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ABSTRACT
Text categorization is typically formulated as a concept learn-
ing problem where each instance is a single isolated docu-
ment. In this paper we are interested in a more general for-
mulation where documents are organized as page sequences,
as naturally occurring in digital libraries of scanned books
and magazines. We describe a method for classifying pages
of sequential OCR text documents into one of several as-
signed categories and suggest that taking into account con-
textual information provided by the whole page sequence
can significantly improve classification accuracy. The pro-
posed architecture relies on hidden Markov models whose
emissions are bag-of-words according to a multinomial word
event model, as in the generative portion of the Naive Bayes
classifier. Our results on a collection of scanned journals
from the Making of America project confirm the importance
of using whole page sequences. Empirical evaluation indi-
cates that the error rate (as obtained by running a plain
Naive Bayes classifier on isolated page) can be roughly re-
duced by half if contextual information is incorporated.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; H.3.7 [Information Systems]: Information Stor-
age and Retrieval—Digital Libraries; I.7.m [Computing
Methodologies]: Document and Text Processing

General Terms
Algorithms, Performance
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Text categorization, Hidden Markov Models, Naive Bayes
classifier, Multi-page documents
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1. INTRODUCTION
Text categorization is the problem of grouping textual

documents into different fixed classes or categories. The
task is related to the ability of an intelligent system to auto-
matically perform tasks such as personalized e-mail or news
filtering, document indexing, metadata extraction. These
problems are of great and increasing importance, mainly
because of the recent explosive increase of online textual in-
formation. Text categorization is generally formulated in
the machine learning framework. In this setting, a learning
algorithm takes as input a set of labeled examples (where
the label indicates which category the example document be-
longs to) and attempts to infer a function that will map new
documents into their categories. Several algorithms have
been proposed within this framework, including regression
models [29], inductive logic programming [6], probabilistic
classifiers [17, 21, 16], decision trees [18], neural networks
[22], and more recently support vector machines [12].

Research on text categorization has been mainly focused
on non-structured documents. In the typical approach, in-
herited from information retrieval, each document is rep-
resented by a sequence of words, and the sequence itself is
normally flattened down to a simplified representation called
bag of words (BOW). This is like representing each docu-
ment as a feature-vector, where features are words in the
vocabulary and components of the feature-vector are statis-
tics such as word counts in the document. Although such
a simplified representation is appropriate for relatively flat
documents (such as email and news messages), other types
of documents are internally structured and this structure
should be exploited in the representation to better inform
the learner.

In this paper we are interested in the domain of digital
libraries and, in particular, collections of digitized books
or magazines, with text extracted by an Optical Charac-
ter Recognition (OCR) system. One important challenge
for digital conversion projects is the management of struc-
tural and descriptive metadata. Currently, metadata man-
agement involves a large amount of keying work carried out
by human operators. Automating the extraction of meta-
data from digitized documents could greatly improve effi-
ciency and productivity [1]. This automation, however, is
not a trivial task and involves recognition of the ordering of
text divisions, such as chapters and sub-chapters, the iden-
tification of layout elements, such as headlines, footnotes,
graphs, and captions, and the linking of articles within a pe-



riodical. Automatic recognition of these elements can be a
hard problem, especially without any prior knowledge about
the type of elements that are expected to be present within
a given document page. Hence, page classification can rep-
resent a useful preliminary step to guide the subsequent ex-
traction process. Moreover, extracting metadata related to
the semantic contents of document parts (such as chapters
or articles) can require the ability of recognizing the topic or
the category of these parts. The solution to these problems
can be helped by a classifier that assigns a category to each
page of the document.

Unlike email or news articles, books and periodicals are
multi-page documents and the simplest level of structure
that can be exploited is the serial order relation defined
among single pages. The task we consider is the automatic
categorization of each page according to its (semantic) con-
tents1. Exploiting the serial order relation among pages
within a single document can be expected to improve classi-
fication accuracy when compared to a strategy that simply
classifies each page separately. This is because the sequence
of pages in documents such as books or magazines often
follows regularities such as those implied by typographical
and editorial conventions. Consider for example the do-
main of books and suppose categories of interest include
title-page, dedication-page, preface-page, index-page,
table-of-contents, regular-page, and so on. Even in this
very simplified case we can expect constraints about the
valid sequences of page categories in a book. For example,
title-page is very unlikely to follow index-page and, sim-
ilarly, dedication-page is more likely to follow title-page

than preface-page. Constraint of this type can be captured
and modeled using a stochastic grammar. Thus, information
about the category of a given page can be gathered not only
by examining the contents of that page, but also by examin-
ing the contents of other pages in the sequence. Since con-
textual information can significantly help to disambiguate
between page categories, we expect that classification accu-
racy will improve if the learner has access to whole sequences
instead that single-page documents.

In this paper we combine several algorithmic ideas to solve
the problem of text categorization in the domain of multi-
page documents. First, we use an algorithm similar to those
described in [28] and [20] for inducing a stochastic regular
grammar over sequences of page categories. Second, we in-
troduce a hidden Markov model (HMM) that can deal with
sequences of BOWs. Each state in the HMM is associated
with a unique page category. Emissions are modeled by a
multinomial distribution over word events, like in the gen-
erative component of the Naive Bayes classifier. The HMM
is trained from (partially) labeled page sequences, i.e. state
variables are partially observed in the training set. Unob-
served states (which is the common setting in most classic
applications of HMMs) arise here when document pages are
partially unlabeled, like in the framework described in [23]
and [13]. Finally, we solve the categorization problem by
running the Viterbi algorithm on the trained HMM, yielding
a sequence of page categories associated with new (unseen)
documents. This is somewhat related to recent applications
of HMMs to information extraction [9, 20] but the output
labeling in our case is associated with the entire stream of

1A related formulation would consist of assigning a global
category to a whole multi-page document, but this formula-
tion is not considered in this paper.

text contained into a page, while in [9, 20] the HMM is used
to attach labels to single words of shorter portions of text.

Our approach is validated on a real dataset consisting
of 95 issues of the journal American Missionary, which is
part of the “Making of America” collection [26]. In spite
of text noise due to optical recognition, our system achieves
about 85% page classification accuracy when training on 10
issues (year 1884) and testing on issues from 1885 to 1893.
More importantly, we show that incorporating contextual
information significantly reduces classification error, both
in the case of completely labeled example documents and
when unlabeled documents are included in the training set.

2. BACKGROUND
Let d be a generic multi-page document, and let dt de-

note the t-th page within the document. The categoriza-
tion task consists of learning from examples a function f :
dt → {c1, · · · , cK} that maps each page dt into one out of
K classes.

2.1 The Naive Bayes classifier
The above task can also be reformulated in probabilis-

tic terms as the estimation of the conditional probability
P (Ct = ck|dt), Ct being a multinomial class variable with
realizations in {c1, · · · , cK}. In so doing, f can be computed
using Bayes’ decision rule, i.e. f(d) is the class with higher
posterior probability. The Naive Bayes classifier computes
this probability as

P (Ct = ck|dt) ∝ P (dt|Ct = ck)P (Ct = ck). (1)

What characterizes the model is the so-called Naive Bayes
assumption, prescribing that word events (each occurrence
of a given word in the page corresponds to one event) are
conditionally independent given the page category. As a
result, the class conditional probabilities can be factorized
as

P (dt|Ct = ck) =

|dt|∏
i=1

P (wi
t|Ct = ck) (2)

where |dt| denotes the length of page dt and wi
t is the i-th

word in the page. This conditional independence assump-
tion is graphically represented by the Bayesian network2

shown in Figure 1.
Although the basic assumption is clearly false in the real

world, the model works well in practice since classification
requires finding a good separation surface, not necessarily
a very accurate model of the involved probability distribu-
tions. Training consists of estimating model’s parameters
from a dataset D of labeled documents (see, e.g. [21]).

2.2 Hidden Markov models
HMMs have been introduced several years ago as a tool for

probabilistic sequence modeling. The interest in this area
developed particularly in the Seventies, within the speech

2A Bayesian network is an annotated graph in which nodes
represent random variables and missing edges encode con-
ditional independence statements amongst these variables.
Given a particular state of knowledge, the semantics of a
Bayesian networks determine whether collecting evidence
about a set of variables does modify one’s belief about some
other set of variables [24, 11].
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Figure 1: Bayesian network for the Naive Bayes clas-
sifier.
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Figure 2: Bayesian networks for standard HMMs.

recognition research community [25]. During the last years
a large number of variants and improvements over the stan-
dard HMM have been proposed and applied. Undoubtedly,
Markovian modeling is now regarded as one of the most
significant state-of-the-art approaches for sequence learn-
ing. Besides several applications in pattern recognition and
molecular biology, HMMs have been also applied to several
text related tasks, including natural language modeling [5]
and, more recently, information retrieval and extraction [9,
20]. The recent view of the HMM as a particular case of
Bayesian networks [2, 19, 27] has helped the theoretical un-
derstanding and the ability to conceive extensions to the
standard model in a sound and formally elegant framework.

An HMM describes two related discrete-time stochastic
processes. The first process pertains to hidden discrete state
variables, denoted Xt, forming a first-order Markov chain
and taking realizations on a finite alphabet {x1, · · · , xN}.
The second process pertains to observed variables or emis-
sions, denoted Dt. Starting from a given state at time
0 (or given an initial state distribution) the model proba-
bilistically transitions to a new state X1 and correspond-
ingly emits observation D1. The process is repeated re-
cursively until an end state is reached. Note that, as this
form of computation may suggest, HMMs are closely re-
lated to stochastic regular grammars [5]. The Markov prop-
erty prescribes that Xt+1 is conditionally independent of
X1, . . . , Xt−1 given Xt. Furthermore, it is assumed that
Dt is independent of the rest given Xt. These two con-
ditional independence assumptions are graphically depicted
using the Bayesian network of Figure 2. As a result, an
HMM is fully specified by the following conditional proba-

bility distributions3:

P (Xt|Xt−1) (transition distribution)
P (Dt|Xt) (emission distribution)

(3)

Since the process is stationary, the transition distribution
can be represented as a square probability matrix whose
entries are transition probabilities P (Xt = xi|Xt−1 = xj),
abbreviated as P (xi|xj) in the following. In the classic liter-
ature, emissions are restricted to symbols in a finite alpha-
bet or multivariate continuous variables [25]. As explained
in the next section, our model allows emissions to be bag-
of-words.

3. THE MULTI-PAGE CLASSIFIER
We now turn to the description of our classifier for multi-

page documents. This section presents the architecture and
the algorithms for grammar extraction, training, and classi-
fication.

3.1 Architecture
In our case, HMM emissions are associated with entire

pages of the document. Thus the realizations of the obser-
vation Dt are bag-of-words representing the text in the t-th
page of the document. Within our framework, states are
related to pages categories by a a deterministic function φ
that maps state realizations into page categories. We assume
that φ is a surjection but not a bijection, i.e. that there are
more state realizations than categories. This enriches the
expressive power of the model, allowing different transition
behaviors for pages of the same class, depending on where
the page is actually encountered within the sequence. How-
ever, if the page contents depends on the category but not
on the context of the category within the sequence4, the use
of multiple states per category may introduce too many free
parameters and it may be convenient to assume that

P (Dt|xi) = P (Dt|xj) = P (Dt|ck) if φ(xi) = φ(xj) = ck.
(4)

This assumption constrains emission parameters to be the
same for all the HMM states labeled by the same page cate-
gory, a form of parameters sharing that may help to reduce
overfitting. The emission distribution is then defined as for
the Naive Bayes classifier, i.e. for every observed page dt

P (dt|ck) =

|dt|∏
i=1

P (wi
t|ck) (5)

Therefore, the architecture can be graphically described as
the merging of the Bayesian networks for HMMs and Naive
Bayes, as shown in Figure 3. We remark that the state (and
hence the category) at page t depends not only on the con-
tents of the page, but also on the contents of other pages in
the document. This probabilistic dependency implements

3We adopt the standard convention of denoting variables
by uppercase letters and realizations by the corresponding
lowercase letters. Moreover, we use the table notation for
probabilities as in [11]; for example P (X) is a shorthand for
the table [P (X=x1), . . . , P (X=xr)] and P (X, y|Z) denotes
the two-dimensional table with entries P (X=xi, Y =y|Z=
zk).
4Of course this does not mean that the category is indepen-
dent on the context.
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Figure 3: Bayesian network for the hybrid HMM
Naive Bayes architecture.

the mechanism for taking contextual information into ac-
count.

The algorithms used in this paper are derived from the
literature on Markov models [25], inference and learning in
Bayesian networks [24, 11, 10], and classification with Naive
Bayes [17, 15]. In the following we sketch the main issues
related to the integration of all these methods.

3.2 Induction of HMM topology
The structure or topology of an HMM is a representation

of the allowable transitions between hidden states. More
precisely, the topology is described by a directed graph whose
vertices are state realizations {x1, . . . , xN}, and whose edges
are the pairs (xj , xi) such that P (xi|xj) 6= 0. An HMM is
said to be ergodic if its transition graph is fully-connected.
However, in almost all interesting application domains, less
connected structures are better suited for capturing the ob-
served properties of the sequences being modeled, since they
convey domain prior knowledge. Thus, starting from the
right structure is an important problem in practical hid-
den Markov modeling. As an example, consider Figure 4,
showing a (very simplified) graph that describes transitions
between the parts of a hypothetical set of books. Possible
state realizations are5 {start, title, dedication, preface, toc,
regular, index, end }. The structure indicates, among other
things, that only dedication, preface, or table of contents can
follow the title page. Self-loops indicate that a given cate-
gory can be repeated for several consecutive pages. While

regulartocstart title

dedication

preface

endindex

Figure 4: Example of HMM transition graph.

a structure of this kind could be hand-crafted by a domain
expert, it is may be more advantageous to learn it automat-
ically from data.

We now briefly describe the solution adopted to automat-
ically infer HMM transition graphs from sample multi-page
documents. Let us assume that all the pages of the available

5Note that in this simplified example φ is a one-to-one map-
ping.

training documents are labeled with the class they belong
to. One can then imagine to take advantage of the observ-
able distribution of data to search for an effective structure
in the space of HMMs topologies. Our approach is based
on the application of an algorithm for data-driven model
induction adapted from previous works in Bayesian HMM
induction [28] and construction of HMMs of text phrases
for information extraction [20]. The algorithms starts by
building a structure that is capable only to “explain” the
available training sequences (a maximally specific model).
The initial structure includes as many paths (from the initial
state to the final one) as there are training sequences. Every
path is associated with one sequence of pages, i.e. a distinct
state is created for every page in the training set. Each
state x is labeled by φ(x), the category of the correspond-
ing page in the document. Note that, unlike the example
shown in Figure 4, several states are generated for the same
category. The algorithm then iteratively applies merging
heuristics that collapse states so as to augment generaliza-
tion capabilities over unseen sequences. The first heuristic,
called neighbor-merging, collapse two states x and x′ if they
are neighbors in the graph and φ(x) = φ(x′). The second
heuristic, called V-merging, collapses two states x and x′

if φ(x) = φ(x′) and they share a transition from or to a
common state, thus reducing the branching factor of the
structure.

3.3 Inference and learning
Given the HMM topology extracted by the algorithm de-

scribed above, the learning problem consists of determining
transition and emission parameters. One important distinc-
tion that need to be made when training Bayesian network
is whether or not all the variables are observed. Assuming
complete data (all variables observed), maximum likelihood
estimation of the parameters could be solved using a one-
step algorithm that collects sufficient statistics for each pa-
rameter [10]. In our case, data are complete if and only if
the following two conditions are met:

1. there is a one-to-one mapping between HMM states
and page categories (i.e. N = K and for k = 1, . . . , N ,
φ(xk) = ck), and

2. the category is known for each page in the training doc-
uments, i.e. the dataset consists of sequences of pairs
({d1, c

∗
1}, . . . , {dT , c∗T }), c∗t being the (known) category

of page t and T being the number of pages in the doc-
ument.

Under these assumptions, estimation of transition parame-
ters is straightforward and can be accomplished as follows:

P (xi|xj) =
N(ci, cj)

N∑
`=1

N(c`, cj)

(6)

where N(ci, cj) is the number of times a page of class ci

follows a page of class cj in the training set. Similarly, esti-
mation of emission parameters in this case would be accom-
plished exactly like in the case of the Naive Bayes classifier
(see, e.g. [21]):

P (w`|ck) =
1 + N(w`, ck)

|V |+
|V |∑
j=1

N(wj , ck)

(7)



where N(w`, ck) is the number of occurrences of word w`

in pages of class ck and |V | is the vocabulary size (1/|V |
corresponds to a Dirichlet prior over the parameters and
plays a regularization role for whose words which are very
rare within a class).

Conditions 1 and 2 above, however, are normally not sat-
isfied. First, in order to model more accurately different
contexts in which a category may occur, it may be conve-
nient to have multiple distinct HMM states for the same
page category. Second, labeling pages in the training set
is a time consuming process that needs to be performed by
hand and it may be important to use also unlabeled docu-
ments for training [13, 23]. This means that label c∗t may be
not available for some t. If assumption 2 is satisfied but as-
sumption 1 is not, we can derive the following approximated
estimation formula for transition parameters:

P (xi|xj) =
N(xi, xj)

N∑
`=1

N(x`, xj)

(8)

where N(xi, xj) counts how many times state xi follows xj

during the state merge procedure described in Section 3.2.
However, in general, the presence of hidden variables re-
quires an iterative maximum likelihood estimation algorithm,
such as gradient ascent or expectation-maximization (EM).
Our implementation uses the EM algorithm, originally for-
mulated in [7] and usable for any Bayesian network with
local conditional probability distributions belonging to the
exponential family [10]. Here the EM algorithm essentially
reduces to the Baum-Welch form [25] with the only modi-
fication that some evidence is entered into state variables.
State evidence is taken into account in the E-step by chang-
ing forward propagation as follows:

αt(j) =


0 if φ(xj) 6= c∗t
N∑

i=1

αt−1(i)P (xj |xi)P (dt|xj) otherwise

(9)
where αt(i) = P (d1d2 · · · dt, Xt = xi) is the forward variable
in the Baum-Welch algorithm.

The M-step is performed in the standard way for tran-
sition parameters, by replacing counts in Equation 6 with
their expectations given all the observed variables. Emission
probabilities are also estimated using expected word counts.
If parameters are shared as indicated in Equation 4, these
counts should be summed over states having the same label.
Thus in the case of incomplete data, Equation 7 is replaced
by

P (w`|ck) =

S +
∑

p

∑
t

N(w`, ck)
∑

i:φ(xi)=ck

P (xi|dt)

S|V |+
|V |∑
j=1

∑
p

∑
t

N(wj , ck)
∑

i:φ(xi)=ck

P (xi|dt)

where S is the number of training sequences, N(w`, ck) is the
number of occurrences of word w` in pages of class ck, and
P (xi|dt) is computed by the Baum-Welch procedure during
the E-step. The sum on p extends over training sequences,
while the sum on t extends over pages of the p-th document
in the training set. The E- and M-steps are iterated un-
til a local maximum of the (incomplete) data likelihood is
reached.

It is interesting to point out a related application of the
EM algorithm for learning from labeled and unlabeled doc-
uments [23]. In that paper the only concern was to allow
the learner to take advantage of unlabeled documents in
the training set. As a major difference, the method in [23]
assumes flat single-page documents and, if applied to multi-
page documents, would be equivalent to a zero-order Markov
model that cannot take into account contextual information.

3.4 Page classification
Given a document of T pages, classification is performed

by first computing the sequence of states x̂1, x̂2, · · · , x̂T that
was most likely to have generated the observed sequence of
pages, and then mapping each state to the corresponding
category φ(x̂t). The most likely state sequence can be ob-
tained by running the an adapted version of Viterbi’s al-
gorithm, whose more general form is the max-propagation
algorithm for Bayesian networks described in [11].

3.5 Feature selection
Text pages should be first preprocessed with common in-

formation retrieval techniques, including stemming and stop
words removal. Still, the bag-of-words representation of
pages can lead to a very high-dimensional feature space cor-
responding to the vocabulary extracted from training docu-
ments. A high-dimensional feature space, especially in this
case where features are noisy because of OCR errors, may
lead to the overfitting phenomenon: the learner has very
high accuracy on the training set but generalization to new
examples is poor. Feature selection is a technique for lim-
iting overfitting by removing non-informative words from
documents. In our experiments we performed feature se-
lection using information gain [30]. This criterion is often
employed in different machine learning contexts. It mea-
sures the average number of bits of information about the
category that are gained by including a word in a document.
For each dictionary term w, the gain is defined as

G(w) = −
K∑

k=1

P (ck) log2 P (ck)

+ P (w)

K∑
k=1

P (ck|w) log2 P (ck|w)

+ P (w)

K∑
k=1

P (ck|w) log2 P (ck|w)

where w denotes the absence of word w. Feature selection
is performed by retaining only the words having the highest
average mutual information with the class variable. OCR
errors, however, can produce very noisy features which may
be responsible of poor performance even if feature selection
is performed. For this reason, it may be convenient to prune
from the dictionary (before applying the information gain
criterion) all the words occurring in the training set with a
frequency below a given threshold h.

3.6 Learning with labeled and unlabeled pages
Creating a training set for text categorization involves

hand labeling in order to assign a category to each docu-
ment. Since this is an expensive human activity, it is inter-
esting to evaluate a classification system when only a frac-
tion of the training documents pages are labeled, while other



documents are used without a category label. Clearly, unla-
beled documents are available at very low cost. In the case
of isolated page classification, previous research has demon-
strated that learners such as Naive Bayes and support vector
machines can take advantage of the inclusion in the training
set of documents whose class is unknown [13, 23]. In par-
ticular, the method presented in [23] uses EM to deal with
unobserved labels.

In the case of multi-page documents, the presence of miss-
ing labels means that some pages of the training document
sequences have no assigned category. The architecture in-
troduced in this paper (see Figure 3) can easily handle the
presence of unlabeled pages in the training set. Basically,
evidence is entered into the states of the HMM chain only
for those pages for which a label is known, while other state
variables are left unobserved. The belief propagation algo-
rithm is in charge of computing probabilities for these hidden
variables.

However, the structure learning algorithm presented in
Section 3.2 cannot be applied in the case of partially la-
beled documents. Instead, it is possible to use ergodic (fully
connected) HMMs and deriving a transition structure by
pruning, after the learning phase, those transitions having
small probabilities with respect to an assigned threshold. In
this way, we let EM derive a specific structure for the model
(note that the only alternative in the case of partially la-
beled documents would be to obtain a transition graph from
a domain expert).

4. EXPERIMENTAL RESULTS
A preliminary evaluation of our system has been con-

ducted in a digital library domain where data are naturally
organized in the form of page sequences. The main purpose
of our experiments was to make a comparison between our
multi-page classification approach and a traditional isolated
page classification system.

4.1 Data Set
We have chosen to evaluate the model over a subset of

the Making of America (MOA) collection, a joined project
between the University of Michigan and Cornell University
(see moa.umdl.umich.edu/about.html and [26]) for collect-
ing and making available digitized books and periodicals
about history and evolution processes of the American soci-
ety between the XIX and XX century. Presently, the whole
archive contains electronic versions of important magazines
of the XIX century. In our experiments, we selected a sub-
set of the journal American Missionary (AMis), a sociolog-
ical magazine with strong Christian guidelines. The task
consists of correctly classifying pages of previously unseen
documents into one of the ten categories described in Ta-
ble 1. Most of these categories are related to the topic of
the articles, but some are related to the parts of the journal
(i.e. Contents, Receipts, and Advertisements). The dataset
we selected contains 95 issues from 1884 to 1893, for a to-
tal of 3222 OCR text pages. Special issues and final report
issues (typically November and December issues) have been
removed from the dataset as they contain categories not
found in the rest. The first year was selected as training
set (10 training sequences, 342 pages). The remaining doc-
uments (from 1885 to 1993, for a total of 2880 pages) were
used as a test set. The ten categories are temporally stable
over the 1883–1893 time period.

Name Description

1. Contents Cover and index of surveys
2. Editorial Editorial articles
3. The South Afro-Americans’ survey
4. The Indians American Indians’ survey
5. The Chinese Reports from China missions
6. Bureau of Women’s Work Female conditions
7. Children’s Page Education and childhood
8. Communications Magazine informations
9. Receipts Lists of founders
10. Advertisements contents is mostly graphic

Table 1: Categories in the American Missionary do-
main.

Category labels were obtained semi-automatically, start-
ing from the MOA XML files supplied with the documents
collection. The assigned category was then manually checked.
In the case of pages containing the end and the beginning of
two articles belonging to different categories, the page was
assigned the category of the ending article.

Each page within a document is represented as a Bag-of-
Words, counting the number of word occurrences within the
page. It is worth remarking that in this application instances
are text documents obtained by an OCR process. Imperfec-
tions of recognition algorithm and the presence of images
in some pages yields noisy text, containing misspelled or
nonexistent words, and trash characters (see [3] for a report
of OCR accuracy in the MOA digital library). Although
these errors may negatively affect the learning process and
subsequent results in the evaluation phase, we made no at-
tempts to correct and filter out misspelled words, except
for the feature selection process described above. However,
since OCR extracted documents preserve the text layout
found in the original image, it was necessary to rejoin words
that had been hyphenated due to line breaking.

4.2 Feature selection and isolated page classi-
fication

The purpose of the experiments in this section is to in-
vestigate the effects of feature selection and to assess the
baseline prediction accuracy that can be attained using the
Naive Bayes classifier on isolated pages. In a set of pre-
liminary evaluations we have found that best performance
are achieved by pruning words with less than h = 10 oc-
currences and then selecting an optimal set of informative
words. We performed several tests by changing the informa-
tion gain threshold that determines if a word is sufficiently
informative (see Section 3.5), resulting in different vocab-
ulary sizes with different accuracy of prediction. For each
reduced vocabulary size we ran the Naive Bayes classifier on
isolated pages. Results are shown in Figure 5. Vocabulary
size ranges from 15635 words (no feature selection), yielding
65.07% classification accuracy, to 25 words, yielding 53.16%
accuracy. The optimal vocabulary size is 297 words, ob-
tained with a threshold gain of 0.089, yielding the best test-
set accuracy of 72.57%. This result (72.57%) was considered
as the base measure for performance comparison between
our model and the Naive Bayes classifier.

4.3 Sequential page classification
Using the hybrid model presented in Section 3, documents

can be organized into ordered sequences of pages. The train-
ing set contains 10 sequences (monthly issues) of the same
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Figure 5: Naive Bayes accuracy as a function of vo-
cabulary size (information gain criterion). Optimal
vocabulary size is 297 words.

Category Sequential Isolated Error red.

Contents 100 100 0%
Editorial 80.9 63.11 48.2%
The South 90.81 71.84 67.4%
The Indians 61.07 44.3 30.1%
The Chinese 69.93 60.78 23.3%
Bureau W.W. 74.73 66.3 25.0%
Children’s Page 78.26 45.65 60.0%
Communications 93.55 92.47 14.3%
Receipts 98.31 98.31 0%
Advertisements 90.7 62.79 75.0%

Total Accuracy 85.28 72.57 46.3%

Table 2: Isolated classification (using the best Naive
Bayes) vs. sequential classification (using the hybrid
HMM with model merging).

342 documents for year 1884, while test set is organized
into 85 sequences for a total of 2880 documents from year
1885 to 1893. The bag-of-words representation of pages fed
into the HMM classifier was identical to that previously used
with Naive Bayes (including preprocessing and feature selec-
tion with a vocabulary of 297 words). We have considered
two settings for validating the system. In the first setting,
it is assumed that category labels c∗t are available for all
the pages in the training set. In the second setting, some
category labels are held out and training uses labeled and
unlabeled pages.

4.3.1 Completely labeled documents
In the case of completely labeled documents it is possible

to run the structure learning algorithm presented in Sec-
tion 3.2. Figure 6 reports the structure learned from the
10 training issues. Each vertex in the transition graph is
associated with one HMM state and is labeled with the cor-
responding category (see Table 1). Edges are labeled with
the transition probability from source to target state, com-
puted by counting state transitions during the state merg-
ing procedure (see Equation 8). The associated stochastic
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grammar implies that valid AMis sequences ought to start
with the index page (class “Contents”), followed by a page
of general communications. Next state is associated with
a page of an editorial article. Self transition here has a
value of 0.91, meaning that with high probability the next
page will belong to the editorial too. With lower probabil-
ity (0.07) next page is one of the “The South” survey or
(prob. 0.008) “The Indians” or “Bureau of Women’s work”.
Continuing this way we can associate a probability to each
string of page categories. Since our purpose is to predict the
correct string of categories, a good grammar helps filtering
out classification hypothesis which generate low (or zero)
probability strings. Note that under the parameter sharing
assumption (see Equation 4), once the HMM structure is
given, an estimate of the emission probabilities can be ob-
tained using Equation 7. These values can be plugged in
as initial emission parameters for the EM algorithm. Clas-
sification is finally performed by computing the most likely
state sequence.

Table 2 summarizes classification results on test set doc-
uments sequences, after a training phase applied both to
Naive Bayes and our hybrid model. We report accuracy of
prediction on single classes and average accuracy over the
total of text documents. Comparison is made with respect
to the best isolated-page classifier. The hybrid HMM clas-
sifier (performing sequential classification) achieves 85.28%
accuracy and consistently outperforms the plain Naive Bayes
classifier working on isolated pages. The relative error re-
duction is about 46%, i.e. roughly half of the errors are
recovered thanks to contextual information. In particular,
it is interesting to note the large error reduction for the cat-
egory “Advertisements.” Pages in this category typically
contain several images and few words of text. The isolated
page classifier is subject to prediction errors in this case
since parameter estimation for rarely occurring words can
be poor. On the other hand, the constraints imposed by
the grammar allow to recover many prediction errors since
advertisements normally occur near the end of each issue.

In Figure 7 we report classification performances of the
hybrid model on single issues of the journal. The graph is
to be interpreted as the classifier temporal trend from 1885
to 1894. Negative accuracy peaks correspond to test issues
with more than 70 pages, a significant deviation from the
average number of pages per issue (about 32). Values range
from a minimum of 50% to a maximum of 97.09% with 10.41
as standard deviation. To visualize a smoother trend, we
calculated a running average over a temporal window of 10
months, showing a clear superior trend over standard naive
Bayes.

4.3.2 Partially labeled documents
We have performed six different experiments, for different

percentages of labeled documents. In this case the structure
learning algorithm cannot be applied and we used ergodic
HMMs with ten states (one per class). After training, tran-
sition with probabilities < 10−3 were pruned. In one of the
six experiments we used all the available page labels with
an ergodic HMM. This experiment is useful to provide a
basis for evaluating the benefits of the structure learning
algorithm presented in Section 3.2.

Table 3 shows detailed results of the experiments. Classifi-
cation accuracy is shown for single classes and for the the en-
tire test set. As we can see, EM being completed uninformed
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Figure 7: Performance of the hybrid model on single
sequences (merging algorithm).

% of labeled documents
Category 0 30 50 70 90 100

Contents 0 100 100 100 100 100
Editorial 20.76 21.12 59.67 58.6 67.62 71.41
South 1.51 83.58 69.73 84.94 84.34 84.19
Indians 10.07 0 55.03 51.68 50.34 58.39
Chinese 0 27.45 83.66 76.47 75.82 75.16
Bur.W.W. 0 43.22 63.74 63 64.84 65.93
Child. P. 4.35 78.26 73.91 58.7 78.27 76.09
Commun. 0 91.4 91.4 93.55 93.55 93.55
Receipts 0 89.27 98.68 97.36 98.31 98.31
Advert. 81.4 69.77 93.02 90.7 90.7 90.7

Total
Accuracy

8.23 55.66 73.54 75.66 78.7 80.24

Table 3: Results achieved by the model trained
by Expectation-Maximization, varying percentage
of labeled documents.

(0% evidence) is worse than the random guess (8.23% ac-
curacy). With 50% of labeled documents, the model out-
performs Naive Bayes (73.54% against 72.57%). This is a
positive result, because the Naive Bayes training phase (in
the standard formulation) need the knowledge of all docu-
ment labels, while in this setting we simulate the knowledge
of only a half of them. With greater percentages of labeled
documents, performances begin to saturate reaching a max-
imum of 80.24% when all the labels are known. This result
is worse compared to the 85.28% obtained with the first
strategy (see Section 4.3.1). The main difference is that
in this case we started training from an ergodic model and
we used one state per class. This confirms that in the case
of completely labeled documents it is advantageous to use
more states per class and to use the data-driven algorithm
for structure selection.

5. CONCLUSIONS
We have presented a text categorization system for multi-

page documents which is capable of effectively taking into
account contextual information to improve accuracy with
respect to traditional isolated page classifiers. Our method
can smoothly deal with unlabeled pages within a document,



although we have found that learning the HMM structure
further improves performance compared to starting from an
ergodic structure. The system uses OCR extracted words
as features. Clearly, richer page descriptions could be in-
tegrated in order to further improve performance. For ex-
ample, optical recognizer output information about the font,
size, and position of text, that may be important to help dis-
criminating between classes. Moreover, OCR text is noisy
and another direction for improvement is to include more
sophisticated feature selection methods, like morphological
analysis or the use of n-grams [4, 14].

Another aspect is the granularity of document structure
being exploited. Working at the level of pages is straight-
forward since page boundaries are readily available. How-
ever, actual category boundaries may not coincide with page
boundaries and some pages contains portions of text related
to different categories. Although this is not very critical for
single-column journals such as the American Missionary, the
case of documents typeset in two or three columns certainly
deserves attention. A further direction of investigation is
therefore related to the development of algorithms capable of
performing automatic segmentation of a continuous stream
of text, without necessarily relying on page boundaries.

The categorization method presented in this paper is tar-
geted to textual information. However, the same hybrid
HMM methodology could be applied for classification of
pages based on layout information, provided an adequate
emission model is available. A suitable generative model for
document layout is presented in [8].

Finally, categorization algorithms that includes contex-
tual information may be very useful for other types of docu-
ments natively available in electronic form. For example, the
categorization of web pages may take advantage of the con-
tents in neighbor pages (as defined by the hyperlink struc-
ture of the web).
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