
Text Categorization Using Weight Adjusted
k-Nearest Neighbor Classification ∗

Eui-Hong (Sam) Han George Karypis, Vipin Kumar
Department of Computer Science and Engineering

University of Minnesota
4-192 EECS Bldg., 200 Union St. SE

Minneapolis, MN 55455, USA

{han,karypis,kumar}@cs.umn.edu

Last updated on March 20, 1999 at 12:11am

Abstract

Categorization of documents is challenging, as the number of discriminating words can be very large. We present
a nearest neighbor classification scheme for text categorization in which the importance of discriminating words is
learned using mutual information and weight adjustment techniques. The nearest neighbors for a particular document
are then computed based on the matching words and their weights. We evaluate our scheme on both synthetic and real
world documents. Our experiments with synthetic data sets show that this scheme is robust under different emulated
conditions. Empirical results on real world documents demonstrate that this scheme outperforms state of the art
classification algorithms such as C4.5, RIPPER, Rainbow, and PEBLS.

Keywords: Classification, text categorization, nearest neighbor classification, weight adjustment, data mining.

∗This work was supported by NSF grant ASC-9634719, Army Research Office contract DA/DAAH04-95-1-0538, Cray Research Inc. Fellow-
ship, and IBM partnership award, the content of which does not necessarily reflect the policy of the government, and no official endorsement should
be inferred. Access to computing facilities was provided by AHPCRC, Minnesota Supercomputer Institute, Cray Research Inc., and NSF grant
CDA-9414015. See http://www.cs.umn.edu/∼han for other related papers.

1 Introduction
Text categorization is the task of deciding whether a document belongs to a set of prespecified classes of documents.
The amount of online document data is growing very fast. For instance, the World Wide Web is a vast resource of
information and services that continues to grow rapidly. Another examples can be found in the growing size of digital
library, hospitals and other work places where the diagnosis and field reports are readily available online.

The task of assigning these documents to a set of prespecified classes of documents is challenging due to the large
amount of documents in these fields. Automatic classification schemes greatly enhance the process of categorization.
For instance, Yahoo! [Yah99] currently uses human experts to categorize the documents. However, the way WWW
documents are growing, this would become more difficult. At West Group, human indexers read legal documents and
index them manually [CT97]. This step becomes a bottleneck in publishing legal documents for the legal community.
Web browser users keep bookmarks to remember sites they are interested in. Often times, they categorize these sites
according to their interests such as business, sports, travel, books, and movies. It will be a great help to the users
if the automatic text categorization could classify all the searched documents from the web based on the existing
bookmarked documents of different user categories.

A major difficulty of applying existing classification algorithms in text categorization domain is the high dimen-
sionality nature of document data sets. The words occur in the document sets become variables or attributes for the
classification problem. A relatively moderate size of document sets could easily have number of distinct words in tens
of thousands. Many existing algorithms simply would not work with these many number of attributes. Several feature
selection methods based on document frequency, mutual information, or information gain could be used to reduce the
number of words [YP97, Joa97, McC96]. However, if we become too aggressive in reducing the number of words,
then we might lose critical information for categorization tasks. Normally, the number of words after feature selection
could be still in thousands.

In addition to the large number of words, text categorization pauses more problems as the words are tend to be
dependent. A lot of times, single words do not characterize categories of documents, but a pair or group of words
determine the categories. In other word, based on the occurrence of a single word in the document, the document
cannot be categorized to a certain class. The same word could occur in documents of one category and also in
documents of the other categories. However, this kind of word cannot be simply removed from the data set using
feature selection, as this word combined with other words could uniquely determine right categories of the documents.

There are several classification schemes that can be potentially used for text categorization. However, many of these
existing schemes do not work well in the text categorization task due to the problems mentioned above. For example,
widely used classification decision tree induction algorithm like C4.5 [Qui93] or rule induction algorithms such as
C4.5rules [Qui93] and RIPPER [Coh95] do not work well with large number of attributes. Even though Naive-Bayes
classification techniques, such as Rainbow [McC96], are popular in text categorization [LG94, LR94, Lew98, MN98],
they have a major limitation due to the independence assumption they make while words in document data sets tend
to be dependent.

k-nearest neighbor (k-NN) classification is an instance-based learning algorithm that has shown to be very effective
in text classification [Yan94, CH98]. The success of this scheme is due to the availability of effective similarity
measures such as cosine measure [Sal89]. However, the effectiveness of these similarity measures become worse as
the number of words increases. PEBLS [CS93] is a k-NN classification algorithm that incorporates class information
in the similarity measure. However, the similarity measure is developed mainly for the data sets with categorical
attributes. Even though, document data sets can be regarded as categorical data by considering each word to be either
present or absent in a document, the effectiveness of the similarity measure of PEBLS in the text classification task is
questionable.

In this paper, we propose Weight Adjusted k-Nearest Neighbor (WAKNN) classification algorithm that is based
on the k-NN classification paradigm. In WAKNN, the importance of each word in the classification of a training
document set is learned and the weight vector reflecting this importance is maintained. The weight vector is used in
the similarity measure computation such that important words contribute more in the similarity measure. Experiments
on several synthetic and real life data sets show the promise of WAKNN, as it outperformed other classifiers in terms
of classification accuracies.

1

2 Weight Adjusted k-Nearest Neighbor Classification Algorithm (WAKNN)
In this section, we present the details of WAKNN. The key aspects of WAKNN are how to initialize the weight vector,
how to find the best possible weight vector, and how to use the weight vector to define a better similarity measure.
Here are the major steps of WAKNN:

1. Construct training matrix, D, where each row correspond to a training document, each column represent a word,
and value in the matrix D(i, j) corresponds to the number of occurrences of word j in document i .

2. Normalize word frequencies in each document such that they add up to 1.0. This step normalizes the difference
in document lengths.

3. Find mutual information of each word using Equation 2 described later and initialize weight vector W with these
values.

4. Determine k nearest neighbors for each training document using the weighted cosine similarity measure of
Equation 1 described later with this initial weight vector.

5. Calculate the goodness of this initial weight vector using an objective function, Obj (D, W, p), with parameter
p described later.

6. While there is an improvement in Obj (D, W, p), repeat the following steps:

(a) For each word i , determine the value of Wi that gives the best Obj (D, W, p). New possible values for Wi

are proposed by multiplying the original Wi with different multiplication factors.

(b) Select a word j that gives the best overall Obj (D, W, p) from the previous step, and update W j with this
new value.

In classifying a test document, we first construct a test vector according to the steps 1 and 2 of WAKNN. We find k
nearest neighbors of the test document from the training documents using the weighted cosine similarity measure with
the weight learned from WAKNN. We then sum up the similarities to the k neighbors according to their class labels.
We classify the test document according to the class with the most similarity sum.

Weighted Cosine Similarity Measure We have followed vector space model commonly used in Information
Retrieval systems [Sal89]. In this vector model, each document is a vector and its element corresponds to words in the
whole document set. The whole training set can be viewed as a matrix where each row is a document and its columns
are words. The values in the matrix can be binary, 1 for presence of the word and 0 for absence of the word. They
can also be the within-document word frequency (TF), Inverse Document Frequency (IDF), or TFIDF which is the
combination of TF and IDF [Sal89].

Most popularly used schemes in Information Retrieval is TFIDF. However, previous studies in text classifica-
tion [YC94] and clustering [BGG+99] indicate that TFIDF is not very effective. In WAKNN, we have adopted TF as
the entry in the matrix and normalized per row such that each row adds up to 1.0. This step eliminates problems due
to the differences in the document size.

For the similarity between documents, cosine similarity measure is commonly used [Sal89]. We define a weighted
cosine measure between document X and Y with weight vector W and set of terms (or words) T as

cos(X, Y, W) =
∑

t∈T (X t × Wt) × (Yt × Wt)
√

∑

t∈T (X t × Wt)2 ×
√

∑

t∈T (Yt × Wt)2
, (1)

where X t and Yt are normalized TF of word t for X and Y , respectively, and Wt is the weight of word t .

Weight Initialization Using Mutual Information Mutual information of each word with the class variable has
been used in Information Retrieval domain to select important features [CT91, YP97]. Mutual information of a word
captures the amount of information gained in classifying documents by knowing the presence and absence of the word.
The mutual information of a word w with respect to classes C is defined as

M I (w) =
∑

c∈C

(

P(c, w) log
P(c, w)

P(c)P(w)
+ P(c, w) log

P(c, w)

P(c)P(w)

)

(2)

2

where P(c) is the probability of class c, P(w) is the probability of the presence of word w, and P(w) is the probability
of the absence of word w, and P(c, w), P(c, w), and P(c, w) are joint probabilities. Note that when a word has high
mutual information value, it provides more information in the classification task. Note that mutual information captures
the importance of each word separately. It does not consider the dependence among different words. For instance,
when a word does not discriminate among classes by itself, but does so with other words, the mutual information of
this word is very small. Even with this limitation, mutual information provides a good starting point for the weight
adjustment. In WAKNN, we use the mutual information of each word to initialize the weight vector.

Weight Adjustment Based on Objective Functions In the weight adjustment step, we are trying to find the
optimal weight vector for the classification task at hand. Starting with the weight vector obtained using the mutual
information, we try to make a small change to the weight vector to see if we improve the objective function related to
the classification.

There are two important issues in this step. The first issue is how to evaluate the weight change. In the paradigm of
k nearest neighbor classification, the objective function is closely related to class labels of neighbors of each training
document. The best case would be when all the neighbors of each training document have the same class labels as the
training document. The objective function of WAKNN is defined as:

Obj(D, W, p) = |{d|d ∈ D and Correct(d, D, W, p)}|

where D is the training document matrix, W is the weight vector, and predicate Correct(d, D, W, p) is true if out of
k nearest neighbors of d from D calculated using the weighted cosine measure, the majority neighbors are from the
same class as d and the sum of the similarities to these majority neighbors are at least p percent of the total k neighbor
similarity sum. We call p as the majority percentage. The majority percentage prevents a training document to be
considered to be correctly classified when it does not have many neighbors of the same class label. For instance, when
k = 5, p = 0, and the number of classes is 5, if one training document has one neighbor from each of these classes,
then this training document is considered to be correctly classified if the similarity to one neighbor with the same class
is the highest among other 4 neighbors. On the other hand, in the same situation with p = 50, this training sample
will be considered to be correctly classified only if the similarity of the training document to this particular neighbor
is at least 50% of the total similarity sum. This guarantees that this training document is considered to be correctly
classified only if similarity to other 4 neighbors are very weak.

The second issue is how to propose possible changes to the weight. For the proposal of the possible changes,
we adopted to change one word weight at a time. For each word weight, we multiply the current word weight with
different multiplication factors (e.g., {0.2, 0.8, 1.5, 2.0, 4.0}). For each of these changes, we evaluate if this change
improves the objective function. We remember the best change for each word. We pick the best word and its weight
that gives the best value according to the objective function. We update the weight vector with this value and continue
to the next round.

3 Experimental Results
In this section, we compare kNN-mut which uses the weight vector obtained using mutual information as the fi-
nal weight vector and WAKNN against kNN, C4.5 [Qui93], RIPPER [Coh95], PEBLS [CS93], Rainbow [McC96],
VSM [Low95] on several synthetic and real data sets. VSM is another k-NN scheme in which the weight of the
attributes is learned through conjugate gradient optimization. There are two parameters of importance in WAKNN.
The first is the choice of number of neighbors (k) and the second is the majority percentage in the objective function
discussed in Section 2. We have performed experiments of changing k from 1 to 50 and majority percentage from 0%
(i.e., simple majority) to 90%. The results (not reported here due to the space constraint) show that the classification
accuracy do not vary significantly when k is between 5 and 30, and when the majority percentage is from 30% to
70%. In the subsequent experiments, we have chosen k to be 10 and the majority percentage to be 50%. For C4.5
and RIPPER, we had a choice of either regarding each word as a discrete variable or continuous variable. The results
reported here are obtained by regarding each word as a discrete variable. The results from experiments where each
word is regarded as a continuous variable did not differ from the reported results. For PEBLS, there is an option to
weight instances differently. We tried this option, but the result was substantially worse than results reported here,
which are obtained without this option.

3

C4.5 RIPPER PEBLS Rainbow kNN WAKNN
Syn-1 100.0 100.0 100.0 100.0 77.3 100.0
Syn-2 67.5 69.5 62.0 50.0 66.0 68.8
Syn-3 63.8 73.5 93.2 96.5 94.3 92.3
Syn-4 74.8 81.3 84.5 80.9 80.6 86.1

Table 1: Classification accuracies of different classifiers on synthetic data sets

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1
1 1
1 1

1
1
1

1
1
1
1 1
1 1

1
1
1

1
1
1
1 1
1 1

1
1
1

1
1
1
1 1
1 1

1
1
1

1
1
1
1 1
1 1

1
1
1

1
1
1
1 1
1 1

Class A

Words

noise words

1

1

1

1

1

1

1

1

1

1

1

Words

Class B

Class A

1
1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Class A

Words

noise words

1

1

1

1

1

1

1

1

1

1

1
60%

40%

40%

60%

Words

Syn-1

Syn-2

Syn-3

Documents

Class B

Documents

Documents

Class B

Documents

discriminating
words

word set 1
discriminating discriminating

word set 2

(a) Synthetic Data Set 1 (Syn-1) (b) Synthetic Data Set 2 (Syn-2)

(c) Synthetic Data Set 3 (Syn-3) (d) Synthetic Data Set 4 (Syn-4)

Figure 1: Synthetic Data Sets.

Synthetic Data Sets We illustrate different cases when particular classifiers perform well and other classifiers
perform bad. We have also constructed synthetic data sets according to these cases and show that our claims are true
with the classification results of different classifiers. Table 1 shows the classification accuracies of different classifiers
on these data sets. For the first three synthetic data sets, we have 2 classes with 200 samples each as a training set. The
last synthetic data set is constructed by combining the three data sets, and thus have 6 classes with 200 samples each
as a training set. Test sets of these data sets are constructed similarly.

In document data sets, some words are characteristics of a class. Consider the data set (Syn-1) shown in Figure 1
(a). There are two classes in the data set, and each class has 10 words that describe the class. Presence of any of these
20 words determine the class. In addition to these 20 words that distinguish classes, there are 80 noise words that
occur randomly.

As shown in Table 1, C4.5, Rainbow, RIPPER, and PEBLS work perfectly in this data sets, as they take into
consideration the class labels of the data. However, kNN performs poorly as the similarity between documents are
blurred due to the noise words. In comparing two documents, the match of words from those discriminating words is
considered to be the same as the match of the words from the noise words. On the other hand, WAKNN (with mutual
information weight as a starting point) can overcome this problem, as the initial weight vector will have high values
for those 20 discriminating words.

In documents, there exist cases when single words do not have discriminating power whereas, pair (or group) of
words have discriminating power. For example, word “Clinton” could appear in many different news articles, but
yet as a single word will not have much distinguishing power. When it is coupled with say “Washington-DC”, as a
pair, they could become a distinguishing words for national politics article. Consider the following data set (Syn-2)
illustrated in Figure 1 (b). In this data set, for each class there are 10 distinct pairs of words that determine the class.
Each word occurs 40% of the all documents. However, any pair of words occur together only in one class but not in

4

Source # train # test # class # words used
west-1 West Group 500 1500 10 977
west-2 West Group 300 900 10 1078
west-3 West Group 488 245 10 1035
west-4 West Group 559 280 10 887
west-5 West Group 621 311 10 1156
west-6 West Group 732 367 10 789
west-7 West Group 885 433 10 779

fbis TREC-5 2463 1232 17 2000
trec6 TREC-5 1173 587 14 2000

reuters Reuters-21578 6552 2581 59 2000

Table 2: Summary of data sets used.

the other class.
In this particular data set, Naive-Bayesian classifiers like Rainbow perform poorly, as the conditional probability

of particular word given a class is the same for all the words. For example, given a test document with “Clinton”
and “Washington-DC”, Naive-Bayesian classifiers cannot put it into the national politics category, as individual words
“Clinton” and “Washington-DC” equally appear in many different categories. The failure is due to the independent
assumption Naive-Bayesian classifiers make. The other classifiers would tend to perform better than Naive-Bayesian
classifiers in this data set.

Another characteristics of document data sets is such that class is determined by set of words that occur more
frequently in one class than another classes. Consider the following data set (Syn-3) illustrated in Figure 1 (c). In this
data set, there are 50 words that occur more frequently in class A, and another 50 words that occur more frequently in
class B. Furthermore, there are 100 noise words.

Decision tree based schemes like C4.5 or rule generating schemes like RIPPER do not work very well in this
scenario due to the overfitting. The overfitting occurs as the number of samples is relatively small with respect to
the distinguishing words. In the ideal case of decision tree (or classification rules), all the 100 distinguishing words
participate in the path of decision tree (or classification rules). However, this requires training samples of size in the
exponential of the distinguishing words. This is not a realistic size of training set you can expect to have.

In real situation, documents will have all these flavors of Syn-1, Syn2, and Syn3. It will not be possible to separate
these types of documents from the original data sets. Consider the following data set illustrated in Figure 1 (d) where
all of the above documents are concatenated. For each data set, new words introduced by other document sets are
filled with zeros.

As shown in Table 1, this data set, WAKNN outperforms all other approaches. This is expected, as WAKNN
performs equally well in all of the three synthetic data sets discussed. This result is confirmed with the real data sets
as well.

Real Data Sets In all of the data sets, we have used stop words and stemming using Porter’s suffix-stripping
algorithm [Por80]. The summary of these documents available in Table 2.

First 7 data sets are from the statutory collections of the legal document publishing division of West Group described
in [CT97]. Out of 149,655 collections of documents, we selected 7 subsets of documents that have single label. For
each of these data sets, we further filtered out words that occur in less than 3 documents. We then randomly selected
training sets and test sets. Some of the examples of class labels of these documents include “counties”, “sales”,
“worker’s compensation”, and “insurance”.

Data set f bi s is from the Foreign Broadcast Information Service data of TREC-5 [TRE99a]. The class labels
were generated from the relevance judgment provided by TREC-5 routing query relevance ”qrels.1-243” [TRE99b].
We collected documents that have relevance judgment and selected documents that have single relevance judgment.
Data set trec6 is from the Foreign Broadcast Information Service and LA Times data of TREC-5. The class labels are
generated similarly to fbis data set using TREC-6 ad hoc query relevance ”qrels.trec6.adhoc” [TRE99b]. We randomly
selected training sets and test sets for these 2 data sets. After filtering using stopping words and stemming, we further
filtered the words using mutual information. We selected top 2000 words according to the mutual information of the
training set.

Data set reuters is from Reuters-21578 text categorization test collection Distribution 1.0 [Lew99]. We split the
documents according to the modified Lewis split and selected documents with single label. After filtering words using

5

C4.5 RIPPER PEBLS VSM Rainbow kNN kNN-mut WAKNN
west-1 85.50 84.47 78.50 86.27 84.40 76.73 86.80 89.60
west-2 71.30 68.33 67.80 75.22 72.11 68.33 75.89 80.44
west-3 79.60 75.92 72.70 82.04 80.00 70.61 80.00 88.16
west-4 81.80 77.14 78.60 85.00 88.57 73.93 81.79 85.00
west-5 84.60 89.71 86.80 89.71 85.21 84.57 90.03 95.18
west-6 83.70 83.38 79.80 86.92 85.29 73.57 80.38 88.92
west-7 80.10 80.14 71.80 81.04 81.26 74.94 81.94 84.42

fbis 57.10 73.94 69.80 76.14 76.38 78.49 76.54 81.09
trec-6 67.50 80.58 84.30 87.56 92.16 91.99 88.42 92.67
reuters 84.50 85.59 84.60 running 91.04 90.62 89.66 90.04

Table 3: Classification accuracies of different classifiers. Note that the highest accuracy for each data set is highlighted with bold
font.

against best against kNN-mutual against VSM against Rainbow
west-1 + 2.80 + 2.38 + 2.80 + 4.23
west-2 + 2.67 + 2.34 + 2.67 + 4.15
west-3 + 1.90 + 2.47 + 1.90 + 2.47
west-4 - 1.25 + 1.02 0.00 - 1.25
west-5 + 2.58 + 2.45 + 2.58 + 4.18
west-6 + 0.83 + 3.21 + 0.83 + 1.47
west-7 + 1.23 + 0.98 + 1.32 + 1.23

fbis + 1.61 + 2.76 + 3.00 + 2.86
trec6 + 0.33 + 2.49 + 2.93 + 0.33

reuters - 1.23 + 0.45 running - 1.23

Table 4: z value of WAKNN against other classifiers. Positive numbers correspond to the fact that WAKNN did better than other
classifiers. Positive number greater than 1.96 shows that WAKNN is statistically better than the other classifiers and negative
number less than -1.96 shows that WAKNN is statistically worse than the other classifiers. These numbers are highlighted with
bold fonts.

stop words and stemming, we further selected top 2000 words according to the mutual information of the training set.
Table 3 shows the comparison of different classifiers on 10 data sets. WAKNN has the best result in 8 out of these

10 data sets. We performed a simple statistics test to see if these results are statistically significant. We performed
statistical test described in [SC89], and used in [DHB95, Die98]. In this test for comparing classifier A and B, we
measure

z =
pA − pB√

2p(1 − p)/n

where pA is the error rate of classifier A on a test set, pB is the error rate of classifier B, p = (pA + pB)/2, and n is
the number of samples in the test set. We can reject the null hypothesis that two classifiers are not different in terms
of performance if |z| > Z0.975 = 1.96. We calculated these statistics of WAKNN against the best results of other
classifiers except kNN-mutual for each data set. Table 4 shows the results. WAKNN was the best in 8 data sets and
was significantly better for 3 data sets (west-1, west-2, and west-5). For those 2 data sets in which WAKNN was not
the best, it was not significantly worse than the best results. Compared against kNN-mutual, WAKNN was always
better and was significantly better in 7 data sets. This shows that the weight adjustment did improve the results from
the initial weight set using mutual information. VSM and Rainbow were the best among other classifiers for these data
sets. When compared against VSM, WAKNN was better in all of the data sets and significantly better in 6 data sets.
When compared against Rainbow, WAKNN was better in 8 data sets and significantly better in 5 data sets.

In traditional Information Retrieval systems, given multiple classes in the document set, binary classification for
individual class is considered. The effectiveness of retrieval is measured in terms of recall, precision, and F-measure
for each class label separately [RL94]. In these experiments (not reported here), we have confirmed that WAKNN
outperforms other classifiers in terms of the micro-averaged F-measure [RL94] as well.

6

4 Conclusions and Directions of Future Research
In this paper, we presented a k-nearest neighbor classification algorithm that learns importance of attributes and utilizes
them in the similarity measure. As our experimental results have shown, our algorithm is very effective in the text
categorization task. However, a number of key issues remain to be addressed. One issue is how to avoid the local
minima in the search for the best weight vector. In addition to the main objective function used in WAKNN, we might
need secondary objective functions to move out of the local minima. Another possible solution to the local minima
problem might be changing weights of multiple words at a time. A big challenge for this solution is how to find the set
of words for the weight change. Another issue is whether the enhanced weight adjustment leads to overfitting. Even
though the relatively large number of neighbors and high majority percentage in the objective function tends to reduce
the risk of overfitting, this problem can be significant in many data sets. Finally, the computational cost of weight
adjustment step of WAKNN is O(cn2) where c is the number of iterations in the weight adjustment step and n is the
number of data points. We will investigate optimization schemes to improve upon this computational complexity.

Acknowledgment
We would like to thank Dr. Paul Thompson and Dr. Isabell Moulinier of West Group for allowing us to have the data
for experiments.

References
[BGG+99] D. Boley, M. Gini, R. Gross, E.H. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher, and J. Moore. Partitioning-

based clustering for web document categorization. Decision Support Systems (accepted for publication), 1999.

[CH98] W.W. Cohen and H. Hirsh. Joins that generalize: Text classification using WHIRL. In Proc. of the Fourth Int’l
Conference on Knowledge Discovery and Data Mining, 1998.

[Coh95] W.W. Cohen. Fast effective rule induction. In Proc. of the Twelfth International Conference on Machine Learning,
1995.

[CS93] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning,
10(1):57–78, 1993.

[CT91] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.

[CT97] T. Curran and P. Thompson. Automatic categorization of statute documents. In Proc. of the 8th ASIS SIG/CR Classifi-
cation Research Workshop, Tucson, Arizona, 1997.

[DHB95] T.G. Dietterich, H. Hild, and G. Bakiri. A comparison of ID3 and backpropagation for english text-to-speech mapping.
Machine Learning, 18:51–80, 1995.

[Die98] T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural
Computation, 10(7), 1998.

[Joa97] T. Joachims. A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization. In Proc. of the
Fourteenth International Conference on Machine Learning, 1997.

[Lew98] D. Lewis. Naive (bayes) at forty: The independence assumption in information retrieval. In Tenth European Conference
on Machine Learning, 1998.

[Lew99] D. D. Lewis. Reuters-21578 text categorization test collection distribution 1.0. http://www.research.att.com/ lewis,
1999.

[LG94] D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In SIGIR-94, 1994.

[Low95] D.G. Lowe. Similarity metric learning for a variable-kernel classifier. Neural Computation, pages 72–85, January
1995.

[LR94] D. Lewis and M. Ringuette. Comparison of two learning algorithms for text categorization. In Proc. of the Third
Annual Symposium on Document Analysis and Information Retrieval, 1994.

[McC96] Andrew Kachites McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and clus-
tering. http://www.cs.cmu.edu/ mccallum/bow, 1996.

[MN98] A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification. In AAAI-98 Workshop
on Learning for Text Categorization, 1998.

[Por80] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

[RL94] E. Riloff and W. Lehnert. Information extraction as a basis for high-precision text classification. ACM Transactions
on Information Systems, 12(3), 1994.

7

[Sal89] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer.
Addison-Wesley, 1989.

[SC89] G.W. Snedecor and W.G. Cochran. Statistical Methods. Iowa State University Press, 1989.

[TRE99a] TREC. Text REtrieval conference. http://trec.nist.gov, 1999.

[TRE99b] TREC. Text REtrieval conference relevance judgements. ftp://ftp-nlpir.nist.gov/pub/trec/qrels, 1999.

[Yah99] Yahoo! Yahoo! http://www.yahoo.com, 1999.

[Yan94] Y. Yang. Expert network: Effective and efficient learning from human decisions in text categorization and retrieval. In
SIGIR-94, 1994.

[YC94] Y. Yang and C.G. Chute. An example-based mapping method for text categorization and retrieval. ACM Transactions
on Information Systems, 12(3), 1994.

[YP97] Y. Yang and J. Pederson. A comparative study on feature selection in text categorization. In Proc. of the Fourteenth
International Conference on Machine Learning, 1997.

8

