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Chapter 1

Introduction.

As the volume of information available on the Internet and corporate intranets contin-
ues to increase, there is a growing need for tools helping people better find, filter, and
manage these resources. Text categorisation, the assignment of free text documents to
one or more predefined categories based on their content, is an important component in
many information management tasks; real-time sorting of email or files into folder hierar-
chies, topic identification to support topic-specific processing operations, structured search
and/or browsing, or finding documents that match long-term standing interests or more
dynamic task-based interests.

In many contexts trained professionals are employed to categorise new items. This process
is very time-consuming and costly, thus limiting its applicability. Consequently there is
an increasing interest in developing technologies for automatic text categorisation.

A number of statistical classification and machine learning techniques has been applied
to text categorisation, including regression models [30], nearest neighbour classifiers [30],
decision trees [19], Bayesian classifiers [19], Support Vector Machines [15], rule learning
algorithms [6], relevance feedback [23], voted classification [27], and neural networks [28].

In this report we give a survey of the state-of-the-art in text categorisation. To be able to
measure progress in this field, it is important to use a standardised collection of documents
for analysis and testing. One such data set is the Reuters-21578 collection of newswires
for the year 1987, and our survey will focus on the work on text categorisation that have
used this collection for testing.

This report is divided into 6 chapters in addition to the introduction. Chapter 2 describes
the steps that are needed to transform raw text into a representation suitable for the the
classification task. In Chapter 3 we describe 6 methods that have been successfully applied
to text categorisation. Chapter 4 introduces performance measures for category ranking
evaluation and binary categorisation evaluation. Previous work using the Reuters-21578
collection is surveyed in Chapter 5. In Chapter 6 we describe our own work using the
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Reuters collection, while a summary is given in Chapter 7.
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Chapter 2

Feature Extraction

2.1 Preprocessing

The first step in text categorisation is to transform documents, which typically are strings
of characters, into a representation suitable for the learning algorithm and the classification
task. The text transformation usually is of the following kind:

e Remove HTML (or other) tags
e Remove stopwords

e Perform word stemming

The stopwords are frequent words that carry no information (i.e. pronouns, prepositions,
conjunctions etc.).

By word stemming we mean the process of suffix removal to generate word stems. This
is done to group words that have the same conceptual meaning, such as walk, walker,
walked, and walking. The Porter stemmer [21] is a well-known algorithm for this task.

2.2 Indexing

The perhaps most commonly used document representation is the so called vector space
model (SMART) [24]. In the vector space model, documents are represented by vectors
of words. Usually, one has a collection of documents which is represented by a word-by-
document matrix A, where each entry represents the occurrences of a word in a document,
ie.,

A = (an), (2.1)



Text Categorisation: A Survey 6

where a; is the weight of word 7 in document k. Since every word does not normally
appear in each document, the matrix A is usually sparse. The number of rows, M, of
the matrix corresponds to the number of words in the dictionary. M can be very large.
Hence, a major characteristic, or difficulty of text categorization problems is the high
dimensionality of the feature space. In Section 2.3 we discuss different approaches for
dimensionality reduction.

There are several ways of determining the weight a;; of word ¢ in document k, but most
of the approaches are based on two empirical observations regarding text:
e The more times a word occurs in a document, the more relevant it is to the topic of
the document.
e The more times the word occurs throughout all documents in the collection, the

more poorly it discriminates between documents.

Let f;r be the frequency of word ¢ in document k, N the number of documents in the
collection, M the number of words in the collection after stopword removal and word
stemming, and n; the total number of times word ¢ occurs in the whole collection. In what
follows we describe 6 different weighting schemes that are based on these quantities.

Boolean weighting

The simplest approach is to let the weight be 1 if the word occurs in the document and 0
otherwise:

1 if fz>0
= 2.2
ik { 0 otherwise (2.2)

Word frequency weighting

Another simple approach is to use the frequency of the word in the document:
air = fik (2.3)

tfxidf-weighting

The previous two schemes do not take into account the frequency of the word throughout
all documents in the collection. A well-known approach for computing word weights is the
tfxidf-weighting [24], which assigns the weight to word 4 in document & in proportion to
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the number of occurrences of the word in the document, and in inverse proportion to the
number of documents in the collection for which the word occurs at least once.

aik = fik * log (g) (2.4)

(3

tfc-weighting

The tfxidf-weighting does not take into account that documents may be of different
lengths. The tfc-weighting [25] is similar to the tfxidf-weighting except for the fact that
length normalisation is used as part of the word weighting formula.

ik * log (%)

i [ ion (2)]

Qi = (2.5)
ltc-weighting

A slightly different approach [5] uses the logarithm of the word frequency instead of the
raw word frequency, thus reducing the effects of large differences in frequencies.

log(fir +1.0) x log (%)

i ot 1.0 1 ()]

Qi =

Entropy weighting

Entropy-weighting is based on information theoretic ideas and is the most sophisticated
weighting scheme. In [9] it turned out to be the most effective scheme in comparison
with 6 others. Averaged over five test collections, it was for instance 40 % more effective
than word frequency weighting. In the entropy-weighting scheme, the weight for word 4
in document k is given by:

o = T f +10) 5 ( b3 [ ({f)]) 2

where
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is the average uncertainty or entropy of word 7. This quantity is -1 if the word is equally
distributed over all documents, and 0 if the word occurs in only one document.

2.3 Dimensionality reduction

A central problem in statistical text classification is the high dimensionality of the fea-
ture space. There exists one dimension for each unique word found in the collection of
documents, typically hundreds of thousands. Standard classification techniques cannot
deal with such a large feature set, since processing is extremely costly in computational
terms, and the results become unreliable due to the lack of sufficient training data. Hence,
there is a need for a reduction of the original feature set, which is commonly known as
dimensionality reduction in the pattern recognition literature. Most of the dimensional-
ity reduction approaches can be classified into one of two categories; feature selection or
re-parameterisation.

2.3.1 Feature Selection

Feature selection attempts to remove non-informative words from documents in order to
improve categorisation effectiveness and reduce computational complexity. In [30] a thor-
ough evaluation of the five feature selection methods; Document Frequency Thresholding,
Information Gain, x2-statistic, Mutual Information, and Term Strength is given. In their
experiments, the authors found the three first to be the most effective!. Below a short

description of these methods is given.

Document Frequency Thresholding

The document frequency for a word is the number of documents in which the word occurs.
In Document Frequency Thresholding one computes the document frequency for each
word in the training corpus and removes those words whose document frequency is less
than some predetermined threshold. The basic assumption is that rare words are either
non-informative for category prediction, or not influential in global performance.

Information gain

Information Gain measures the number of bits of information obtained for category pre-
diction by knowing the presence or absence of a word in at document.

!Their results are obtained based on a k-nearest neighbour classifier and a regression method.
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Let ¢, ...,cx denote the set of possible categories. The information gain of a word w is
defined to be:

K K K

IG(w) = =Y P(c;)log P(c;)+P(w Z (cjlw) log P(cj|lw)+P(w) > P(cj|lw)log P(c;|w)
7j=1 7j=1 7j=1

(2.8)
Here P(c;) can be estimated from the fraction of documents in the total collection that
belongs to class ¢; and P(w) from the fraction of documents in which the word w occurs.
Moreover, P(c;|w) can be computed as the fraction of documents from class c; that have
at least one occurrence of word w and P(c;|w) as the fraction of documents from class c¢;
that does not contain word w.

The information gain is computed for each word of the training set, and the words whose
information gain is less than some predetermined threshold are removed.

x2-statistic

The x?-statistic measures the lack of independence between word w and class cj. It is
given by:
Pw, c;) = N x (AD — C B)?
7 (A+C)x(B+D)x(A+ B)x (C+ D)

Here A is the number of documents from class c¢; that contains word w, B is the number of
documents that contains w but does not belong to class ¢, C is the number of documents
from class ¢; that does not contain word w, and D is the number of documents that
belongs to class ¢; nor contains word w. N is still the total number of documents.

(2.9)

Two different measures can be computed based on the x?-statistic:

K
=" P(¢;) x*(w,¢;) (2.10)
j=1
or
Xoa (W) = max xi(w, ;) (2.11)

2.3.2 Re-parameterisation: Latent Semantic Indexing

Re-parameterisation is the process of constructing new features as combinations or trans-
formations of the original features. In this section we describe one such approach; Latent
Semantic Indexing (LSI) [2, 7].

LSI is based on the assumption that there is some underlying or latent structure in the
pattern of word usage across documents, and that statistical techniques can be used to
estimate this structure. LSI uses singular-value decomposition (SVD), a technique closely
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related to eigenvector decomposition and factor analysis. In what follows we describe the
mathematics underlying the particular model of the latent structure; the singular value
decomposition.

Singular Value Decomposition

Assume that we have a M x N word-by-document matrix A, where M is the number of
words, and N the number of documents. The singular value decomposition of A is given
by:

A=UxVT (2.12)

where U (M x R) and V (R x N) have orthonormal columns and ¥ (R x R) is the diagonal
matrix of singular values. R < min(M, N) is the rank of A. If the singular values of X
are ordered by size, the K largest may be kept and the remaining smaller ones set to zero.
The product of the resulting matrices is a matrix A g which is an approximation to A
with rank K.

Ag =UgSgVE (2.13)

where X (K x K) is obtained by deleting the zero rows and columns of ¥, and Uk
(M x K) and Vi (N x K) are obtained by deleting the corresponding rows and columns
of U and V.

A in one sense captures most of the underlying structure in A,yet at the same time
removes the noise or variability in word usage. Since the number of dimensions K is
much smaller than the number of unique words M, minor differences in terminology will
be ignored. Words which occur in similar documents may be near each other in the K-
dimensional space even if they never co-occur in the same document. Moreover, documents
that do not share any words with each other, may turn out to be similar. In the next
section we describe how documents and words may be compared using the SVD.

Computing fundamental comparison quantities from the SVD model

The cosine between two rows in A g, or equally the cosine between two rows in Ug X,
reflects the extent to which two words have a similar pattern of occurrence across the set of
documents. If the cosine is 1, the two words have exactly the same pattern of occurrence,
while a cosine of 0 means that the pattern of occurrence is very different for the two words.

The comparison of two documents is similar, but in this case the cosine between two
columns in A g, or equally the cosine between two rows of Vg X g, indicates whether two
documents have similar content.

To compare a word 7 with a document k, one takes the cosine between the ith row of the
matrix UxX5/? and the kth row of Vi 23/%

Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway Tel.: (+47) 22 85 25 00 Fax: (+47) 22 69 76 60



Text Categorisation: A Survey 11

To compare a new document with the documents in the training set, one starts with its
document vector d and derive a representation d given by:

& =d7 .UKEK_1

This representation can be used just like a row of Vg in the comparisons described above,
meaning that taking the cosine between d¥x and rows of Vg3 gives the degree of
similarity between the new document and the documents in the training set.

Incorporating new words and documents into an existing SVD model

The most straightforward method of adding more words or documents to an existing SVD
model is to re-compute the SVD with the new word-document matrix. However, this
approach requires a significant amount of computation time, and for large problems it
may be impossible due to memory constraints.

Hence, other methods have been considered. A simple approach is denoted folding-in [2].
It follows essentially the process that is described in Section 2.3.2 for comparing a new
document with the documents in the training set. To fold in a new document vector d, it
is first projected onto the span of the current word vectors (columns of Ug) by:

d=d"Ugz?

and then appended to the existing document vectors or columns of V. Similarly, to fold
in a new word vector w, the projection w onto the span of the current document vectors
(columns of V) is determined by:

w=wl V2!

and then the word vector is appended to the existing word vectors or columns of Ug.
Folding-in documents requires less time and memory than the re-computing approach,
but can have negative effects on classification if the word usage in the new documents is
different from that in the documents that already are in the training set. In this case, the
new word usage data may potentially be lost or misrepresented.

A third method, SVD-updating that deals with this problem has recently been developed
[20]. However, SVD-updating requires slightly more time and memory than the folding-in
approach, meaning that neither approach appears to be uniformly superior over the other.
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Chapter 3

Methods

Text categorisation is the problem of automatically assigning one or more predefined
categories to free text documents. While more and more textual information is available
online, effective retrieval is difficult without good indexing and summarisation of document
content. Document categorisation is one solution to this problem. A growing number of
statistical classification methods and machine learning techniques have been applied to
text categorisation in recent years.

Most of the research in text categorisation has been devoted to binary problems, where a
document is classified as either relevant or not relevant with respect to a predefined topic.
However, there are many sources of textual data, such as Internet News, electronic mail
and digital libraries, which are composed of different topics and which therefore pose a
multi-class categorisation problem.

Moreover, in multi-class problems, it is often the case that documents are relevant to more
than one topic. For example, a news article may well be relevant to several topics. While
a few methods have been devised for multi-class text categorisation, the multi-label case,
where a document belong to more than one class, has received very little attention.

The common approach for multi-class, multi-label text categorisation is to break the task
into disjoint binary categorisation problems, one for each class. To classify a new docu-
ment, one needs to apply all the binary classifiers and combine their predictions into a
single decision. The end result is a ranking of possible topics. The main drawback with
this approach is that it ignores any correlation between the different classes.

In what follows we describe some of the algorithms for text categorisation that have
been proposed and evaluated in the past, but first some general notation is given: Let
d = {di, ....,dp } be the document vector to be classified and cy, ...., cx the possible topics.
Further assume that we have a training set consisting of N document vectors di,...,dy
with true classes y1,....,yn. Nj is then the number of training documents for which the
true class is c;.

12
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3.1 Rocchio’s algorithm

Rocchio is the classic method for document routing or filtering in information retrieval.
In this method, a prototype vector is built for each class ¢j, and a document vector d
is classified by calculating the distance between d and each of the prototype vectors.
The distance can be computed by for instance the dot product or by using the Jaccard
similarity measure.

The protype vector for class ¢; is computed as the average vector over all training document
vectors that belong to class cj. This means that learning is very fast for this method.

3.2 Naive Bayes

The naive Bayes classifier [14] is constructed by using the training data to estimate the
probability of each class given the document feature values of a new instance. We use
Bayes theorem to estimate the probabilities:

P(c;) P(dle;)

Pleld) = =5

(3.1)
The denominator in the above equation does not differ between categories and can be left
out. Moreover, the naive part of such a model is the assumption of word independence,
i.e. we assume that the features are conditionally independent, given the class variable.
This simplifies the computations yielding

M
P(cj|d) = P(c;) [] P(diley) (3:2)
=1

An estimate P(c;j) for P(cj) can be calculated from the fraction of training documents
that is assigned to class c;:

P(C =c¢j) == (3.3)
Moreover, an estimate P(d;|c;) for P(d;|c;) is given by:

1+ Njj

P(dilcj) = ———37
(lei) = 35 N

(3.4)

where N;; is the number of times word 4 occurred within documents from class ¢; in the
training set.

Despite the fact that the assumption of conditional independence is generally not true for
word appearance in documents, the Naive Bayes classifier is surprisingly effective.
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3.3 K-nearest neighbour

To classify an unknown document vector d, the k-nearest neighbour (kNN) algorithm [8]
ranks the document’s neighbours among the training document vectors, and use the class
labels of the & most similar neighbours to predict the class of the input document. The
classes of these neighbours are weighted using the similarity of each neighbour to d, where
similarity may be measured by for example the Euclidean distance or the cosine between
the two document vectors.

kNN is a lazy learning instance-based method that does not have a off-line training phase.
The main computation is the on-line scoring of training documents given a test document
in order to find the k nearest neighbours. Using an inverted-file indexing of training
documents, the time complexity is O(L * N/M) where L is the number of elements of the
document vector that are greater than zero, M is the length of the document vector, and
N is the number of training samples.

3.4 Decision Trees

In this approach, the document vector d is matched against a decision tree to determine
whether the document is relevant to the user or not. The decision tree is constructed from
the training samples, and one the most popular approaches for this task is the CART [3]
algorithm that will be described here.

3.4.1 Creating the tree (CART)

CART builds a binary decision tree by splitting the set of training vectors at each node
according to a function of one single vector element. The first task is therefore to decide
which of the vector elements that makes the best splitter, i.e. the one that partitions the
set in as homogenous subsets as possible. This means that the best splitter is the one
that decreases the diversity of the set of training samples by the greatest amount, i.e. one
wants to maximise:

diversity (before split)-[diversity(left child)+diversity(right child)] (3.5)

One of the commonly used diversity measures is entropy:

K

> p(cjlt) log p(eyt) (3.6)

=1

where p(c;|t) is the probability of a training sample being in class ¢; given that it falls
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into node . This probability can be estimated by:

N;(t)
NJ(T) (3.7)

p(cilt) =

where N;(t) and N(t) are the number of samples of class ¢; and the total number of
samples at node ¢, respectively.

To choose the best splitter at a node in the tree, each component of the document vector
is considered in turn. A binary search is performed to determine the best split value
for the component, using the decrease in diversity as the measure of goodness. Having
found the best split value, one compares the decrease in diversity to that provided by the
current best splitter. The component that corresponds to the largest decrease in diversity
is chosen as the splitter for the node.

This procedure is repeated until no sets can be partitioned any further, i.e. until no split
can be found that significantly decreases the diversity at any node. The nodes at the
bottom of the tree are denoted leaf nodes, and at the end of the tree-growing process,
every sample of the training set has been assigned to some leaf of the full decision tree.

Each leaf can now be assigned a class. This does not mean, however, that all training
samples reaching this leaf actually have the same class. The error rate of a leaf measures
the probability of samples reaching this leaf being misclassified. The error rate, E(T), of
the whole tree is the weighted sum of the error rates of all the leaves.

3.4.2 Pruning the tree

Even if the full tree resulting from the procedure described above minimises the error rate
using the training data for evaluation, it will probably not do the best job of classifying
new data sets. This is due to the reason that it has been over-fitted to the training set.
In order to get more accurate predictions in the general case, we need to prune the tree.

The goal of the pruning is to remove the branches which provide the least additional
predictive power per leaf. To identify these branches we use the adjusted error rate of a
tree T

E,(T) = E(T) + & Niegres(T) (3.8)

where Niggpes(T') is the number of leaves of the tree, and « is a parameter. This means
that we put a penalty on the number of leaves in the tree. Let T, be the subtree of T" for
which E,(+) is minimal. When « increases from 0 to infinity, there are only a finite number
of values of « for which T, is different. Let these values be denoted 0 = a1 < .... < .
The corresponding subtrees Ty, ,,,,,T,, form a decreasing sequence of trees, where Ty is
the original tree and Ty, consists of the root node only.

The final task of the pruning process is to select the tree T;, that will best classify new
data. For this purpose, we use another training set. Each of the candidate trees is used
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to classify the vectors in the new training set, and the tree that performs this task with
the lowest overall error rate is declared the winner.

3.4.3 Other algorithms

Two other well-known decision tree algorithms are C4.5 [22] and CHAID [16]. The differ-
ences between these algorithms and CART will be briefly described in this section.

C4.5 is the most recent version of the decision-tree algorithm that Quinlan has been
evolving and refining for many years (an earlier version of it was denoted ID3). C4.5
differs from CART in that it produces trees with varying numbers of branches per node.
For instance for categorical variables there will be one branch for each value taken on by
a categorical variable. Another area in which C4.5 differs from CART is the approach to
pruning.

CHAID differs from CART and C4.5 in that rather than first overfitting the data, then
pruning, CHAID attempts to stop growing the tree before overfitting occurs. Another
difference is that CHAID is restricted to categorical variables, meaning that continuous
variables must be broken into ranges or replaced by classes before the tree is built.

3.5 Support Vector Machines

Support Vector Machines (SVMs) have shown to yield good generalisation performance on
a wide variety of classification problems, most recently text categorisation [15, 17]. The
SVM integrates dimension reduction and classification. It is only applicable for binary
classification tasks, meaning that, using this method text categorisation has to be treated
as a series of dichotomous classification problems.

The SVM classifies a vector d to either -1 or 1 using

N
s=w ¢(d)+b=> ajy; K(d,d;)+b (3.9)
=1
and
)1 if s > s¢
y= { —1 otherwise (3.10)

Here {d;}}¥, is the set of training vectors as before and {y;}}¥; are the corresponding
classes (y; € —1,1). K(d;,d;) is denoted a kernel and is often chosen as a polynom of
degree d, i.e.

K(d,d;) = (d"d; + 1)? (3.11)
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The training of the SVM consists of determining the w that maximises the distance be-
tween the training samples from the two classes. In what follows we describe how this is
achieved.

3.5.1 Training the SVM - the separable case

First, consider the case for which the data is linearly separable. That means that there
exists a vector w and a scalar b such that

wlip(d) +b>1 ify; =1 (3.12)

wlip(d;) +b< -1 ify; =—1 (3.13)

for all {d;}¥ ;. The SVM constructs a hyperplane w’ ¢(d) + b for which the separation
between the two classes is maximised. The w for the optimal hyperplane can be found by
minimising

[[wl[? (3.14)

The optimal w can be written as a linear combination of ¢(d)’s, i.e.,
N
> aiyi ¢(di) (3.15)
i=1
where {a;}Y; can by found by maximising:
1
AT1 - §AT QA (3.16)
with respect to A, under the constraints
A>0 and ATY =0 (3.17)
Here Y = (y1,...yn) and Q is a symmetric matrix with elements

Qij = yiy; K(di,d;) = yiy; (di)" ¢(d;) (3.18)

Only the «;’s corresponding to the training examples along the margins of the decision
boundary (i.e. the support vectors) are greater than zero.

3.5.2 Training the SVM - the non-separable case

In the non-separable case, Equation 3.14 is altered to:

1 N
SIwlF+C 3¢ (3.19)
=1
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where &; satisfy the constraints:
wlip(d)+b>1-¢ ify; =1 (3.20)

wlip(d;) +b< —14+¢ ify; =—1 (3.21)

The user-defined parameter C' balances the contributions from the first and second terms.
Minimisation of Equation 3.19 can be achieved by maximising Equation 3.16 under the
constraints

0<A<C1 and ATY=0 (3.22)

3.5.3 Ability to incorporate new documents

The optimisation problem described above is very challenging when the data set is large,
as the memory requirement grows with the square of the size of the data set. The com-
putational and storage complexities can be reduced by dividing the training set into a
number of chunks and extracting support vectors from each of these. The support vectors
can later be combined together.

The same procedure can be used for incorporating new documents into the existing set
of support vectors. It can be shown that the final solution is as good as if all documents
were processed together.

3.6 Voted Classification

Many researchers have investigated the technique of combining the predictions of multiple
classifiers to produce a single classifier. This process is often denoted voting. Voting
algorithms takes a classifier and a training set as input and trains the classifier multiple
times on different versions of the training set. The generated classifiers are then combined
to create a final classifier that is used to classify the test set.

Voting algorithms can be divided into two types: bagging algorithms and boosting algo-
rithms. The main difference between the two types is the way the different versions of the
training set are created. In what follows a closer description of the two types of algorithms
is given.

3.6.1 The Bagging Algorithm

Bagging [4] takes as input a classification algorithm f(-) and a training set 7' and returns
a set of classifiers f*(-) = {fi(*), ....., fr(:)}. Here f,(-) is a classifier that is learned from
a bootstrap sample T, of the training set. The bootstrap sample is formed by uniform
probability random selection from T with replacement N times, where N is the size of
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the training set. This will create a training set with the same number of samples as the
original, but some cases may be represented more than once, while others may be not be
represented at all. The expected frequency with which the cases from T are represented
in a single bootstrap sample 7, is described by the discrete Poisson distribution.

To classify a new sample d, each classifier f.(-) from f*(-) is applied to d resulting in
labels fi(d), fo(d), ..., fr(d). The result of the voting classifier is the class that obtains
the most votes from the single classifiers when applied to d:

f*(d) = argmax, Z 1 (3.23)
r:fr(d)=y

3.6.2 Boosting

Boosting [11] encompasses a family of methods. Like bagging, these methods choose a
training set of size N for classifier f, by randomly selecting with replacement examples
from the original training set. Unlike bagging, however, the probability of selecting a
sample is not the same for all samples of the training set. It depends instead on how often
that sample was misclassified by the previous k — 1 classifiers. Thus boosting attempts
to produce new classifiers that are better able to correctly classify examples for which the
performance of the current classifiers are poor.

Different forms of boosting generate the probabilities for selecting samples in different
ways. In this report, we describe the approach used in the AdaBoost algorithm [11].

AdaBoost

Let the probability of selecting the sample d; for training set 7} be p;-. Initially, all the
probabilities are equal, i.e. p;; = 1/N for all samples d;. To determine the p;’s for
classifier f,,1(-) AdaBoost first computes the sum, €., of the probabilities corresponding
to the samples that were misclassified using classifier f,(-):

€ = Z Dir (3.24)
i fr (di);éyi

Next, AdaBoost updates the probabilities of all the training samples in such a way that the
correctly classified samples get a lower weight and the misclassified samples get a higher
weight. To be more specific, the probability of each sample correctly classified by f,(-) is
multiplied by e~®" and the probability of each incorrectly classified sample is multiplied
by e®r. Here «, is given by:

1 1-—
Qr = o IOg( o
2 €r

Finally, the probabilities are renormalized so that they again sum up to 1.

) (3.25)
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After this procedure has been repeated for R iterations, R classifiers fi(-),...., fr(-) and
R values oy, ....,ag remain. To classify a new sample d, each classifier f,(-) from f*(-) is
applied to d resulting in labels f1(d), f2(d), ..., fr(d). Unlike bagging, one does not assign
equal importance to each of the classification results, but instead weight the results using
the o, values that were previously used to update the probabilities p;.. This means that
the final class of d is given by:

f*(d) = argmax, Z ay (3.26)
k:fr(d)=y

A main disadvantage with AdaBoost is that it is not very good at solving multi-class prob-
lems. In addition to that, it doesn’t handle cases where a document may belong to more
than one class. In this following section we present an extension of the original algorithm,
the AdaBoost. MH algorithm [26], that can efficiently handle multi-label problems.

AdaBoost. MH

Let the weight of sample d; and label ¢ in iteration r be p;,.. Initially, all weights
are equal, i.e. pj1 = 1/N for all samples d; and all labels ¢;. For each round, the
AdaBoost.MH algorithm estimates K classifiers f,(d, k). The sign of f.(d;, k) reflects
whether the label ¢ is or is not assigned to training sample d;, while the magnitude of
fr(d;, k) is interpreted as a measure of the confidence in the prediction. The weights are
updated using the following formula:

Dik(r+1) = Pikr eXp(—yir fr(di, k) (3.27)

Here y;1 is 1 if label ¢ is among the possible true labels of sample d; and -1 otherwise.
After updating the weights they are renormalised so that 3_; >y pik(r41) = 1.

After this procedure has been repeated for R iterations, one has R x K classifiers f,(d, k).
To classify a new sample d, each classifier is applied to d and the final class of d is given
by:

R

FHdk) =) fr(d, k) (3.28)

r=1
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Chapter 4

Performance Measures

An important issue of text categorisation is how to measure the performance of the clas-
sifiers. Many measures have been used, each of which has been designed to evaluate some
aspect of the categorisation performance of a system. In this chapter we describe some
of the measures that have been reported in the literature; Section 4.1 treats the multiple
binary classification task, while Section 4.2 describes measures that have been used for
evaluating the performance of the multi-class methods.

4.1 Multiple binary classification tasks

A common approach for multi-class categorisation is to break the task into disjoint binary
categorisation problems. For each category and each document one determines whether
the document belongs to the category or not. When evaluating the performance of the
classifiers, four quantities are of interest for each category:

e ¢ - the number of documents correctly assigned to this category.

e b - the number of documents incorrectly assigned to this category.

e ¢ - the number of documents incorrectly rejected from this category.

e d - the number of documents correctly rejected from this category.

From these quantities, we define the following performance measures:

recall = n (4.1)
a C
.. a
precision = ——— (4.2)
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fallout = —— 43

O T d (43)
a+d

__ atd 44

ey = b et d (44)
b+c

__ b+e 45

O ¥ b+etd (45)

Micro- and macro-averaging For evaluating performance average across categories,
there are two conventional methods, namely macro-averaging and micro-averaging. Macro-
averaged performance scores are determined by first computing the performance measures
per category and then averaging these to compute the global means. Micro-average per-
formance scores are determined by first computing the totals of a, b, ¢, and d for all
categories and then use these totals to compute the performance measures. There is an
important distinction between the two types of averaging. Micro-averaging gives equal
weight to every document, while macro-averaging gives equal weight to each category.

Break-even point The performance measures above may be misleading when examined
alone. Usually a classifier exhibits a trade-off between recall and precision, to obtain a
high recall usually means sacrificing precision and vice versa. If the recall and precision
are tuned to have an equal value, then this value is called the break-even point of the
system. The break-even point has been commonly used in text categorisation evaluations.

F-measure Another evaluation criterion that combines recall and precision is the F-
measure [18]:
2 o .
+ 1) * precision * recall
Fg = (F”+1) * pre (4.6)
(3% * precision + recall

where (8 is a parameter allowing different weighting of recall and precision.

Interpolation For some methods, the category assignments are made by thresholding
a confidence value. For instance the Bayes classifier computes the probability that a
document is in the current category, and one has to decide how large this probability
must be (specified by a threshold) for the document to be assigned to the category. By
adjusting this threshold, one can achieve different levels of recall and precision. In [13] the
results for different thresholds are combined using interpolation.

4.2 Multi-class and multi-label classification

To measure the performance of a classifier that produces a ranked list of categories for each
test document, with a confidence score for each candidate, an approach called interpolated
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11-point average precision [29] may be used. In this approach the recall for one specific
document is defined to be:

Number of categories found that are correct
recall =

4.7
Total number of true categories (47)

For each of 11 values 0.0,....,1.0 of this fraction, the system decides how far down the
ranked list one has to go (i.e. the size of the numerator) to achieve the specified recall.
The precision is then computed for this number of categories by:

Number of categories found that are correct

precision = (4.8)

Total number of categories found
The resulting 11 precision values are averaged to obtain a single number-measure of per-
formance for the document. For a test set of documents, the average precision values of
individual documents are further averaged to obtain a global measure of system perfor-
mance over the entire set.
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Chapter 5

Previous work using
Reuters-21578 collection

5.1 The Reuters collection

The Reuters-21578 collection is publicly available at:
http://www.research.att.com/"lewis/reuters21578.html

In this chapter we only give a short description of this data set, a more thorough description
is given in Appendix A.

The documents in the Reuters collection were collected from Reuters newswire in 1987.
To divide the collection into a training and a test set, the modified Apte (“ModApte”)
split has been most frequently used, including the work that is described in this chapter.
According to the documentation, using the ModApte split leads to a training set consisting
of 9,603 stories, and a test set consisting of 3,299 stories.

135 different categories have been assigned to the Reuter documents. These are listed in
Appendix A. While some documents have up to 14 assigned categories, the mean is only
1.24 categories per document. The frequency of occurrence varies greatly from category
to category; earnings, for example, appears in 2709 documents, while 75 of the categories
(i.e. more than 50 %) have been assigned to fewer than 10 training documents. Actually,
21 of the categories have not been assigned to any training document.
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5.2 Previous work

In this section we describe previous work on text categorisation where the Reuters-21578
collection has been used to evaluate the methods. The papers that are described are the
works of Dumais et al. [10], Joachims [13], Shapire et al. [26], Weiss et al. [27] and Yang
[29]. Tables 5.1 and 5.2 summarise the papers. All authors have used the ModApte split.
The first table contain the number of training and test documents, and the number of
categories that were used by each of the authors. Moreover it specifies the approaches for
indexing and feature reduction. Finally, the type of classification (i.e. multiple binary or
multi-class) and the evaluation criteria is given.

As it can be seen from Table 5.1, all authors except Yang have used training and test sets
of sizes 9,603 and 3,299, respectively. It is not clear how they have treated the stories for
which either the topic was missing, or there was no text enclosed by the <BODY>, </BODY>
tags. The number of categories varies from 90 to 118. The question mark in the row
corresponding to Shapire et al. is due to the fact that they have not used the standard
set of categories.

All authors have used different indexing methods. The names refer to Section 2.2 and a
closer description can be found here. Three of the authors have used feature selection.
Dumais et al. have used Mutual Information (MI), Joachims has used Information Gain
(IG), while Yang has used the y2-statistic. The last two approaches are described in
Section 2.3, while a description of the MI-approach can be found in [30].

Most of the research in text categorisation has been devoted to binary problems, where
a document is classified as either relevant or not relevant with respect to a predefined
topic. As it can be seen from Table 5.1, this is also the truth for the papers surveyed
here. Only Shapire et al. have considered multi-class and multi-label problems. As far as
performance measures are concerned, the precision/recall break-even point has been used
by all the authors that have treated the text categorisation as a multiple binary problem.
Some of these authors have also used other performance measures, but for the sake of
simplicity, we have only considered the break-even point here. Shapire et al.. have used
three evaluation measures that are suited for multi-class problems. A further description
of these measures can be found in [26].

Table 5.2 lists the methods used by the authors, and the break-even points that were
achieved. It should be noted that some of the authors have tested more methods than
those that are listed in the table, but we have chosen to compare only the methods that
were described in Chapter 3.

An “x” in the table means that the method was tested, but that the performance measure
was not the break-even point. Hence, it is difficult to compare the results to those that
the other authors have achieved. However, the following gives an indication of the results
obtained by Shapire et al.. They report that the error rate of their voting algorithm
(AdaBoost.MH) was almost 50 % smaller than the error rate of the best competing method,
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Author Train | Test | Topics | Indexing | Reduc. | Method Measure
Dumais 9,603 | 3,299 118 | boolean MI Binary Break-even
Joachims | 9,603 | 3,299 90 | tfc 1G Binary Break-even
Shapire 9,603 | 3,299 7| tf x idf None | Multiclass | Precision
Weiss 9,603 | 3,299 95 | frequency | ? Binary Break-even
Yang 7,789 | 3,309 93 | ltc x? Binary Break-even

Table 5.1: Summary of previous work. The three first columns contain the number of
training documents, the number of test documents and the number of categories that were
used. The fourth column specifies the indexing approach, while the fifth gives the feature
selection method, if any. Finally, the last two columns contain the classification method
and the performance measures that were used.

which was Naive Bayes.

All the authors Dumais, Joachims, Weiss and Yang, use the break-even point as their
performance measure, and hence, the results may be compared directly. For the Naive
Bayes method, the k-NN method, the decision tree, and the SVM method there are small
variations in the results obtained by the different authors. The average break-points are
72.9, 84.5, 79.1, and 86.4, respectively, for the four methods. As far as Rocchio’s algorithm
is concerned there are greater variations. The break-even point reported by Dumais et
al. is as low as 61.7, while the average of the values reported by the others, is 77.9. The
overall greatest break-even point, 87.8, has been achieved by Weiss et al. for their voting
algorithm.

Author Rocchio | Bayes | k-NN | Tree | SVM | Voting
Dumais 61.7 75.2 - - 87.0 -
Joachims 79.9 72.0 | 823 | 794 | 86.0 -

Shapire X X - - - X
Weiss 78.7 73.4 | 86.3 | 78.9 | 86.3 87.8
Yang 75.0 71.0 | 85.0 | 79.0 -

Table 5.2: Summary of previous work (2). The numbers in the table are the precision/recall

break-even points. The “” means that the method was not tested by the author. “z” means

that the method was tested, but that the evaluation criterion was not the break-even point.
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Chapter 6

Experiments

6.1 Data set

Like the previous work described in Chapter 5, we used the ModApte split to divide the
Reuters collection into a training set and a test set. According to the documentation,
this should lead to a training set consisting of 9,603 stories, and test set consisting of
3,299 stories. However, for a lot of these stories either the topic was missing (even if
TOPICS="YES”), or there was no text enclosed within the <BODY>, </BODY> tags. We
chose not to use these stories in our experiments. Hence, they were removed from the data
set, leaving us with 7,063 training documents and 2,658 test documents.

6.2 Feature Extraction

The bodies of all documents were converted from the original format (i.e. strings of char-
acters) to a word vector. In what follows we describe the steps of this procedure.

6.2.1 Preprocessing

First the individual words were extracted and the stop words removed using a list consist-
ing of 525 frequent English words. Then word stemming was performed using the Porter
stemmer [21]. This procedure resulted in 15,247 unique words.
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6.2.2 Indexing

The entropy-weighting (see Section 2.2) was used for word indexing. In this scheme, the
weight a;; for word ¢ in document k is given by:

N .. ..
air = log(fix +1.0) x [ 1+ logtN) Z [% log (%)] (6.1)
j:1 7 (3

where f;; is the frequency of word 7 in document &, N is the number of training documents
and n; is the total number of times word 7 occurs in the whole collection.

6.2.3 Dimensionality reduction

Both feature selection and re-parameterisation were performed. First we removed those
words which occurred in only one document, leaving us with 8,315 words. Then latent
semantic indexing was performed on the resulting 8,315 x 7,063 word-document matrix,
giving the best “reduced-dimension” approximation to this matrix. To perform the singu-
lar value decomposition, we used the Single-Vector Lanczos Method from the SVDPACKC
library [1]. The number of calculated singular values (dimensions) was 200.

6.3 Methods

The kNN method is a very simple approach that has previously shown very good per-
formance on text categorisation tasks (See e.g. Chapter 5). Hence, we decided to use
this method for classification. Thorough investigations on suitable choices of the value
of k for the Reuters collection have been reported in previous papers [29], and the main
observation was that the performance of kNN is relatively stable for a large range of k
values. We used k£ = 30 in our experiments. It should be noted that for the categories
that have very few training samples assigned to it, this value of k& will not work very well.

To classify an unknown document vector d, it was first projected onto the span of the
training set word vectors. Then, the k nearest training set document vectors were found,
using the cosine between two document vectors as a similarity measure. The rank r, of
category c for the input document was computed by:

Ei:yi:c cos (dl ’ d)
> cos(di, d)

re(d) = (6.2)

Here cos(dj,d) is the cosine similarity between neighbour i and the input document. If
7. was higher than a threshold value the category ¢ was assigned to the input document,

otherwise not. Different values of the threshold gives different results. When the threshold
increases, the recall decreases and the precision increases.
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6.4 Results

To evaluate the performance of our method, we used precision and recall (See Section 4.1).
Table 6.1 shows the summary of recall and precision for the ten most frequent categories.
Both precision and recall decreases when the number of training (and the number of test)
samples decreases.

For evaluating performance average across categories, we used micro-averaging (See Sec-
tion 4.1). The overall recall and precision were 79.2 % and 81.8 %, indicating that the
recall/precision breakeven point is approximately 80 %. The breakeven point was achieved
when using a threshold of 0.2 (see the previous section). Our results are comparable to
the results described in Chapter 5. When considering only the 10 largest categories that
are listed in Table 6.1, the recall /precision breakeven point was 89 %, and it was obtained
using a threshold value of 0.3.

Topic Nof train | Nof test | Recall | Precision
earnings 2709 1014 | 0.95 0.92
aqusitions 1488 630 | 1.00 0.91
money-fx 460 133 | 0.92 0.65
crude 349 160 | 0.96 0.70
grain 394 130 | 0.82 0.75
trade 337 106 | 0.89 0.66
interest 289 95 | 0.80 0.71
ship 191 82| 0.85 0.77
wheat 198 65 | 0.69 0.73
corn 160 46 | 0.35 0.76

Table 6.1: Summary of recall and precision for the 10 most frequent topics using a threshold
value of 0.2. The two leftmost columns give the number of training and the number of test
samples, respectively.
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Chapter 7

Summary

With the dramatic rise in the use of the Internet, there has been an explosion in the volume
of online documents and electronic mail. Text categorisation, the assignment of free text
documents to one or more predefined categories based on their content, is an important
component in many information management tasks, some examples are real-time sorting
of email into folder hierarchies and topic identification to support topic-specific processing
operations. This report has reviewed progress in the field with particular emphasis on the
work where the Reuters-21578 collection has been used for evaluation.

A typical text categorisation process consists of the following steps; preprocessing, index-
ing, dimensionality reduction, and classification. In this report different approaches for
all these steps have been described. Moreover, a summary of the results from previous
work on text categorisation where the Reuters-21578 collection has been used for evalua-
tion is given. The following methods were evaluated: Rocchio’s algorithm, Naive Bayes,
K-nearest neighbour, Decision Trees, Support Vector Machines, and Voted Classification.
They all seemed to perform reasonably well, and neither approach appears to be superior
over others.

In this report, we also describe results from our own experiments using the Reuters-
21578 collection. In these experiments, the entropy-weighting was used for word indexing.
Dimensionality reduction was performed by first removing rare words and then by re-
parameterising using latent semantic indexing. The K-nearest neighbour algorithm was
used for classification. It is a very simple approach, but has shown to have approximately
the same performance as more complicated methods. Our results gave a precision/recall
breakeven point of approximately 80 % which is comparable to other studies reported for
the Reuters-21578 collection.
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Appendix A

Reuters-21578 collection

The Reuters-21578 collection is distributed in 22 files. Each of the first 21 files (reut2-
000.sgm through reut2-020.sgm) contain 1000 documents, while the last (reut2-021.sgm)
contains 578 documents.

A.1 File format

Each of the 22 files begins with a document type declaration line:
<IDOCTYPE lewis SYSTEM "lewis.dtd">

Each article starts with an "open tag” of the form

<REUTERS TOPICS=77 LEWISSPLIT=77 CGISPLIT=77 OLDID=77 NEWID=77>

where the 7?7 are filled in an appropriate fashion. Each article ends with a ”close tag” of
the form:

</REUTERS>

Each REUTERS tag contains explicit specifications of the values of five attributes; TOP-
ICS, LEWISSPLIT, CGISPLIT, OLDID, and NEWID. These attributes are meant to
identify documents and groups of documents. The values of the attributes determine how
the documents are divided into a training set and a test set. In the experiments described
in this report, we used the modified Apte split, which is the one that is most used in the
literature. This split is achieved by the following choice of parameters:
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Training Set (9,603 docs): LEWISSPLIT="TRAIN"; TOPICS="YES"
Test Set (3,299 docs): LEWISSPLIT="TEST"; TOPICS="YES"
Unused (8,676 docs): LEWISSPLIT="NOT-USED"; TOPICS="YES"

or TOPICS="NO"
or TOPICS="BYPASS"

The attributes CGISPLIT, OLDID, and NEWID was ignored in our experiments.

A.2 Document internal tags

Just as the <REUTERS> and </REUTERS> tags serve to delimit documents within a file, other
tags are used to delimit elements within a document. These are <DATE> <MKNOTE>,<TOPICS>,
<PLACES>, <PEOPLE> <ORGS>,<EXCHANGES>, <COMPANIES>, <UNKNOWN>,<TEXT>. Of these
only <TOPICS> and <TEXT> were used in our experiments.

<TOPICS>, </TOPICS>

These tags enclose the list of TOPICS categories, if any, for the document. If TOPICS
categories are present, each will be delimited by the tags <D> and </D>.

<TEXT>, </TEXT>

All the textual material of each story is delimited between a pair of these tags. Some
control characters and other ”junk” material may also be included. The white space
structure of the text has been preserved. The following tags optionally delimit ele-
ments inside the TEXT element: <AUTHOR>, </AUTHOR>, <DATELINE>, </DATELINE>,
<TITLE>, </TITLE>, <BODY>, </BODY>. Of these, we only used the last two (the title is
also extracted, but not used for text categorisation), which enclose the main text of the
document.

A.3 Example
The first part of a Reuters file will be as follows:

<!DOCTYPE lewis SYSTEM "lewis.dtd">

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="5544" NEWID="1">
<DATE>26-FEB-1987 15:01:01.79</DATE>

<TOPICS><D>cocoa</D></TOPICS>
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<PLACES><D>el-salvador</D><D>usa</D><D>uruguay</D></PLACES>
<PEOPLE></PEQPLE>
<ORGS></0RGS>
<EXCHANGES></EXCHANGES>
<COMPANIES></COMPANIES>
<UNKNOWN>
&#5; &#5;&#5;C T
&H#H22;&#22; &#1;£0704&#31 ;reute
u f BC-BAHIA-COCOA-REVIEW 02-26 0105</UNKNOWN>
<TEXT>&#2;
<TITLE>BAHIA COCOA REVIEW</TITLE>
<DATELINE> SALVADOR, Feb 26 - </DATELINE><BODY>Showers continued throughout the week in
the Bahia cocoa zone, alleviating the drought since early
January and improving prospects for the coming temporao,
although normal humidity levels have not been restored,
Comissaria Smith said in its weekly review.
The dry period means the temporao will be late this year.
Arrivals for the week ended February 22 were 155,221 bags
of 60 kilos making a cumulative total for the season of 5.93
mln against 5.81 at the same stage last year. Again it seems
that cocoa delivered earlier on consignment was included in the
arrivals figures.

Final figures for the period to February 28 are expected to
be published by the Brazilian Cocoa Trade Commission after
carnival which ends midday on February 27.
Reuter
&#3;</BODY></TEXT>
</REUTERS>
<REUTERS TOPICS="NO" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="5545" NEWID="2">
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A.4 Categories

The TOPICS categories are economic subject categories. Examples include coconut, gold,
inventories, and money-supply. This set of 135 categories is the one that has been used in
almost all previous research with the Reuters data. Below all the categories are listed:

acq alum austdlr austral ©barley bfr bop can  carcass castor-meal
castor-oil castorseed <citruspulp cocoa coconut coconut-oil coffee
copper copra-cake corn corn-oil cornglutenfeed cotton cotton-meal
cotton-oil cottonseed cpi cpu crude <cruzado dfl dkr dlr dmk
drachma earn escudo f-cattle ffr fishmeal flaxseed fuel gas gnp

gold grain groundnut  groundnut-meal groundnut-oil heat hk hog housing
income instal-debt  interest  inventories ipi  iron-steel jet  jobs
l-cattle lead lei lin-meal 1lin-oil 1linseed 1it  livestock lumber

lupin meal-feed mexpeso money-fx money-supply naphtha nat-gas nickel
nkr nzdlr oat oilseed orange palladium palm-meal palm-0oil palmkernel
peseta pet-chem platinum plywood pork-belly potato propane

rand rape-meal rape-oil rapeseed red-bean reserves retail rice ringgit
rubber rupiah rye saudriyal sfr ship silk silver singdlr  skr
sorghum soy-meal soy-oil soybean stg strategic-metal sugar

sun-meal sun-o0il sunseed tapioca tea tin trade tung tung-oil
veg-oil wheat wool wpi yen zinc
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