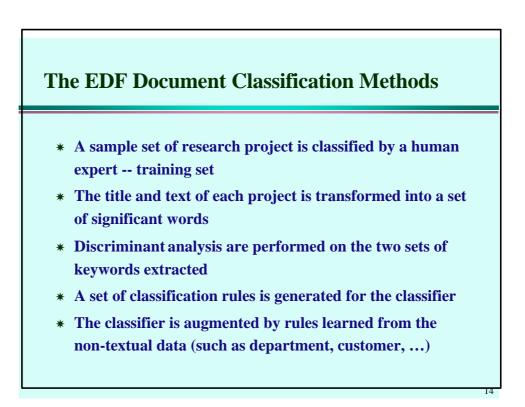


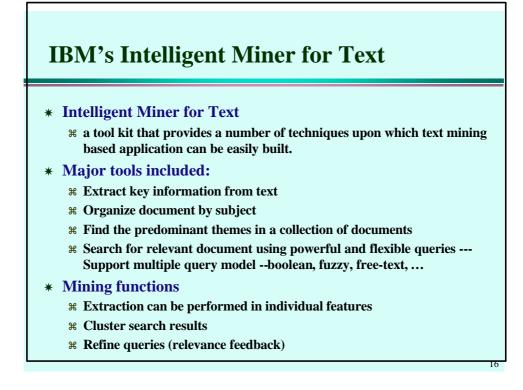

Basic Techniques in Text Retrieval Systems


* Stop list:


- # A text retrieval system often associates a stop list with a document set, which is a set of words that are deemed "irrelevant", e.g., *a*, *the*, *of*, *for*, *with*, etc., even though they may appear frequently.
- ***** Stop lists may vary when document set varies, e.g., "computer".
- *** Word stem:**
 - ***** Several words are small syntactic variants of each other since they share a common word stem, e.g., *drug*, *drugs*, *drugged*.
- ***** Frequency table:
 - **#** *Frequent_Table*(*I*, *j*): # of occurrences of the word *t* in document *d*.
 - # Usually, *ratio* instead of the absolute number of occurrences is used.
 - **#** Measure the closeness of a document to a query (a set of keywords):
 - term distance

Function 1 Control C




The EDF Project

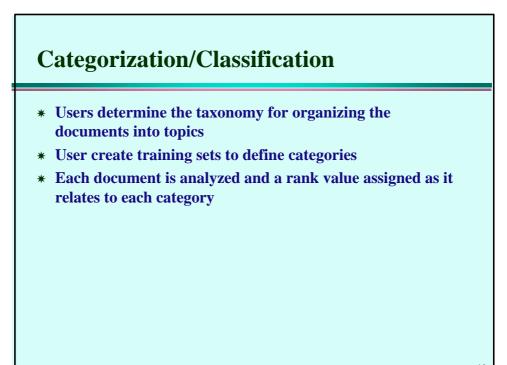
- * A research project at Electric de France
- * Motivation: To classify a large number of projects defined each year (nearly 1,500) in EDF's research center (of 2,700 people), representing more than 2,000 pages of text
- * The system was fully operational and an experimental study showed that the classifier is more reliable than the human experts who did the job before the classifier was built
- * Reasons for the success
 - **#** All available pieces of information are used
 - **#** Traditional IR techniques are widely used in the system
 - **#** The non-textual data have strong relationship with the correct class

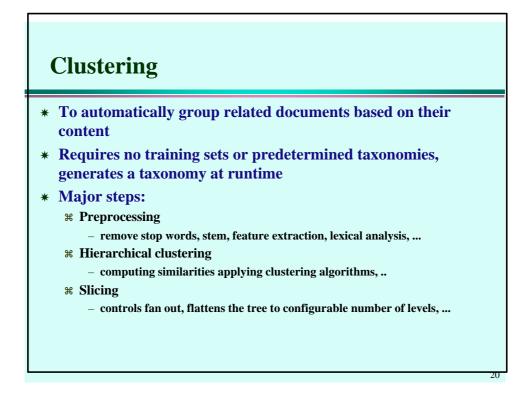
The Singapore Web Document Classification Project

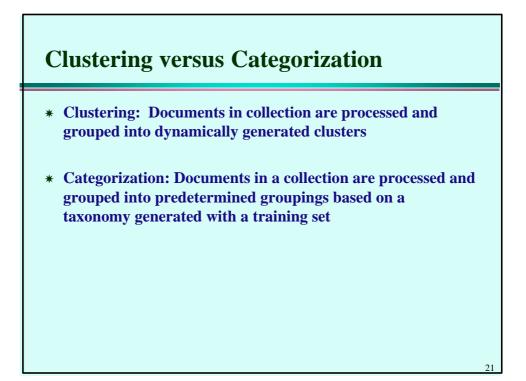
- * Developed in National Univ. of Singapore (K. Wang, et al.'99)
- * Major technology used:
 - **#** Extract key words from text (Yahoo, ACM Web site)
 - **#** Take the available classified documents as training set
 - **#** Use multi-level association mining to find frequent sets
 - Cordering association rules based on the strength of rules Global classification instead of local classification
 - ***** May handle synonyms, polysems, and distances between terms
 - **#** An integration of association and classification
- * High performance and high classification accuracy.

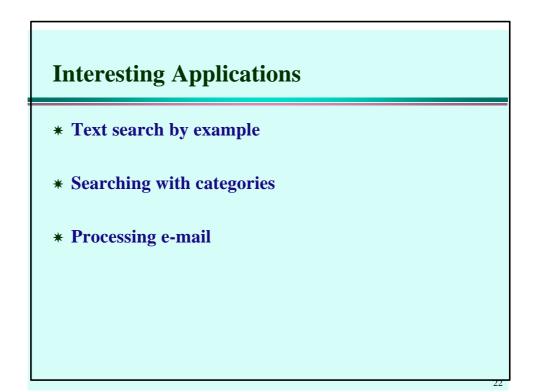
Major Components

***** Text analysis tools


- **#** Feature extraction -- annotating documents
- **#** Categorization -- organizing documents
- ж Clustering -- document navigation
- * Advanced search engines
 - ℜ Advanced text search engine -- TextMiner
 - **#** Web-enabled search engine -- NetQuestion


* Web tools


- **# Web Crawler**
- **# Web Crawler Toolkit**


Feature Extraction

- * To discover automatically the language(s) in which the document is written
- * To recognize significant vocabulary items in text
- * To recognize all names referring to a single entity
- * To provide the location of all person names, places, and organization in the text
- * To find multi-word terms that have a meaning of their own
- * To find abbreviations introduced in a text and link them with their full names

References

- * C. Faloutsos. Access methods for text. ACM Comput. Surv., 17:49-74, 1985.
- * R. Feldman and I. Dagan. Knowledge discovery in textual databases (KDT). Proc. 1st Int. Conf. Knowledge Discovery and Data Mining, Montreal, Canada, Aug. 1995.
- * W. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algorithms. Printice Hall, 1992.
- * V. Gaede and O. Gunther. Multdimensional access methods. ACM Comput. Surv., 30:170-231, 1998.
- * L. Gravano, H. Garcia-Molina, and A. Tomasic. The effectiveness of gioss for the text database discovery problem. In SIGMOD'94.
- * K. S. Jones and P. Willett (eds.). Readings in Information Retrieval, 3rd ed., Morgan Kaufmann, 1997.
- * G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
- * G. Salton, J. Allen, C. Buckley, and A. Singhal. Automatic analysis, theme generation, and summarization of machine-readable texts. Science, 264:1421-1426, 1994.
- * C. T. Yu and W. Meng. Principles of database query processing for advanced applications. Morgan Kaufmann, 1997.
- * O. R. Zaiane, M. Xin, and J. Han. Discovering Web access patterns and trends by applying OLAP and data mining technology on Web logs, in ADL'98.
- * C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, C. S. Subrahmanian, and R. Zicari. Advanced database systems. Morgan Kaufmann, 1997.