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Abstract This paper introduces a new type of Self-Organizing Map
(SOM) for Text Categorization and Semantic Browsing. We propose a
“hyperbolic SOM” (HSOM) based on a regular tesselation of the hy-
perbolic plane, which is a non-euclidean space characterized by constant
negative gaussian curvature. This approach is motivated by the observa-
tion that hyperbolic spaces possess a geometry where the size of a neigh-
borhood around a point increases exponentially and therefore provides
more freedom to map a complex information space such as language into
spatial relations. These theoretical findings are supported by our experi-
ments, which show that hyperbolic SOMs can successfully be applied to
text categorization and yield results comparable to other state-of-the-art
methods. Furthermore we demonstrate that the HSOM is able to map
large text collections in a semantically meaningful way and therefore
allows a “semantic browsing” of text databases.

1 Introduction

For many tasks of exploraty data analysis the creation of Self-Organizing Maps
(SOM) for data visualization, as introduced by Kohonen more than a decade
ago, has become a widely used tool in many fields [7].

So far, the overwhelming majority of SOM approaches have taken it for
granted to use (some subregion of) a flat space as their data model and, moti-
vated by its convenience for visualization, have favored the (suitably discretized)
euclidean plane as their chief “canvas” for the generated mappings (for a few no-
table exceptions using tree- or hypercubical lattices see e. g. [1, 8, 14]).

However, even if our thinking is deeply entrenched with euclidean space, an
obvious limiting factor is the rather restricted neighborhood that “fits” around
a point on a euclidean 2d surface. Recently, it has been observed that a particu-
lar type of non-euclidean spaces, the hyperbolic spaces that are characterized by
uniform negative curvature, are very well suited to overcome this limitation [9]
since their geometry is such that the size of a neighborhood around a point in-
creases ezponentially with its radius r (while in a D-dimensional euclidean space
the growth follows the much slower power law 7). This exponential scaling
behavior fits very nicely with the scaling behavior within hierarchical, tree-like
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structures, where the number of items r steps away from the root grows as b"
where b is the (average) branching factor. This interesting property of hyperbolic
spaces has been exploited for creating novel displays of large hierarchical struc-
tures that are more accessible to visual inspection than in previous approaches
[10].

Therefore, it appears very promising to use hyperbolic spaces also in con-
junction with the SOM. The resulting hyperbolic SOMs (HSOMs) are based
on a tesselation of the hyperbolic plane (or some higher-dimensional hyperbolic
space) and their lattice neighborhood reflects the hyperbolic distance metric that
is responsible for the non-intuitive properties of hyperbolic spaces.

Since the notion of non-euclidean spaces may be unfamiliar to many readers,
we first give a brief account of some basic properties of hyperbolic spaces that are
exploited for hyperbolic SOMs. We then illustrate the properties of hyperbolic
SOMs with computer experiments focusing on the field of text-mining.

2 Hyperbolic Spaces

Surfaces that possess negative gaussian curvature locally resemble the shape of
a “saddle”, i. e., the negative curvature shows up as a local bending into oppo-
site normal directions, as we move on orthogonal lines along the surface. This
may make it intuitively plausible that on such surfaces the area (and also the
circumference) of a circular neighborhood around a point can grow faster than
in the uncurved case. Requiring a constant negative curvature everywhere, leads
to a space known as the hyperbolic plane H2 (with analogous generalizations to
higher dimensions)[2, 20]. The geometry of H2 is a standard topic in Rieman-
nian geometry (see, e. g. [19, 13]), and the relationships for the area A and the
circumference C' of a circle of radius r are given by

A = 4msinh*(r/2), C' = 27 sinh(r) . (1)

These formulae exhibit the highly remarkable property that both quantities grow
exponentially with the radius r (whereas in the limit » — 0 the curvature becomes
insignificant and we recover the familiar laws for flat JR2). It is this property that
was observed in [9] to make hyperbolic spaces extremely useful for accommodat-
ing hierarchical structures: their neighborhoods are in a sense “much larger”
than in the non-curved euclidean (or in the even “smaller” positively curved)
spaces.

To use this potential for the SOM, we must solve two problems: (i) we must
find suitable discretization lattices on H2 to which we can “attach” the SOM
prototype vectors. (i) after having constructed the SOM, we must somehow
project the (hyperbolic!) lattice into “flat space” in order to be able to inspect
the generated maps.

2.1 Projections of Hyperbolic Spaces

To construct an isometric (i. e., distance preserving) embedding of the hyperbolic
plane into a “flat” space, we may use a Minkowski space [12]. In such a space,



the squared distance d? between two points (z,y,u) and (2/,%',u’) is given by
& =@—2)P+y—y)—(u—u)? (2)

i. e., it ceases to be positive definite. Still, this is a space with zero curvature
and its somewhat peculiar distance measure allows to construct an isometric
embedding of the hyperbolic plane H2, given by

x = sinh(p) cos(¢), y = sinh(p) sin(¢), u = cosh(p) , (3)

where (p, ¢) are polar coordinates on the H2 (note the close analogy of (3)
with the formulas for the embedding of a sphere by means of spherical polar
coordinates in IR®!). Under this embedding, the hyperbolic plane appears as the
surface M swept out by rotating the curve u? = 1 + 22 + y? about the u-axis'.

From this embedding, we can construct
two further ones, the so-called Klein model
and the Poincaré model [2, 3, 6](the latter
will be used to visualize hyperbolic SOMs
below). Both achieve a projection of the
infinite H2 into the unit disk, however, at

O\ N : the price of distorting distances. The Klein
o\ o 1 model is obtained by projecting the points
of M onto the plane © = 1 along rays pass-

s ing through the origin O (see Fig. 1). Obvi-

ously, this projects all points of M into the
Figure 1: Construction steps underly- “flat” unit disk z2 + 3> < 1 of IR?. (e. g.,
ing Klein and Poincaré-models of the 4+~ B). The Poincaré Model results if we
space H2 add two further steps: first a perpendicu-

lar projection of the Klein Model (e. g., a
point B) onto the (“northern”) surface of the unit sphere centered at the origin
(point C'), and then a stereographic projection of the “northern” hemisphere
onto the unit circle about the origin in the ground plane v = 0 (point D). It
turns out that the resulting projection of H2 has a number of pleasant proper-
ties, among them the preservation of angles and the mapping of shortest paths
onto circular arcs belonging to circles that intersect the unit disk at right angles.
Distances in the original H2 are strongly distorted in its Poincaré (and also in
the Klein) image (cf. Eq. (5)), however, in a rather useful way: the mapping
exhibits a strong “fisheye”-effect. The neighborhood of the H2 origin is mapped
almost faithfully (up to a linear shrinkage factor of 2), while more distant re-
gions become increasingly “squeezed”. Since asymptotically the radial distances
and the circumference grow both according to the same exponential law, the
squeezing is “conformal”, i. e., (sufficiently small) shapes painted onto H2 are
not deformed, only their size shrinks with increasing distance from the origin.

! the alert reader may notice the absence of the previously described local saddle
structure; this is a consequence of the use of a Minkowski metric for the embedding
space, which is not completely compatible with our “euclidean” expectations.



Figure 2: Regular triangle tesselations of the hyperbolic plane, projected into the unit
disk using the Poincaré mapping. The leftmost tesselation shows the case where the
minimal number (n = 7) of equilateral triangles meet at each vertex and is best suited
for the hyperbolic SOM, since tesselations for larger values of n (right: n = 10) lead
to bigger triangles. In the Poincaré projection, only sides passing through the origin
appear straight, all other sides appear as circular arcs, although in the original space
all triangles are congruent.

By translating the original H2 the fisheye-fovea can be moved to any other part
of H2, allowing to selectively zoom-in on interesting portions of a map painted
on H2 while still keeping a coarser view of its surrounding context.

2.2 Tesselations of the Hyperbolic Plane

To complete the set-up for a hyperbolic SOM we still need an equivalent of a
regular grid in the hyperbolic plane. We use the following results [3, 11]: while
the choices for tesselations with congruent polygons on the sphere and even in
the plane are such that each grid point is surrounded by the same number n
of neighbors are severely limited (the only possible values for n being 3,4,5 on
the sphere, and 3,4,6 in the plane), there is an infinite set of choices for the
hyperbolic plane. In the following, we will restrict ourselves to lattices consist-
ing of equilateral triangles only. In this case, there is for each n > 7 a regular
tesselation such that each vertex is surrounded by n congruent equilateral trian-
gles. Fig. 2 shows two example tesselations (for the minimal value of n = 7 and
for n = 10), using the Poincaré model for their visualization. While in Fig. 2
these tesselations appear non-uniform, this is only due to the fisheye effect of the
Poincaré projection. In the original H2, each tesselation triangle has the same
size, and this can be checked by re-projecting any distant part of the tessela-
tion into the center of the Poincaré disk, after which it looks identical (up to a
possible rotation) to the center of Fig. 2.

One way to generate these tesselations algorithmically is by repeated appli-
cation of a suitable set of generators of their symmetry group to a (suitably
sized, cf. below) “starting triangle”, for more details cf [15].



3 Hyperbolic SOM Algorithm

We have now all ingredients required for a “hyperbolic SOM”. In the following,
we use the regular triangle tesselation with vertex order n = 7, which leads to
the “finest” tesselation that is possible (in H2, the angles of a triangle uniquely
determine its size). Using the construction scheme sketched in the previous sec-
tion, we can organize the nodes of such a lattice as “rings” around an origin
node (i. e., it is simplest to build approximately “circular” lattices). The num-
bers of nodes of such a lattice grows very rapidly (asymptotically exponentially)
with the chosen lattice radius R (its number of rings). For instance, for n = 7,
Table 1 shows the total number Ni of nodes of the resulting regular hyperbolic
lattices with different radii ranging from R = 1 to R = 10. Each lattice node r
carries a prototype vector w, € IRP from some D-dimensional feature space (if
we wish to make any non-standard assumptions about the metric structure of
this space, we would build this into the distance metric that is used for deter-
mining the best-match node). The SOM is then formed in the usual way, e. g.,
in on-line mode by repeatedly determining the winner node s and adjusting all
nodes r € N(s,t) in a radial lattice neighborhood N(s,t) around s according to
the familiar rule

Aw, = nh,s(x —w,) (4)

with h,s = exp(—d?(r,s)/20?). However, since we now work on a hyperbolic
lattice, we have to determine both the neighborhood N(s,t) and the (squared)
node distance d?(r,s) according to the natural metric that is inherited by the
hyperbolic lattice.

Table 1: Node numbers Ng of hyperbolic triangle lattices with vertex order 7 for
different numbers R of “node rings” around the origin.

RI|1/2|3|4|5] 6 7 8 9 10
NRr||8|29|85|232|617(1625|4264|11173|29261|76616

The simplest way to do this is to keep with each node r a complex number
zr to identify its position in the Poincaré model. The node distance is then given
(using the Poincaré model, see e. g. [19]) as

)- )

The neighborhood N (t,s) can be defined as the subset of nodes within a
certain graph distance (which is chosen as a small multiple of the neighborhood
radius o) around s.

Like the standard SOM, also the hyperbolic SOM can become trapped in
topological defects. Therefore, it is also important here to control the neighbor-
hood radius o(t) from an initially large to a final small value (for details on this
and some further means to optimize convergence, see [15]).

d = 2arctanh (’ ZT_;ZS
1— 2z 2




4 Experiments

Some introductory experiments where several examples illustrate the favorable
properties of the HSOM as compared to the “standard” euclidean SOM can be
found in [15].

4.1 Text Categorization

While - similar as for the SOM [7] - a very high classification accuracy is of a sec-
ondary importance to visualization, a good classification performance is still im-
portant to obtain useful maps of text categories. With the ever growing amount
of available information on the Internet, automatic text categorization based on
machine learning techniques has become a key task where high-dimensional input
spaces with few irrelevant features are involved [4]. Here the goal is the assign-
ment of natural language documents to a number of predefined categories (each
document d; can belong to one, several or none of the categories ¢;). Achieving
a high classification accuracy is an important prerequisite for automating high
volume information organization and management tasks.

Text Representation. In order to apply the HSOM to natural text catego-
rization, we follow the widely used vector-space-model of Information Retrieval
(IR). We applied a word stemming algorithm? such that for example the words
“retrieved”, “retrieval” and “retrieve” are mapped to the term “retrief”. The
value of f; of the feature vector f(d;) for document d; is then determined by the
frequency of which term ¢; occurs in that document. Following standard prac-
tice [16] we choose a term frequency X inverse document frequency weighting
scheme:

fi=tr(ed) o (5 ) ©

where the term frequency tf(t;,j) denotes the number of times term ¢; occurs
in dj, N the number of documents in the training set and df (¢;) the document
frequency of t;, i. e. the number of documents ¢; occurs in. Additionally, we built
a stop list of the most and least frequent terms specific to the training set and
omitted those from the feature vectors, since they have no descriptive function
with respect to that text corpus.

HSOM Text Categorization. The HSOM can be utilised for text categoriza-
tion in the following manner (Fig. 3). In a first step, the training set is used
to adapt the weight vectors w, according to (4). During the second step, the

2 We applied the triestem function of the SMART system by G. Salton and C. Buckley
(ftp://ftp.cs.cornell.edu/pub/smart/).
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Figure 3: Text categorization with the HSOM: First the training set is used to build an
internal model of the collection represented by the HSOM’s reference vectors. In (b) for
each training document the winner nodes are labelled with the document’s category.
These labels are used in the classification step (c¢) where an unknown document is
“thrown” onto the map and labelled with the categories of its corresponding best
match node.

training set is mapped onto the HSOM lattice. To this end, for each training
example d; its best match node s is determined such that

‘f(dj)_wsl < ‘f(d])_wr‘ vr, (7>

where f(d;) denotes the feature vector of document d;, as described above. After
all examples have been presented to the net, each node is labelled with the union
U, of all categories that belonged to the documents that were mapped to this
node. A new, unknown text is then classified into the union U of categories which
are associated with its winner node s selected in the HSOM. In order to evaluate
the HSOM’s categorization performance, we furthermore use cos(ws, f(d;)) as
a confidence measure for the classification result.

Text Collection. The text collection consists of movie reviews taken from the
rec.art.movies.reviews newsgroup. Genre information from the Internet Movie
Database (http://www.imdb.com) was used to build a joined database contain-
ing the review texts plus the genres from their corresponding movies as the cat-
egories. To build the training text collection, for each of the most prominent 17
categories 20 movies were randomly selected. For each of these movies, 3 review
texts were chosen by chance. Therefore, the training collection contained 1020
distinct documents. The test text collection was constructed in the same manner



with the restriction that it must not contain any document of the training set.
After word stemming and stop word removal we arrived at approximately 5000
distinct terms for the construction of the feature vectors.

Performance Evaluation. The classification effectiveness is commonly mea-
sured in terms of precision P and recall R [17], which can be estimated as

TP TP,
P = [ — [
‘" TP, +FP;’ R TP, + FN;’ (8)

where T P; and T'N; are the numbers of documents correctly classified, and cor-
rectly not classified to ¢;, respectively. Analogous, F'P; and F'N; are the numbers
of documents wrongly classified and not classified to ¢;, respectively. By adjust-
ing a threshold which is compared with the confidence value cos(ws, f(d;)) of
the classifier, the number of retrieved documents can be controlled. In order to
obtain an overall performance measure for all categories, we applied the microav-
eraging method [21]. Furthermore, the breakeven point of precision and recall,
i. e. the value at which P = R is a frequently given single number to measure
the effectiveness determined by both values P and R [17].

In order to assess the HSOM'’s performance for text categorization, we have
used a k-nearest neighbour (k-NN) classifier which was found to show very good
results on text categorization tasks [21]. Apart from boosting methods [18] only
support vector machines [5] have shown better performances. The confidence
level of a k-NN classifier to assign document d; to class c; is

CFNN(dj) = Y aix-cos(dy,dz) ©)
d.€TRy(d;)

where T Ry,(d;) is the set of k documents d. for which cos(d;, d.) is maximum.
The assignment factor a,, is 1, if d, belongs to category ¢; and 0 otherwise.
According to [21, 5] we have chosen the k = 30 nearest neighbours.

Text Categorization Results. Precision-recall-diagrams for three categories
and the microaveraged diagrams for all categories are shown in Fig. 4. The single
category and microaveraged break-even points are layed out in Table 2.

It is notable that the HSOM performs significantly worse if only a few doc-
uments are recalled, but the precision in cases of high recall values is very close
to that of the k-NN classifier. Since one is usually interested in high precision
in conjunction with high recall, the suboptimal results for low recall values do
not really affect the usefulness of the HSOM for the purpose of text categoriza-
tion3. Thus, our results indicate that the HSOM does not perform better than
a k-NN classifier, but it does not play significantly worse either. Since the main

3 We also believe that a more clever heuristic than the simple distance to the bestmatch
node in order to determine the evidence value of a classification will further improve
accuracy for low retrieval rates.



purpose of the HSOM is the visualization of relationships between texts and
text categories, we believe that the observed categorization performance of the
HSOM compares sufficiently well with the more specialized (non-visualization)
approaches to warrant its efficient use for creating insightful maps of large bodies
of document data.

0.6

+ Drama
A Thiller A Thriller o X HSOM
O Romance O Romance O kNN classifier

o
0.4 0.4 0.4 (0]
0 02 04 06 0.8 1 0 02 04 0.6 0.8 1 0 02 04 06 0.8 1

+ Drama

(a) k-NN (b) HSOM (¢) Microaveraged

Figure 4: Precision-recall-diagrams for the three categories Drama, Thriller and Ro-
mance. (a) shows the results for the k-NN classifier, (b) for the HSOM. In (c¢) the
microaveraged diagrams for both methods are shown.

Table 2: Precision-recall breakeven points for the most prominent categories. In most
cases the k-NN performs better than the HSOM, but for the categories “Animation”,
“Fantasy” and “Musical” the HSOM yields better results.

Action [Advent.|Animation|Comedy| Crime |Docum.||Drama
HSOM|| 81.6 75.4 86.9 81.3 84.5 86.7 82.5
k-NN || 87.3 83.0 84.5 87.6 90.5 98.0 85.8

Fantasy| Horror | Musical |Mystery|Romance| Sci-Fi || Thriller| p-avg.
HSOM|| 81.6 78.6 82.5 84.6 82.8 76.2 86.8 81.1
k-NN || 75.0 88.9 81.2 86.1 87.8 89.3 89.1 86.4

4.2 Semantic Browsing

A major advantage of the HSOM is its remarkable capability to map high-
dimensional similarity relationships to a low-dimensional space which can be
more easily handled and interpreted by the human observer. This feature and
the particular “fisheye” capability motivates our approach to visualize whole
text collections with the HSOM. With just as little as 5 rings (c.f. Table 1), we
can handle well over 500 prototype vectors which are able to represent different
types of texts. The nodes are labelled with those document titles which resemble
their prototype vectors most closely. We additionally map symbols to the nodes
which correspond to the categories associated with the prototypes. We can now
interactively change the visual focus to those regions which show an interesting
structure. In Fig. 5(a) for example we have “zoomed” into a region of the map



which indicated a cluster of “Animation” films. As a closer inspection shows,
this region of the map resembles movie reviews all connected to Disney’s typical
animations released during Christmas time. In Fig. 5(b) the focal view was
moved to a region connected to “Action” and “Fantasy” films. It does not only
show the movies of the “Batman” series in a limited area of the map, but also
a “Zorro” movie in the neighorhood - which makes a lot of sense, as the main
characters of the films indeed have a semantic relation.
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Figure 5: By moving the visual focus of the HSOM, a large text collection can be
browsed quite elegantly. In this example, the movie titles of their corresponding review
texts (there might be several reviews for one movie) are mapped. In (a) reviews of
Disney’s animations have been moved into the centre, (b) shows a region of the map
containing the “Batman” movies. Note, that the HSOM also mirrors the semantical
connection between “Zorro” and “Batman”.

As illustrated in Fig. 6, the HSOM might
also be used to classify an unknown text by
displaying its relationship to a previously ac-
quired document collection. In this example
an unknown review text for the film “Juras-
sic Park” was mapped. The map was then
zoomed to that node which most closely re-
sembled the given input text, which in this
case was another review describing the same
film. Note, that the neighborhood is occu-
pied by reviews describing the sequel “The
Lost World”, respectively the “Dinosaurs”
animation. By mapping a complete unknown
document collection to a previously formed
HSOM, relevant text documents can be discovered. In Fig. 7 the HSOM is used
as a filter to display only those documents which belong to a semantic region of
interest.

outh Park Sgger, Longetshd kgl
Twister (199€

T
S

Figure 6: Mapping a new text.
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Figure 7: Discovering of relevant documents in whole collections. In this example an
unknown text collection is mapped onto the HSOM, but only those items are visualized
which belong to a selected category, in this case animation movies. The central view in
(a) points to a set of document clusters, which can be interactively zoom into. In (b)
the largest cluster has been moved into focus. It mainly shows Disney animations and
films from the “Toy story” series a bit farther down. In (¢) the cluster in the top left
contains “A Bug’s Life” and “Antz”, whereas the cluster in the bottom right belongs
to movies connected to Japanese animations.

5 Discussion

Our results show that the HSOM is not only applicable to automated text cat-
egorization, but also specifically well suited to support “semantic browsing” in
large document collections. Our first experiments indicate that the HSOM is able
to exploit the peculiar geometric properties of hyperbolic space to successfully
compress complex semantic relationships between text documents onto a two
dimensional projection space. Additionally, the use of hyperbolic lattice topol-
ogy for the arrangement of the HSOM nodes offers new and highly attractive
features for interactive navigation in this way. Large document databases can
be inspected at a glance while the HSOM provides additional information which
was captured during a previous training step, allowing e. g. to rapidly visualize
relationships between new documents and previously acquired collections.

Future work will address more sophisticated visualization strategies based on
the new approach, as well as the evaluation for other widely used text collections,
such as Reuters, Ohsumed or Pubmed.
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