
Text Categorization by Boosting
Automatically Extracted Concepts

Lijuan Cai
Department of Computer Science

Brown University, Providence, RI, USA

ljcai@cs.brown.edu

Thomas Hofmann
Department of Computer Science

Brown University, Providence, RI, USA

th@cs.brown.edu

ABSTRACT
Term-based representations of documents have found wide-
spread use in information retrieval. However, one of the
main shortcomings of such methods is that they largely dis-
regard lexical semantics and, as a consequence, are not suf-
ficiently robust with respect to variations in word usage.
In this paper we investigate the use of concept-based docu-
ment representations to supplement word- or phrase-based
features. The utilized concepts are automatically extracted
from documents via probabilistic latent semantic analysis.
We propose to use AdaBoost to optimally combine weak
hypotheses based on both types of features. Experimental
results on standard benchmarks confirm the validity of our
approach, showing that AdaBoost achieves consistent im-
provements by including additional semantic features in the
learned ensemble.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing Methods; H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and
retrieval—Information Filtering ; I.2.6 [Artificial Intelli-
gence]: Learning—Induction

General Terms
Algorithms, Experimentation, Theory

Keywords
boosting, classification, concept extraction, document cate-
gorization, lexical semantics, machine learning

1. INTRODUCTION
The number of digital documents available in corporate

intranets, digital libraries, commercial data bases or the Web
as a whole, is vastly growing in size. The sheer volume makes
it often prohibitively expensive, if not impossible, to rely
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on librarians or other domain experts to efficiently annotate
and categorize content. Consequently, automated document
categorization is an important application area for machine
learning and many classification methods have been applied
to text categorization. Most recently excellent results have
been obtained with Support Vector Machines (SVMs) [1]
and AdaBoost [2].

While a broad range of methods has been utilized for text
categorization, virtually all of the above approaches use the
same underlying document representation: term frequen-
cies. This is typically called the “bag-of-words” representa-
tion in the context of naive Bayes classification, while it is
also referred to as the term frequency or vector space repre-
sentation of documents [3]. In the latter case, different di-
mensions are typically weighted differentially using schemes
like tfidf and its relatives.

In this paper, we investigate a different direction, namely
the use of concept-based document representations. This
aims at achieving robustness with respect to linguistic vari-
ations such as vocabulary and word choice. We are skeptical
that existing general-purpose thesauri can be used to the
extent required to handle linguistic variations. Instead, we
propose to automatically extract domain-specific concepts
using an unsupervised learning stage and then to use these
learned concepts as additional features for supervised learn-
ing. Notice that the set of documents used to extract the
concepts need not be labeled and can be much larger than
the labeled set of training documents. Hence, our approach
also offers an attractive venue for using unlabeled data to
improve supervised learning.

We employ a three stage approach. First, an unsupervised
learning technique known as probabilistic Latent Semantic
Analysis (pLSA) [4] – a probabilistic generalization of LSA
[5] – is utilized to automatically extract concepts and to
represent documents in a semantic concept space. Second,
weak classifiers or hypotheses are defined based on single
terms as well as based on the extracted concepts. Third,
term-based and semantic weak hypotheses are combined us-
ing AdaBoost, resulting in an ensemble of weak classifiers.

2. PROBABILISTIC LSA
Latent Semantic Analysis (LSA) is a well-known dimen-

sion reduction technique for co-occurrence and count data [5,
6], which uses a singular value decomposition (SVD) to map
documents (and by the virtue of duality also terms) from
their standard vector space representation to a lower dimen-
sional latent space. The rationale behind this is that term
co-occurrence statistics can at least partially capture seman-



tic relationships among terms and topical or thematic rela-
tionships between documents. Hence this lower-dimensional
document representation may be preferable over the naive
high-dimensional representation since, for example, dimen-
sions corresponding to synonyms will ideally be conflated to
a single dimension in the semantic space.

Probabilistic Latent Semantic Analysis (pLSA) [4, 7] is an
approach that has been inspired by LSA, but instead builds
upon a statistical foundation, namely a mixture model with
a multinomial sampling model. pLSA has shown promise
in ad hoc information retrieval, where it can be used as a
semantic smoothing technique. However, our main interest
here is less in accurately modeling term occurrences in docu-
ments, and more in the potential of pLSA for automatically
identifying factors that may correspond to relevant concepts
or topics.

The formal setting is as follows: Given a collection of
documents D = {d1, d2, . . . , dM} and a fixed vocabulary
W = {w1, w2, . . . , wN}, the data are summarized in a docu-
ment-term matrix, N = (nij)i,j , where nij = n(di, wj) is the
number of times term wj occurs in document di. We denote
concepts by Z = {z1, z2, . . . , zK}. The number of concepts,
K, is fixed beforehand, but the concepts themselves are de-
rived in a data-driven fashion. In pLSA, it is assumed that
document-term pairs are generated independently and that
term and document identity are conditionally independent
given the concept. Under this assumption, the joint proba-
bilities of document-term pairs are given by [4]

P (di, wj) = P (di)
X

zk∈Z

P (wj |zk)P (zk|di) . (1)

We interpret the distribution P (wj |zk) for a fixed zk as a
representation for concept zk. Notice that one may identify
the terms belonging to a concept by ordering terms accord-
ing to P (wj |zk). It has been shown that extracted concepts
are often quite interpretable and can even be used for vi-
sualization purposes [8]. However, more important in the
context of semantic document representations are the prob-
abilistic “concept memberships” of documents which are en-
coded in the parameters P (zk|di). They will be used to de-
rive weak learners in Section 4. The concepts or topics zk in
the pLSA model can be thought of as a bottleneck layer in a
model that aims at predicting words in documents (cf. Fig-
ure 1).

Since Eq. (1) is a special case of a latent class model, one
can employ standard techniques for maximum likelihood es-
timation such as the Expectation Maximization (EM) algo-
rithm for model fitting. We refer to [7] for a formal deriva-
tion and simply restate the main result here. Starting from
randomized initial conditions, one alternates E-step and M-
step updates. In the E-step one computes the posterior
probabilities for the latent class variables for all observed
pairs (di, wj)

P (zk|di, wj) =
P (wj |zk)P (zk|di)

P

l
P (wj |zl)P (zl|di)

. (2)

In the M-step one updates the parameters according to

P (wj |zk) ∝
X

i

nijP (zk|di, wj) (3)

P (zk|di) ∝
X

j

nijP (zk|di, wj) .

Documents Terms

Latent 
Concepts

Figure 1: Diagrammatic representation of pLSA as
a “bottleneck” model.

In order to determine the optimal stopping point one may
perform early stopping based on held-out data.

3. ADABOOST
Boosting is one of the most powerful machine learning ap-

proaches to emerge in the past decade. It combines many
weak, moderately accurate classifiers into a highly accurate
ensemble. Our work is based on AdaBoost, the most popu-
lar boosting algorithm [9]. AdaBoost has been successfully
applied to a variety of classification problems and has ex-
perimentally proven to be highly competitive in the context
of text categorization [2].

In this paper, we focus on text categorization with over-
lapping binary categories. We assume that for every cat-
egory a set of training examples S = {(x1, y1), (x2, y2),
. . . , (xM , yM )} is available. Here xi is the representation
of a document di, i = 1, . . . , M and yi ∈ {−1, 1} encodes
whether or not the i-th document belongs to the category.

We have worked with two slightly different versions of
AdaBoost called AdaBoost.MH and AdaBoost.MR [10]. The
major difference between them is that AdaBoost.MH min-
imizes an upper bound on the Hamming loss while Ad-
aBoost.MR minimizes an upper bound on the ranking loss.

3.1 AdaBoost.MH
The AdaBoost.MH algorithm is described in Algorithm 1.

A distribution Dt(i) over all instances is dynamically main-

tained, i.e. at every time step t, Dt(i) ≥ 0 and
PM

i=1 Dt(i) =
1. D0(i) is initialized to be uniform. We assume the weak
hypotheses have range {−1, 1}. In the t-th iteration, given
data S and the current distribution Dt(i), the optimal weak
hypothesis is selected as the one which minimizes the Dt-
weighted empirical error,

ht = arg min
h

err(h, Dt), where (4)

err(h, Dt) ≡
X

i

Dt(i)
1 − yih(xi)

2

The corresponding optimal parameter update is given by

αt =
1

2
ln

1 − err(ht, Dt)

err(ht, Dt)
. (5)

Then D is updated by putting more weights on “difficult”



Algorithm 1 AdaBoost.MH for binary classification

1: initialize D1(i) = 1/M for each xi in training set
2: for t = 1, . . . , T do
3: select optimal ht w.r.t. distribution Dt

4: compute optimal update step αt ∈ R

5: compute new distribution

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is the normalization factor
6: end for
7: final discriminant function: f(·) =

PT

t=1 αtht(·)

Algorithm 2 AdaBoost.MR for binary classification

1: initialize

D1(x+, x−) =

(

1/(n+n−) if x+ ∈ X+ ∧ x− ∈ X−

0 else

2: for t = 1, . . . , T do
3: select optimal ht w.r.t. distribution Dt

4: compute optimal update step αt ∈ R

5: compute new distribution

Dt+1(x+, x−) =
Dt(x+, x−) exp( 1

2
αt(ht(x−) − ht(x+)))

Zt

for all pairs (x+, x−), Zt is the normalization factor
6: end for
7: final discriminant function: f(·) =

PT

t=1 αtht(·)

instances that are not correctly classified by ht and less
weights on instances that are correctly classified. The pro-
cedure repeats for a fixed number of T rounds or until a
termination condition is met. The final ensemble is given
by f =

PT

t=1 αtht and the predicted label can be computed
according to H(x) = sign(f(x)).

3.2 AdaBoost.MR
The AdaBoost.MH algorithm aims at finding the hypoth-

esis that predicts the actual label. AdaBoost.MR takes a
different approach to the classification problem. The goal
is to rank items such that the number of pairs of instances
(x+, x−) with x+ being a positive example and x− being
a negative example, where f(x+) ≤ f(x−) is minimized.
Hence the objective functions only depend on relative scores
f(x) rather than their absolute values. AdaBoost.MR can
also be used when only relative ordering information is avail-
able [11].

To be more formal denote the positive instances by X+ =
{xi|yi = 1} and the negative instances by X− = {xi|yi =
−1}. Moreover define n+ = |X+| and n− = |X−|. Assume
n+ > 0 and n− > 0. Let [.] be 1 if the predicate inside is
true and 0 otherwise. Then we can define the rank loss for
binary classification as

rloss(f) =
X

x+∈X+,x−∈X−

1

n+n−

[f(x−) ≥ f(x+)]. (6)

We adapt the original AdaBoost.MR algorithm to our
rank loss definition yielding the algorithm described in Al-
gorithm 2. In order to implement the algorithm efficiently,
we used the improvements proposed in [10].

4. USING SEMANTIC FEATURES IN AD-
ABOOST

4.1 Combining pLSA and AdaBoost
As argued before, the most commonly used document

representation for text categorization uses single words or
multi-word phrases as features. Unfortunately these are
word forms rather than word meanings. In particular syn-
onyms and polysemies make the word-based representation
insufficient. Therefore, we propose to augment the doc-
ument representation with the help of concepts extracted
from pLSA. The parameters, {P (zk|di)} can be viewed as
representations of documents in the semantic space formed
by concepts {zk}. Similarly, words can be represented in the
semantic space by applying Bayes’ rule to the parameteri-
zation used in Eq (1), P (zk|wj) = P (zk)P (wj |zk)/P (wj).
Words related to similar topics tend to be generated by the
same concept, whereas a word with multiple meanings tends
to receive a high generating probability from a few corre-
sponding concepts. pLSA can hence identify synonyms and
polysemies to some extent.

We have selected AdaBoost as the framework to combine
semantic features with term-based features in text catego-
rization because of its ability to efficiently combine hetero-
geneous weak hypotheses. As we will discuss in more detail
in the next subsection, the weak hypotheses used are deci-
sion stumps that divide the domain based on the values of a
particular feature, which means that every weak hypothesis
corresponds to a single feature.

4.2 Weak Hypotheses
After the first stage of pLSA learning, a document di can

be described in terms of semantic features P (zk|di) as well
as word features n(di, wj). Notice that the semantic features
are probabilities while word features are word counts or ab-
solute frequencies. Based on these features, one can con-
struct simple weak classifiers that can be used as the weak
hypotheses out of which an additive ensemble is formed in
AdaBoost.

We have used two different types of weak hypotheses in
our experiments. Simple indicator functions are used for
word features and threshold hypotheses are used for seman-
tic features. In each boosting round, the two types of hy-
potheses compete and the best one is selected. In the follow-
ing, let ht(x) be a weak hypothesis that predicts a binary
label, i.e. ht(x) has the range {−1, 1}. When clear from the
context, the subscript t is dropped.

4.3 Indicator Function Decision Stumps
An indicator function decision stump divides the instance

domain based on a particular binary feature e into X0 =
{x|xe = 0} and X1 = {x|xe = 1}, where xe is the value of
feature e in instance x, corresponding to the presence of a
certain term in a document in our case. We define the weak
hypothesis to be of the form

h(x) =

(

−c if x ∈ X0

c if x ∈ X1 ,

where c ∈ {−1, 1}. If c = 1 the presence of the feature
is believed to be a positive indicator for the document be-
longing to the class in question, while c = −1 can be used
to model negative correlations. In the AdaBoost.MH set-



ting, the value of c is determined for every weak classifier by
minimizing the normalization constant Z. Define

W j

b =
X

i:xi∈Xj∧yi=b

D(i) = Pr
i∼D

[xi ∈ Xj ∧ yi = b]. (7)

The optimal value for c is given by

c = sign(r), where r = W 1
+1 + W 0

−1 − (W 0
+1 + W 1

−1) (8)

and the optimal update step length can be computed as

α =
1

2
ln

1 + r

1 − r
, (9)

which is equivalent to Eq. (5).

4.4 Threshold Hypotheses
A threshold hypothesis divides the instance domain based

on a particular continuous-valued feature e and a learned
threshold, β. X0(β) = {x|xe < β} and X1(β) = {x|xe ≥ β}.
The hypothesis has the form

h(x) =

(

−c if x ∈ X0(β)

c if x ∈ X1(β)

where c ∈ {−1, 1}.
In order to learn the parameters, one maximizes (without

loss of generality we can assume r > 0)

r =
X

i

D(i)yih(xi) = c

0

@

X

xi∈X1(β)

D(i)yi−
X

xi∈X0(β)

D(i)yi

1

A. (10)

Therefore the optimal parameters can be computed as

β = argmaxβ′

˛

˛

˛

˛

˛

˛

X

i:xi∈X1(β′)

D(i)yi −
X

i:xi∈X0(β′)

D(i)yi

˛

˛

˛

˛

˛

˛

, (11)

c = sign

0

@

X

i:xi∈X1(β)

D(i)yi −
X

i:xi∈X0(β)

D(i)yi

1

A , (12)

α =
1

2
ln

1 + r

1 − r
. (13)

In Eq. (11), our implementation picks the optimal thresh-
old, β, to be the mid-point between two adjacent feature
values of e in the training data.

5. RELATED WORK
The use of automatically extracted features and dimen-

sion reduction techniques for text categorization has been
investigated before. Most notably is the use of SVD-based
truncation to suppress noisy features as suggested in [12,
13]. A similar idea has also been investigated more recently
under the title of semantic kernels and utilized in conjunc-
tion with SVMs for text categorization [14]. Yet another
approach of deriving document representations that takes
semantic similarities of terms into account has been pro-
posed in [15]. In [16], a method to systematically derive se-
mantic representation from pLSA models using the method
of Fisher kernels [17] has been presented. The resulting se-
mantic kernels are combined with a standard vector space
representation using a heuristic weighting scheme. Finally,
there are related methods that perform word clustering in

order to extract more reliable features. This has been inves-
tigated in the context of naive Bayes classification [18] and
more recently in the context of SVMs [19].

The main advantage of the proposed method compared to
previous work is that it allows us to retain the term-based
representation and augment - rather than to replace - it
with a semantic representation. For certain categories, indi-
vidual terms might be highly discriminative and carelessly
disregarding these features may prove detrimental. More-
over, boosting with decision stump classifiers alleviates the
problem of how to combine term-based and semantic fea-
tures, whereas SVM-based approaches require to adjust rela-
tive combination weights, a problem that is non-trivial when
dealing with a large number of semantic models of different
granularity. Lastly, a large portion of the mentioned work
pursues the goal of generating more parsimonious document
representations which may not necessarily lead to improved
classification accuracy (cf. [18]). In our framework, due to
the virtues of AdaBoost, we augment the dimensionality of
the representation for learning, but we achieve considerable
sparseness in the learned classifier, which may only depend
on a significantly reduced feature set. Hence the feature re-
duction is more intimately coupled with the discriminative
learning process.

6. EVALUATION MEASURES
There are two interpretations of the output of a classi-

fier, dependent on whether one considers the thresholded bi-
nary output of a classifier (as in information filtering) or the
real-valued output of a discriminant function with the asso-
ciated linear order on documents (as in information rout-
ing). In the case of classifier ensembles, a real valued score
for each document x is obtained from the ensemble output
f(x) =

P

t
αtht(x). The magnitude of f(x) reflects the con-

fidence of the classifier in its decision. Without loss of gen-
erality one can assume that the weights are normalized such
that

P

t |αt| = 1 in which case −1 ≤ f(x) ≤ 1. The extreme
values of −1 and 1 then correspond to perfect agreement
among the weak hypotheses. It is straightforward to con-
vert the ensemble output into a classification output, i.e. to
predict a binary label by simply taking H(x) = sign f(x).

Evaluation measures have been developed for both scenar-
ios and which ones to favor depends entirely on the specific
requirements of an application. For example, an ordered list
will be more helpful if domain experts refine the output of an
automatic annotation system. On the other hand, for a fully
automated classification task such as email spam filtering a
binary classification view might be more useful. Without as-
suming a particular application we thus investigate metrics
derived from both views.

6.1 Metrics for Classification Functions
Commonly used measures are precision, recall, F measure,

and classification error. Formally, let the training set be
S = {(x1, y1), . . . , (xM , yM )}, and denote the test set by
S ′ = {(x′

1, y
′
1), . . . , (x′

M′ , y′

M′ )}, where yi, y
′
i ∈ Y = {−1, 1}

is a binary class label. The number of relevant documents in
S is n+ and the number in S ′ is n′

+. Learning on S results
in a classifier H(x) = sign f(x).

1. Precision

p(H,S ′) =
|{x′

i ∈ S ′|H(x′
i) = 1 ∧ y′

i = 1}|

|{x′
i ∈ S ′|H(x′

i) = 1}|
. (14)



2. Recall

r(H,S ′) =
|{x′

i ∈ S ′|H(x′
i) = 1 ∧ y′

i = 1}|

n′
+

. (15)

3. F1 score

F1(H,S ′) =
2p(H,S ′)r(H,S ′)

p(H,S ′) + r(H,S ′)
. (16)

4. Classification error

Err(H,S ′) =
|{x′

i ∈ S ′|H(x′
i) 6= y′

i}|

|S ′|
. (17)

6.2 Metrics for Ranking Functions
In contrast to the above-mentioned measures, only rel-

ative differences of scores f(x) count in metrics based on
document ranking. These metrics evaluate how good the
ranked list defined by f is compared to an ideal ordering
that would rank every relevant document higher than every
irrelevant one.

1. Maximal F1

Order documents in S ′ based on their predicted scores
and denote the obtained order by π. Precision (recall)
at k is the precision (recall) obtained by classifying the
first k documents in the list as relevant.

pk(f,S ′) =
|{j ≤ k|y′

π(j) = 1}|

k
(18)

rk(f,S ′) =
|{j ≤ k|y′

π(j) = 1}|

n′
+

. (19)

Now the maximal F1 value is defined as

MaxF1(f,S ′) = max
k

F1k(f,S ′), where (20)

F1k(f,S ′) =
2pk(f,S ′)rk(f,S ′)

pk(f,S ′) + rk(f,S ′)

2. Precision/recall break-even point

Note when k = n′
+, pk(f,S ′) = rk(f,S ′). This value

is called the precision/recall break-even point (BEP).

3. Average precision

AvgP(f,S ′) =

P

k:y′

π(k)
=1 pk(f,S ′)

n′
+

. (21)

4. Adjusted F1, adjusted precision, and adjusted recall

The computation of maximal F1 actually examines
the test data to effectively find an optimal threshold.
An alternative would be to optimize the threshold on
training data. Hence we devise the adjusted F1, ad-
justed precision and adjusted recall:

θ(f,S) = argmaxθ′ F1(sign(f(x) + θ′),S) (22)

AdF1(f,S,S ′) = F1(f ′,S ′), f ′ = f + θ(f,S). (23)

θ is determined as the midpoint between two π-adja-
cent training instances. Precision and recall corre-
sponding to the adjusted F1 are called adjusted pre-
cision and adjusted recall, respectively.

5. Adjusted error

The idea is similar to Adjusted F1. A bias θ is com-
puted from training data to minimize classification er-
ror on the training data. We call the classification
error of f ′ = f + θ on test data the adjusted error.

6.3 Averaging
Macro-averaging and micro-averaging are two conventio-

nal methods to average performance across categories.
Macro-averaged scores are averaged values over the num-
ber of categories. Micro-averaged scores are averaged values
over the number of all counted documents. Therefore macro-
averaging is generally viewed as a per-category average while
micro-averaging corresponds to a per-document average.

Let q(li) = ai/bi be the score of a metric q on the i-th cat-
egory li. bi is the number of related documents. For exam-
ple, bi = n′

+ for the precision/recall break-even point. Then

the macro-averaged score on L categories is
PL

i=1 q(li)/L,

while the micro-averaged score is (
PL

i=1 ai)/(
PL

i=1 bi). The
micro-averaged F1 measure is computed from the micro-
averaged precision and recall. The micro-averaged adjusted
F1 is computed in a similar way. The micro-averaged max-
imal F1 is undefined in our experiments.

7. EXPERIMENTS
In the experimental evaluation, we focus on a compari-

son between AdaBoost using only term features and Ad-
aBoost using both semantic features and term features. As
described above pLSA has been utilized to extract semantic
features. We ran experiments for both AdaBoost.MH and
AdaBoost.MR on two data sets: the Reuters-21578 collec-
tion and the 1987 part of the OHSUMED collection.

7.1 Reuters: News Stories Collection
The Reuters-21578 dataset consists of Reuters newswire

stories from 1987 [20]. After our pre-processing stage that
includes tokenization and stop word removal, 37, 926 word
types remained. We used the modified Apte (“ModApte”)
split, which divides the collection into 9, 603 training docu-
ments; 3, 299 test documents; and 8, 676 unused documents.

In the first stage, all documents in the collection were used
for pLSA learning without making use of the class labels.
A held-out set with 10% of the data was created randomly.
The other 90% were used to learn the pLSA model while the
held-out set was used to prevent overfitting, namely using
the strategy of early stopping.

As described earlier, indicator function decision stumps
were used for word features, and adaptive threshold weak
hypotheses were used for semantic features. Binary classifi-
cation was performed on the top 50 topics with the largest
number of positive documents. The performance was then
averaged across the 50 topics.

We ran experiments with the number of concepts, K,
equal to 100, 200, 300, . . . , 1000. Using semantic features
generally led to better averaged performance. The best per-
formance however was achieved by merging semantic fea-
tures from models with different K. The weighting of seman-
tic features of different granularity was again performed by
virtue of AdaBoost. No prior weighting of different features
is necessary. Table 1 summarizes the results on the Reuters-
21578 data set. In all experiments boosting was run for a
fixed number of 200 rounds on each topic. The reported rela-
tive improvement of b over a is computed as (b−a)/a, except



p r F1 Err MaxF1 BEP AvgP AdF1 AdErr

MH

term 80.25 61.61 69.71 0.68 79.26 74.85 77.23 71.58 0.66
Macro mixA 84.19 66.47 74.29 0.59 81.41 76.90 81.20 74.90 0.58

rel impv 4.91 7.87 6.57 14.03 2.71 2.73 5.15 4.64 12.29
term 89.83 77.67 83.31 N/A N/A 85.79 88.49 84.84 N/A

Micro mixA 90.18 82.20 86.00 N/A N/A 86.98 90.49 86.40 N/A
rel impv 0.38 5.84 3.23 N/A N/A 1.39 2.25 1.84 N/A

MR

term N/A N/A N/A 4.54 78.72 73.30 77.23 72.00 0.70
Macro mixA N/A N/A N/A 1.62 81.40 76.48 81.03 74.00 0.61

rel impv N/A N/A N/A 64.20 3.40 4.33 4.91 2.78 12.81
term N/A N/A N/A N/A N/A 84.33 88.14 83.32 N/A

Micro mixA N/A N/A N/A N/A N/A 86.07 90.23 85.82 N/A
rel impv N/A N/A N/A N/A N/A 2.06 2.38 3.00 N/A

Table 1: Results for AdaBoost.MH and AdaBoost.MR on Reuters-21578. All numbers are percent-
ages. The evaluation metrics are p=precision, r=recall, Err=classification error, MaxF1=maximal F1,
BEP=precision/recall break-even point, AvgP=average precision, AdF1=adjusted F1, and AdErr=adjusted
classification error. “Term” indicates only using term features. “MixA” means using term features and
semantic features drawn from K = 100, 200, . . . , 1000 mixed all together. “Macro” stands for macro-averaged
performance while “micro” stands for micro-averaged performance.
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Figure 2: Scatter plot of the average accuracies
obtained on individual categories (top 50) for the
Reuters and the OHSUMED document collections.

for the classification error and adjusted classification error
where the formula is (a − b)/a. Note that macro-averaged
and micro-averaged classification errors are identical. So are
macro-averaged and micro-averaged adjusted error. Besides,
precision, recall or F1 was not reported for AdaBoost.MR
since MR only focuses on the relative ordering of documents.

As can be seen from the results, AdaBoost.MH and Ada-
Boost.MR perform almost equally well, with AdaBoost.MH
having a small, but hardly significant advantage. The use
of additional semantic features however yields significant
and consistent performance gains for all evaluated metrics
and for both AdaBoost.MH and AdaBoost.MR. The rela-
tive gains for the macro-averaged metrics are higher, which
seems to indicate that semantic features are especially use-
ful for categories with a small number of positive examples.
This makes sense intuitively since the term-based features
are typically noisier and hence are not expected to work that
well in a regime where only few positive example documents
are available. Concept-based features on the other hand are
likely to have advantages here, because they average over
occurrences of many individual terms and hence achieve a

higher degree of robustness. Differentiating across differ-
ent metrics, one sees from Table 1 that the classification
error benefits most significantly in relative terms, but, for
example, the F1 measure and the average precision are also
increased by more than 5% for AdaBoost.MH. We have also
included a scatter plot of the average precision performance
achieved by AdaBoost.MH with and without semantic fea-
tures on individual categories. It is depicted in Figure 2.

The number of boosting rounds is also a factor that af-
fects the performance. We therefore ran boosting with 200,
500, 1000, 2000 and 5000 rounds. AdaBoost.MR was run on
the Reuters-21578 set with only term features against with
the data augmented with semantic features extracted from
pLSA learning with 500 concepts. The advantage gained by
using additional semantic features persisted, though perfor-
mance measurements varied with the number of iterations
performed. Figure 3 summarizes the performance numbers
in chart form. Notice that the micro-averaged performance
seems to peak around 500-1000 rounds, while the macro-
averaged performance is optimal after a smaller number of
200-500 rounds. This seems to indicate that one should
dynamically adjust the number of boosting rounds, for in-
stance by performing more rounds on categories with more
positive examples. We have however not investigated this
issue further.

7.2 Medline: Medical Document Collection
The second corpus is the 1987 portion of the OHSUMED

collection [21], which has also been used for the TREC9
filtering track. The collection consists of short MEDLINE
documents with titles and abstracts. Each document has
been manually indexed by MeSH (Medical Subject Head-
ings) terms. The total number of active MeSH terms in the
corpus is 4, 904 and each term is regarded as a category for
classification. As above we evaluated the AdaBoost clas-
sifier on the top 50 classes and then averaged the results.
After removing stop words and words that occurred in less
than 10 documents, 19, 066 word types remained. The total
number of documents with non-empty title or abstract was
54, 708.
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Figure 3: Comparison of AdaBoost.MR on Reuters-21578 using term features only and using additional
semantic features, with varying iteration numbers.

p r F1 Err MaxF1 BEP AvgP AdF1 AdErr

MH

term 52.48 32.39 40.06 0.55 50.76 45.77 42.95 47.42 0.53
Macro 1000A 57.46 34.25 42.92 0.52 52.68 48.10 45.04 48.68 0.52

rel impv 9.49 5.74 7.14 5.68 3.77 5.10 4.88 2.66 2.75
term 57.47 33.66 42.45 N/A N/A 47.41 44.82 45.72 N/A

Micro 1000A 62.12 35.71 45.35 N/A N/A 49.70 47.03 48.27 N/A
rel impv 8.10 6.09 6.82 N/A N/A 4.83 4.93 5.59 N/A

MR

term N/A N/A N/A 2.37 50.53 45.70 42.15 47.04 0.528
Macro 1000A N/A N/A N/A 1.04 52.67 48.01 44.10 49.98 0.520

rel impv N/A N/A N/A 56.21 4.23 5.06 4.63 6.25 1.59
term N/A N/A N/A N/A N/A 47.41 43.98 45.55 N/A

Micro 1000A N/A N/A N/A N/A N/A 49.52 45.97 49.55 N/A
rel impv N/A N/A N/A N/A N/A 4.45 4.52 8.80 N/A

Table 2: Performance of AdaBoost.MH and AdaBoost.MR on the OHSUMED 1987 data collection. All
numbers are percentages. Abbreviations are the same as the ones used in Table 1.

The pLSA model was trained with all the data. For text
categorization, 90% of the data were randomly selected as
the training set while the other 10% were used for testing.

The OHSUMED 1987 data set is very different from the
Reuters-21578 data set with regard to the domain and the
document type. However, the idea of deriving semantic fea-
tures in a data-driven and hence domain-specific manner
and then using these concepts to enhance the term-based
representation is general. We ran experiments with pLSA
models of size K = 500, 600, . . . , 1000 and observed improve-
ments with respect to almost all of the evaluation measures.
Table 2 summarizes all relevant experimental results with
K = 1000. The number of boosting rounds has been fixed
to 1000 in all experiments.

By and large the achieved improvements are comparable
to the ones obtained on the Reuters data set. While the
absolute performance numbers are all lower than for the
Reuters data, the relative improvements by using a seman-
tically augmented document representation are again on av-
erage in the 5% range. Results on individual categories are
included in the scatter plot in Figure 2.

Finally, we have investigated the relative weight given by
AdaBoost to semantic features as a function of the number
of boosting rounds. The results are summarized in Figure 4
and show a similar qualitative behavior on both data sets:
The initial influence of semantic features is small, 45% and
20%, respectively, but increases monotonically until it flat-
tens out, at 73% and 50%, respectively. This means that in
the initial rounds of boosting term-based features are cho-
sen more often, while semantic features dominate in later
rounds. We attribute this to the fact that in many cases
highly discriminative individual terms exist that are selected
first, while the more noise-tolerant, semantic features have
relative advantages in fine-tuning the classifier.

8. CONCLUSIONS
We have presented a novel approach to text categorization

based on semantically augmented document representations.
As we have argued this can address some of the shortcomings
of pure term-based representations. The overall approach
can be decomposed into three stages: In the unsupervised
learning stage, we use pLSA to derive domain-specific con-
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Figure 4: Relative weighting of semantic features as
a function of the number of boosting rounds. The
weight is averaged over top 50 categories.

cepts and to create semantic document representations over
these concepts. In the second step, weak hypotheses are
constructed based on both term features and concept fea-
tures. The concept features can be derived from different
pLSA models with different concept granularities and used
together. The third stage is the combination stage, which
uses AdaBoost to efficiently combine weak hypotheses and
to integrate term-based and concept-based information.

The experiments on two standard document collections
from different domains support the validity of our approach.
The use of concept-based features in addition to term-based
features leads to consistent and quite substantial accuracy
gains with respect to a variety of standard evaluation met-
rics. The relative improvement gains achieved are in the 5%
range. Future work will investigate the utilization of ad-
ditional unlabeled data to improve the concept extraction
stage as well as the use of linguistic resources such as Word-
Net to exploit prior knowledge about general concepts.
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