
Scalable Association-based Text Classification
Dimitris Meretakis ¹

meretaks@cs.ust.hk

Dimitris Fragoudis ²

dfragoud@ceid.upatras.gr

Hongjun Lu ¹

luhj@cs.ust.hk

 Spiros Likothanassis ²

likothan@cti.gr

¹ Computer Science Department
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong, China

² Computer Engineering & Informatics Department
University of Patras
Rio - Patras, Greece

ABSTRACT
Naïve Bayes (NB) classifier has long been considered a core
methodology in text classification mainly due to its simplicity and
computational efficiency. There is an increasing need however for
methods that can achieve higher classification accuracy while
maintaining the ability to process large document collections. In
this paper we examine text categorization methods from a
perspective that considers the tradeoff between accuracy and
scalability to large data sets and large feature sizes. We start from
the observation that Support Vector Machines, one of the best text
categorization methods cannot scale up to handle the large
document collections involved in many real word problems. We
then consider bayesian extensions to NB that achieve higher
accuracy by relaxing its strong independence assumptions. Our
experimental results show that LB, an association-based lazy
classifier can achieve a good tradeoff between high classification
accuracy and scalability to large document collections and large
feature sizes.
Keywords
Statistical/probabilistic models, machine learning and IR, text
categorization, text data mining

1. INTRODUCTION
Text classification is the supervised learning task of assigning
natural language text documents to one or more predefined
categories or classes according to their content. While it is a task
with a history of almost forty years of research [13], it has recently
attracted an increasing amount of attention due to the ever-
expanding amount of text documents available in digital form in
the World Wide Web, electronic mail, net news and digital
libraries. Its applications span a number of areas including sorting
email, filtering junk email, cataloguing news articles, providing
relevance feedback and reorganizing large document collections.

While the quality of classification is the primal goal of competitive
methods, the explosive growth in the amounts of textual data
collected and stored introduces the need for methods that can scale

up to handle large textual databases. In contrast to relational data
mining where scalability is a main issue, the trade-off between
quality and scalability has been largely ignored by a number of
studies for text classification. Strikingly, the Naïve Bayes (NB)
classifier [7] probably the most well studied and longest used
method for text classification and Information Retrieval [13]
attributes its success and longevity not only to its accuracy but also
to its simplicity and to its low computational requirements. It
scales up linearly both with the number of features and with the
number of documents.

Although NB was used in the majority of supervised IR for a long
time [13], a number of recent studies have shown that alternative,
more complex algorithms often outperform NB in terms of
classification performance. Such algorithms originate from a
variety of research areas such as Nearest Neighbor [14], neural
networks [18], regression [19], rule-induction [1],[6], and Support
Vector Machines [11]. The accuracy improvements are often
significant in a variety of real-world data sets (see also [20] for a
comparative study of many algorithms).

Support Vector Machines (SVM) have been recognized as one of
the most effective text classification methods. Unfortunately they
cannot be applied to large volumes of data since their training time
is quadratic to the number of training examples [12]. In this work
we investigate whether extensions of NB can achieve higher
accuracy performance without significant sacrifices in terms of
scalability.

A careful examination of successful text classification methods at
some level of abstraction suggests that their efficiency is to a large
extend attributed on some common properties that NB does not
posses and of which we focus on the following two ones: First,
most methods deviate from the independence assumption and
capture relationships among sets of words. The relaxation of the
independence assumptions allows more complex models to be built
that are expected to capture more aspects of the reality. Second, a
number of methods focus on the use of context, that seems to be
very important in text classification [6]. Context-insensitive
classifiers build global models of the data, where the influence of
each word to the final decision is independent of the
presence/absence of other words in the same document. In natural
languages, however, the meaning of words is clearly affected by
the context in which they are used. The word “adopt” for example
has a totally different meaning in the presence of word “child” than
in the presence of the word “strategy”. Context-sensitive learning
methods aim at higher performance by capturing such context-
specific properties of the data. It is noteworthy that these two



properties are orthogonal i.e. a classifier may or may not posses
one independently of the other.

Extensions of NB along these directions have been shown to yield
higher classification accuracy but often at the cost of excessive
computational requirements [8]. In this paper we focus on the use
of two such extensions, namely Tree Augmented Naïve Bayes
classifier (TAN) [9] and LB or Large Bayes Classifier [17], [15].
TAN is a global Bayesian classifier that relaxes the independence
assumptions of NB by taking into account dependencies between
pairs of features.  LB is a very competitive local/lazy Bayesian
classifier constructed from associations among feature-values, also
called itemsets. Our experimental results show that LB with
appropriate text representation can achieve a very good tradeoff
between accuracy and scalability.

The rest of the paper is structured as follows. Section 2 contains
our classification framework and discusses alternative forms of text
representation. Section 3 provides an overview of NB and its two
extensions TAN and LB as well as SVMs while Section 4
describes our experimental evaluation and discussion. Our
conclusions are stated in Section 5.

2. TEXT REPRESENTATION AND
CLASSIFICATION FRAMEWORK
For simplicity we chose the multivariate Bernoulli model or binary
independence event model [16] as the basis for the representation
of text documents. Documents are represented as vectors of binary
features and each feature corresponds to the presence or absence of
a single word. This model does not capture a large amount of
information. More specifically both the order of words and the
number of their appearances in a document are ignored; documents
are represented as “bags of words”. An alternative representation is
the multinomial model where the number of occurrences of the
words in a document is also captured. The latter provides more
information and indeed it is reported to achieve higher
performance for NB in a recent study over many data sets [16]. Its
main drawback is that it assumes independence between the
occurrences of the same word in a document, an assumption that is
regularly violated in real text documents. For our experiments we
chose the multivariate-Bernoulli model for the following reasons:
i. Relaxing the independence assumptions is simpler if the

multivariate Bernoulli model is used [16]. This is particularly
true when adapting algorithms from the relational machine
learning paradigm, where the simple feature-vector
representation is dominant. We are currently experimenting with
the multinomial model and other models when the independence
assumptions are relaxed.

ii. The multinomial model is usually more accurate with a large
vocabulary. Although NB scales up linearly to the number of
features, the performance of LB and TAN degrades faster as the
number of features increases. Moreover [16] report that in the
Reuters-21578 corpus a small feature size achieves highest
performance (and the two models perform similar). Similarly,
[8] report some of the highest accuracy results for SVMs on the
Reuters-21578 dataset (which we use for our experiments) using
only 300 features and the multivariate Bernoulli model.

The training database is a set of N documents D={d1 ,d2 ,…,dN }. A
vocabulary V={w1, w2,… wn} contains all n words used as features.
This is constructed in the preprocessing stage. Each document dj is

then represented as a binary feature vector dj=<W1,W2,…,Wn>
where the value of feature Wl is one if word wl is present in dj and
zero otherwise. Finally each document is labeled with none, one or
more from a set of M classes C={c1,c2,…,cM}. The data set is
therefore represented as a relational N�n table (if we ignore the
classes). This relational representation is very common for
traditional machine learning algorithms, it is however inefficient in
text classification since the number of features can be very large. A
large improvement in space requirements is achieved if the data set
is stored as a transactional database [2]. This requires that words
are considered as items and each document is stored as a
transaction consisting of the items it contains. Each transaction
therefore contains exactly as much items as the words that appear
in the corresponding document, which can be orders of magnitude
less than the vocabulary size 1. It is not clear to us how TAN can be
extended to handle transactional databases. However, LB that has
its roots in association mining inherently uses this representation
and therefore can be easily applied. This is at the cost of ignoring
information about words that do not appear in a document. On the
other side transforming the relational database in to a transactional
one allows absence of words to be captured by LB also. This is
discussed more later.

3. AN OVERVIEW OF THE LEARNING
METHODS
3.1 Naïve Bayes Classifier
The basic Naïve Bayes model assumes that the probability of
appearance/absence for a word wj is independent from the
presence/absence of any other word wk given that the class is
known. Although unrealistic, this assumption allows the easy
computation of the conditional probability of the class ck given a
document di as follows:
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Therefore NB only needs to learn the marginal probability of the
class P(ck) and the conditional probabilities of presence/absence of
each word wj given the class P(Wj|ck). This can easily be done in
one pass over the data keeping in memory Mn ��2  counters for
the measurement of occurrence of each word under each class
label. Its computational requirements are therefore minimal since it
requires time linear both to the number of documents and to the
number of features. New examples are also classified in time linear
to the number of features.

3.2 TAN
TAN [9] extends NB taking into account additional dependencies
between features. It employs a modified version of a method
proposed in [5] to learn a restricted, tree-structured Bayesian
Network that captures only the most important dependencies
between pairs of features. The result of the learning phase is a
Bayesian Network structure where each feature is connected to
exactly another one and the class. Forcing the creation of a tree-
structured network and incorporating in the model only pair-wise
                                                                
1 Note the similarity of this representation with the one used by

RIPPER [6] where it is called “learning with set-valued features”
(see also [4]).



dependencies allows the relaxing of the strong independence
assumptions of NB and at the same time prevents the creation of
complex Bayesian Network structures that are computationally
more expensive often without paying in terms of classification
accuracy.
In the learning phase TAN first measures the degree of dependence
between each pair Wj and Wk by calculating their Conditional
Mutual Information given the class C:
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The value of the CMI quantifies the degree of dependence of two
words given the class. The highest the value of � �CWWCMI kj |,
the more the independence assumption is violated. If Wj and Wk are
conditionally independent given the class CMI becomes zero.
Subsequently, TAN forms a complete weighted graph where each
node corresponds to a word and the weight of the edge (Wj ,Wk) is

� �CWWCMI kj |, . A maximum spanning tree algorithm is then
applied to the graph resulting to the tree-structured Bayesian
Network model that captures the strongest pair-wise dependencies.

All 2)1( �� nn  such computations, where n is the vocabulary size,
can be performed with one pass over the data, provided that the

2)1( �� nn  probability tables can fit in main memory. This
requires bookkeeping during the learning phase of a total of

2)1(4 ���� nnM counters for the measurement of all pair-wise
co-occurrences (or co-absences) under each class label. During
classification the Bayesian network is consulted and an estimation
of the probability of each class is computed. The document is
labeled after the most probable class. Learning time is linear to the
number of examples but quadratic to the number of features.  New
examples are classified in time linear to the number of features.

3.3 LB
The main idea behind Large Bayes (LB) classifier [17], [15] is the
use of association mining for classification. For LB each document
is a transaction consisting of a set of items that express the
presence or absence of specific words. The learning phase of LB
employs an association miner [2] to discover associations among
items, also called itemsets. Each such itemset l is labeled with the
observed probabilities for its joint occurrence with each class label
P(l,ci). The association mining procedure discovers itemsets that
are frequent enough in the training data and are also interesting.
The interestingness of an itemset l is defined in terms of the error
when estimating P(l,ci) using subsets of l. Let l be an itemset of
size |l| and lj , lk  be two (|l|-1)-itemsets obtained from l by omitting
the jth and kth item respectively. Itemsets lj, lk can be used to
produce an estimate ),(, ikj clP of ),( iclP :
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The interestingness of l is directly related to the quality of this
approximation, and in [15] we use chi-square tests to quantify it (N
is the number of documents in the training set):
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Itemsets with high interestingness values cannot be approximated
by subsets and are therefore useful; all others are discarded. LB
does not build any classification model during the learning phase;
the discovered itemsets are the model.
To classify a new document d, LB first selects a local border
consisting of all the longest itemsets that contain items from d and
builds a local probabilistic model using these itemsets. This model
is then evaluated to yield the probabilities for each class and the
most probable class is assigned to d. This lazy approach allows LB
to construct models that take into account the context imposed by
each document under consideration. The constructed model and
the associated independence assumptions only hold for the
particular document. In the extreme case were only itemsets with
one item are used LB reduces exactly to NB. The learning time of
LB is tied to the performance of the association miner used for the
discovery of the itemsets. Apriori-based association mining
methods scale up linear with the number of examples performing
several passes over the data but exponentially in the worst case
with the number of features. The chi-square tests of LB, however,
impose very tight constraints keeping low the number of itemsets
discovered and consequently the learning time. More recent
methods [10] however promise big computational improvements
over Apriori-based ones and can be “plugged in” LB to perform
the mining task more efficiently.
Note that if a transactional representation is used LB can capture
information only about the presence of words in a document.
However, if supplied with the relational representation both the
presence and absence of words are taken into account (absent
words are considered distinct items). As discussed in Section 4
there is significant difference in the behavior of the former version
of LB which we will call LB+ and the latter one which we will
name LB+-.

3.4 An illustrative example
In order to illustrate the properties of the three algorithms consider
the following toy example. A database of documents is available
and the vocabulary consists of 5 words V={w1,…,w5}. In the
training phase NB and TAN will build the global models of figures
1a and 1b respectively (Wj are the word features that can take
values 0 or 1). Note that in addition to the class dependencies
induced by NB, TAN enhances the dependency graph with a tree
of dependencies among pairs of features (the bold arrows). LB
does not build any model but instead discovers a set of itemsets
such as { 1w ,w2,w3} (standing for {W1=0,W2=1,W3=1}) and
{w4,w5}.



Assume now a query to classify a document d that contains words
w2, w3, w4 and w5 but not w1. TAN and NB will estimate P(d,ci)
using the induced models and will assign the class with the highest
probability:

a.NB:
)|()|()|()|()|()(),( 54321 iiiiiii cwPcwPcwPcwPcwPcPcdP �

b.TAN:
),|(),|(),|()|,()(),( 45432421 iiiiii cwwPcwwPcwwPcwwPcPcdP �

LB will first select the longest itemsets that are subsets of the query
document d and then it will build a local model in order to derive
an estimation for P(d,ci). If negative items (i.e. absence of words)
are used the model of figure 1c is constructed, otherwise item 1w
is ignored and the model of figure 1d is created. Computation of
P(d,ci) in the two cases is as follows:
c. LB,with negative items:

 ),|()|()|,,()(),( 454321 iiiii cwwPcwPcwwwPcPcdP �

d. LB, no negative items:

 )|,()|,()(),( 5432 iiii cwwPcwwPcPcdP �

3.5 Support Vector Machines
Support Vector Machines (SVM) are a relatively new approach for
binary classification problems that stems from statistical learning
theory. In their simplest form linear SVMs treat examples as points
in a high-dimensional space. During training, their goal is to find
hyperplanes that maximize the margin between positive and
negative examples. The task is treated as a quadratic optimization
problem and the resulting hyperplanes are used to classify new
examples. SVMs are conceptually not related to the methods
described above. Nevertheless, they have recently been shown to
be highly effective for the task of text classification achieving the
highest classification scores in standard text collections. While
classification time is linear to the number of features, a major issue
on the application of SVMs on large datasets is that their running
time is quadratic in the number of training examples. In our
experimental section we study the behavior of SVMs both in terms
of accuracy and in terms of scalability using SVMlight package
[11], an efficient implementation that has been used in several text
classification studies.

4. EXPERIMENTAL EVALUATION
The goal of this section is to study the performance of the methods
above along two directions:

 I. Quality of classification measured in terms of recall and
precision.

 II. Scalability in the number of features and the number of
documents.

We used the Reuters-21578 Distribution 1.0 that is available from
[3]. This data set consists of 21,578 stories from the 1987 Reuters
newswire, each one pre-assigned to one or more of a list of 135
topics. We used the ‘Mod Apte’ training-test split that contains
9,603 training and 3,299 test examples and considered the 93
categories that are assigned to  least one example in the training
and testing data. All words were converted to lower case,
punctuation marks were removed numbers were ignored and words
from a common list of stop-words were removed. Finally a feature
selection step was applied. For each class C we created a local
dictionary consisting of the K words wt with the highest average
mutual information with C:
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The classification task requires that a document may be assigned in
none, one or more categories. We followed standard practice and
treated the problem as a series of binary classification problems
where the task is to decide whether the document belongs to a
specific class or not. This procedure is repeated for all classes and
the set of “on” classes is assigned to the document.
We evaluated performance using the standard Information
Retrieval measures recall and precision defined as:

examples positive of #
sprediction positivecorrect  of #

�recall

sprediction positive of #
sprediction positivecorrect  of #

�precision

To combine recall and precision with a single-value metric that can
be used to derive a total order on the classifiers we use the F1
measure, defined as follows:
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precisionrecallprecisionrecallF
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Figure 1.  Global (NB and TAN) and local (LB) models built from the three classifiers in the example of Section 3.4 for the
classification of a document that contains words w2, w3, w4 and w5 but not w1.



The algorithms were optimized to yield maximum F1 scores using
a validation test consisting of the last 2456 training stories.
Algorithms were trained on the first 7147 documents, optimized on
the 2456 validation documents and finally tested on the 3299 test
stories.
 An interesting particularity of the data that influences the
interpretation of the results is that the category distribution is
extremely skewed. There are 93 categories in total but as Figure 2
shows only a few categories appear relatively frequently in the
training set. Since the performance of many classifiers appears to
vary significantly with the number of positive examples in a class
[20] we obtained separate results for the 10 largest classes
(appearing more than 150 times each in the data) and for all the
classes together.
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Figure 2. Category frequency distribution in Reuters-21578.

4.1 Classification quality
Classification accuracy results are presented in Table 1, which
presents the recall, precision and F1 measures of the five
algorithms on all classes for vocabulary sizes of 20, 50, 100, 200,
300 and 400 words. In order to summarize the recall, precision and
F1 measures over a set of different classes we used micro-
averaging, that is cell-wise summing up of the confusion matrices
over all the classes and then applying the measures on the resulting
confusion matrix. The feature set size has different influence on
each algorithm so the feature set size used for each result is also
reported.

10 most frequent categories All 93 categories

m-
recall

m-
precision

m-F1 |V| m-
recall

m-
precisi

on

m-F1 |V|

NB 0.840 0.813 0.826 100 0.712 0.798 0.752 20
TAN 0.841 0.876 0.858 200 0.765 0.815 0.789 20
LB+ 0.850 0.882 0.866 100 0.760 0.82 0.790 50
LB+- 0.877 0.871 0.874 300 0.783 0.814 0.798 50
SVM 0.861 0.916 0.888 300 0.767 0.904 0.830 100

Table 1. Best micro-averaged performance of classifiers and the
corresponding vocabulary size on the ten largest categories (left)
and on all 93 (right).

The effect of the feature size on the classification accuracy is
shown in Figure 3 that plots the value of the F1 score as a function
of the feature set size. Table 1 and Figure 3 confirm results from
other studies showing that SVMs are the most accurate methods

for text classification. SVMs achieve higher performance both in
the 10 most frequent classes and for the 93 classes in total.
However the difference from the other methods is not as big as in
other studies. NB sets the base level for comparison and is easily
beaten by all other methods, however LB+ and LB+- offer
consistently higher scores than TAN with LB+- being very close to
SVMs.

F1 score  vs  Feature set size
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Figure 3. F1 scores for NB, TAN, LB+, LB+- and SVMs as a
function of the vocabulary size.
It is interesting to note that the information available to LB+ is less
than that available for the other methods as it only uses information
about the presence of words in a document. This is more apparent
by a comparison between LB+ and LB+- where the only difference
is that LB+- also considers information about the absence of
words. Since the two methods differ only in the input
representation we conclude that information about absence of
words may also have predictive value. This is however at a very
expensive price in terms of computational effort needed to handle
it as shown in the next section.
We attribute the improvement of the both LB versions over TAN to
a) the use of local models that capture context specific properties
of the data and b) the capture of dependencies among more than
two words (dependencies of up to five words were used by LB in
the experiments above). The benefits are so big that even LB+
outperforms TAN, although it uses a poorer representation model.
We also measured the relative contribution of factors a) and b)
above to the performance gains. We choose LB+- and restricted it
to discover itemsets with 2 items only thus eliminating the
influence of factor b). The F1 score fell but remained above that of
TAN therefore we believe that the strength of LB comes mainly
from its context-sensitive properties.

4.2 Scalability
In Figure 4 we show the training time by SVM and LB+ (on a
400MHz PentiumII WinNT PC) when applied in databases of up
to nine times the size of the original one to learn the most common
class (“earn”). The high accuracy of SVMs comes not for free.
Their main drawback is that they require training time quadratic to
the number of examples. In contrast, all other methods scale up
linear with the data set size. This is an inherent property of SVMs
that is caused by their attempt to treat the learning as a quadratic
optimization problem and hinders their application in big datasets.



Scalability over the feature set size has remained a major problem
for most data mining/machine learning applications. Figure 5
shows the time to train and test the algorithms for the class “earn”
as the feature set varies from 20 to 400 words. SVMs and NB scale
up linearly with the number of features in both the learning and
testing phase. TAN’s training time increases quadraticaly with the
feature size but its testing time is linear in the number of features.
The graphs also show the significant differences in the
performance of LB for the two different representation models. In
principle the training time of LB using an Apriori-based itemset
discovery engine is exponential in the number of features.
Therefore, when both presence and absence of words is considered
the combinatorial explosion prevents LB+- from using more than a
few hundred features. However when only word presence is taken
into account the input space is very sparse since most documents
contain few of words from the vocabulary only. With these
conditions LB+ scales up very well into many hundreds of features.
This is particularly important in comparison with TAN because
LB+ outperforms TAN in terms of accuracy and also scales up
much better when the dimensionality increases.
An interesting finding of our experiments is that LB particularly
benefits from stemming. In our datasets we did not use stemming
and this caused the discovery of many unnecessary itemsets. For
example the words “japan” and “japanese” are among the most
informative words for class trade. The probability of co-occurrence
of these two words in a document labeled as “trade” is very high as

they are not independent. Therefore LB will consider the itemset
{japan, japanese} as interesting. Also if a word x is associated with
“japan” to form itemset {“japan”,x} the duplicate itemset
{“japanese”, x”} will most likely also be identified. This causes
unnecessary increase in the size and the complexity of the model
without apparent improvement in the predictive power and could
have been avoided if stemming was used.
LB is also the only algorithm in this study that does not scale up
linearly during the testing phase. This is the price to be paid
because LB builds a different model for each classification query.
Observations for LB are similar as for the training phase with LB+-
scaling up poorly whereas LB+ can scale up reasonably well. We
believe that classification speed of LB can speed up if special data
structures for storing the itemsets are used or if some caching
method is applied. This is the focus of our ongoing work.

5. CONCLUSIONS
There are considerable tradeoffs in choosing an appropriate
classification method for a given task. As already shown in
previous studies SVM is definitely the most effective in terms of
classification performance. Its inability to handle large data sets,
however, raises the question for methods that can handle the large
document collections encountered in many real problems. In this
paper we considered Bayesian extensions of NB as alternatives.
Global methods such as Bayesian Networks provide good results
but scale up very poorly as the number of features increases. On
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Figure 4. Training  time of LB+ and SVM for the biggest class (“earn”) and for multiples of the original dataset when the
feature set size is 50 (left) and 100 (right) features.
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the other hand LB that follows a lazy probabilistic approach is a
promising alternative. LB+- that uses a dense data representation
capturing information about the presence and absence of words
provides very competitive results but does not scale up to large
feature spaces. Its alternative LB+ sacrifices the use of word
absence information without loosing much of quality to gain
significant improvement in terms of speed and scalability. We
conclude that LB+ using this sparse data representation provides a
good alternative that achieves high accuracy, scales up linear in the
number of documents and handles large vocabulary sizes.
There are several research directions that we are currently
exploring. We are interested in applying more complex document
representation models for Bayesian approaches. Accuracy of NB is
shown to substantially improve when the multinomial model is
used. Our goal it to investigate if extensions of NB will gain
similar gains. The higher performance of LB+- compared to LB+
raises the question whether the use of word absence information
can be used selectively so as to yield accuracy gains without
significantly decreasing the performance. Finally we are working
on the integration of a faster association mining engine with LB.
Results like those reported in [10] are promising and a successful
integration with LB would translate to faster running times and
better scalability when the dimensionality is increased.
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