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ABSTRACT

Real-world applications often require the classification of
documents under situations of small number of features,
mis-labeled documents and rare positive examples. This
paper investigates the robustness of three regularized lin-
ear classification methods (SVM, ridge regression and logis-
tic regression) under above situations. We compare these
methods in terms of their loss functions and score distribu-
tions, and establish the connection between their optimiza-
tion problems and generalization error bounds. Several sets
of controlled experiments on the Reuters-21578 corpus are
conducted to investigate the robustness of these methods.
Our results show that ridge regression seems to be the most
promising candidate for rare class problems.

Categories and Subject Descriptors

H.4.m [Information Systems Applications]: Miscella-
neous; 1.5.1 [Pattern Recognition]: Models—Statistical;
1.5.4 [Pattern Recognition]: Applications—Tezt process-
ing

General Terms
Algorithms, Performance, Reliability

Keywords

robustness, text categorization, SVM, ridge regression and
logistic regression

1. INTRODUCTION

Many supervised learning methods have been applied to
text categorization, including nearest neighbor classifiers,
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decision trees, Bayesian probabilistic classifiers, neural net-
works, regression methods, SVM, etc. And lots of empiri-
cal studies in text categorization have been done in recent
years[9, 6, 15] which investigate different aspects of classifi-
cation methods.

Text categorization problems can be characterized as deal-
ing with high-dimensional and sparse data, and usually ac-
companied by skewly distributed categories. These char-
acteristics together make text categorization different from
classic pattern classification problems. Real-world applica-
tions often require the classification of documents under the
following conditions:

1. Restrictions on space and time: Classifiers need less
space and can be trained much faster with fewer fea-
tures. And if vectorized files need to be stored and
reused later, it will also reduce the storage and thus
test time significantly since the most expensive part is
to load the test data.

2. Mis-labeled training documents: The most crucial re-
sources of classifiers are training documents, which are
labeled by human. In cases there are many mis-labeled
documents, candidate classifiers should be tolerant to
labeling errors to some degree.

3. Small number of training documents: There are many
important applications where only small number of
positive training examples are available, like the fil-
tering task in information retrieval. Candidate classi-
fiers should perform reasonably well with rare positive
training data.

Hastie et al. [3] gave insightful analysis on the robust-
ness of classifiers based on their loss functions. However,
the goodness of those analysis still depends on the intrinsic
characteristics of the data. To our knowledge, no such study
in text categorization has been done.

Yang & Liu [15] compared empirical results on common
and rare categories. However, they only showed the per-
formance degradation as the size of positive data decrease
without further exploration, and their results are not com-
parable across categories.

Our work is mainly based on the work by Zhang [17],
which studies several regularized linear classification meth-
ods and their applications in text categorization. However,
we mainly focus on addressing the above issues, that is, we



study three classifiers in text categorization under condi-
tions of small number of features, noisy settings (mis-labeled
data), and rare positive data.

We design several sets of controlled-experiments to in-
vestigate the behaviors of three regularized linear methods
(ridge regression, regularized logistic regression and linear
kernel SVM) under above conditions, as well as establish the
connection between their optimization problems and gener-
alization error bounds. Last but not the least, we analyze
their different behaviors in case of rare positive data, which
reveals another property in their loss functions.

The rest of this paper is organized as follows: Three lin-
ear methods together with their regularizations are intro-
duced in Section 2. Section 3 discusses these methods in
terms of loss functions and score distributions, generaliza-
tion error bounds and implementations. Experimental setup
is reported in Section 4, and results are reported in Section
5, where we compare three methods under above conditions
and give our analysis. The last section summarizes the main
results of the paper.

2. LINEARMETHODSAND REGULARIZA-
TION

Among popular classification methods, linear classifica-
tion methods are those methods that have linear decision
boundaries between positive and negative classes, such as
linear regression, logistic regression, linear kernel SVM, naive
Bayes classifier, linear discriminant analysis, perceptron al-
gorithm, etc. Compared with other methods, linear methods
are simpler and the trained model is much easier to inter-
pret. Even more important is that in text categorization
they have been shown to be very effective and their perfor-
mances are among the top classifiers [17].

We define the binary classification problem for linear meth-
ods as follows. Given x = {(x1,¥1),(x2,%2), -, (Xn,¥n)}
the training set, where y; € {—1,+1} and x; is a vector
of training instance. For linear classifier, it tries to find a
weight vector w, an intercept b and a threshold 6 such that
f(wTx+b) < 6 if the label is —1 and f(w?x +b) > 6 if the
label is +1, where the function f(.) is specified by the linear
classifier. One can augment the input vector x to [1,x] and
the weight vector w to [b, w] to absorb the intercept b.

Given a linear model and a task-specific loss function
I(f(x),y), our goal is to minimize the expected loss:

min Epl(f(x),y)

where D is the underlying and unknown distribution of our
data. For classification problems, the loss function L(f)
is usually a convex upper bound of the classification error,
which avoids the hardness of directly minimizing the classi-
fication error.

In order to fit the model, Empirical Risk Minimization
(ERM) is usually used, which tries to minimize the above
objective function over empirical data:

L1
min — ;l(f(x),y)

As we can see, ERM uses the uniform distribution over em-
pirical data to replace the unknown distribution. Since em-
pirical loss is the pure objective of ERM, ERM may overfit
the data by favoring complex functions. Regularization [10,
11] is an effective way to prevent overfitting, and it has been

successfully applied to many methods. The regularized ver-
sion usually looks like:

min % D UF(,w) + AT (f)

where J(f) controls the learning complexity of the hypoth-
esis family, and the coefficient A controls balance between
the model complexity and the empirical loss.

2.1 Linear SVM

SVM is based on statistical learning theory[13], which
uses the principle of Structural Risk Minimization instead
of Empirical Risk Minimization. It is regarded as high per-
formance classifiers in many domains including text catego-
rization. We limit our discussion to linear kernel SVM in
this paper since it is the most popular kernel in text cat-
egorization [4, 1], and it is computationally much cheaper
than other kernels. Linear SVM tries to find the hyperplane
with maximum margin as the decision boundary in linear
separable case, which is equivalent to minimizing the norm
of the weight vector under some linear constraints’:

minw %WTW

subject to: yi(wix; +b) > 1,Vi

For linear non-separable case, by introducing slack vari-
ables, the optimization problem is augmented to:

minw, sw w+C 3" &
& >0,Vi
yi(wlx; +b) > 1—¢&,Vi

subject to :

where C represents cost coefficient, and slack variable &;
measures how far away the corresponding data point (x;, y;)
falls in the wrong side of the margin.

The dual form of the above optimization problem can be
written as follows

max Yo7y @i — 3 3, 5 Qi YiYiXi X;
0<a; <CVi
iy =0
which is both theoretically and practically meaningful.
From Karush-Kuhn-Tucker (KKT) conditions [7] we know
that only those data points whose Lagrangian coefficients
(ai’s) are not zeros contribute to the final decision bound-
ary w = > | a;y;%X;. These data points are called “support
vectors”, while the remaining data points are called “non-
support vectors”. For text categorization people found that
usually a small portion of the training data points are sup-
port vectors.
Note that SVM itself can be treated as a regularized method
with the loss function rewritten as

subject to :

W = arg min(z % max(0,1 — yi(wai + b))+ )\wTw)

i=1

where max(0,1 — yi(WTXz‘ +b)) =&

'We do not use augmented vector for SVM because people
do not penalize the intercept in SVM. Otherwise, the con-
straints of SVM (in its dual form) will be changed, and so
does its algorithm. Whether penalizing intercept or not will
only bring in trivial modifications for ridge regression and
logistic regression.



2.2 Linear Regression and Regularization

The problem of linear regression tries to find a linear func-
tion

f(z)=w'x

that can fit the training data very well. Least squares algo-
rithm is the most popular estimation method for linear re-
gression, which is equivalent to the Maximum Likelihood Es-
timation when the y is influenced by Gaussian noise. Least
squares algorithm computes a weight vector w based on the
minimization of the squared loss between the model output
wTlx and y:

n
W = arg min{% Z(l —yiw %)%}
i=1
1 n
= arg H},&n{ﬁ Z(yl —w'x;)?}
i=1

The solution is given by

Z XiX Z XiYi

Though we can give the close form solution, the matrix

. x;X; can be singular, which means there are multiple
minimizers for the ob jective function. Particularly, in text
categorization the number of features is often larger than
the number of training documents, and the matrix is sin-
gular in those cases. One solution is to use pseudo-inverse
matrix[14], which is built on top of the computation of Sin-
gular Value Decomposition (SVD). Another solution is to
use ridge regression [3, 17], which regularizes the original
objective function by adding a penalizer AwTw. In this pa-
per we only discuss the later case, whose objective function
becomes the following:

i —wix) + aw’ w}

. 1
W = ar —
gmin{ - > (v
i=1
and now the close form solution becomes

Z xlx +nAl)” Z X;ili

Note that after this transformation, the matrix

n
Z xix; + nAl
i=1

is guaranteed to be non-singular provided A > 0. As a re-
sult, we have a unique solution for ridge regression, and the
optimization problem can be solved with simple algorithm.

2.3 Logistic Regression and Regularization

Logistic regression has been widely used in statistics for
many years, and has received extensive studies in machine
learning recently due to its close relation to SVM and Ad-
aBoost. However, in text categorization, it has not been as
widely used as least squares algorithm and SVM. Recently
this method is applied to text categorization and compared
with other linear classification methods [9, 17], which shows
that its performance is comparable to that of SVM. Lo-
gistic regression tries to model the conditional probability

p(y|z) , and the model is fitted by maximizing the condi-

tional log-likelihood. For binary classification problems the
conditional probability is modeled as:

1

Pl 1 %) = o (—ywT)

The Maximum Likelihood Estimation is equivalent to min-
imizing the following:

. 1 T
= argmin ;log(l + exp(—yiw " x3))

The solution of the above problem may be infinite: Sup-
pose training data are linear separable, and wy is one sepa-
rating weight vector. Then any weight vector awg provided
a > 1 can separate training data with a smaller objective
function value. So the solution is unbounded.

In order to solve this problem, we once again resort to
regularized version:

n
W = arg rnin{l Z log(1 + exp(—yiw” x;)) + Aw” w}
won i=1
The Hessian matrix of the objective function L (w.r.t. w)
is defined as:

0 OL

8wT ow

T
exp(—y;w' x;) T
= —Ej <7 4 221
(1 + exp( yszxl))f(lXz +

H =

where I is the identity matrix. It is straight forward to
show that the Hessian matrix is positive definite (given A >
0), which is equivalent to the convexity of the objective
function[7]. After the regularization the Hessian matrix is
bounded away from 0, which is a nice property for many
numerical algorithms.

3. ANALYSIS

3.1 Loss Functions and Distributions

Based on previous discussions, we can unify the objective
functions of all three linear classification algorithms as:

= % Z Flyw™x) + Aaw’w
i=1

We can see that all these methods are using the 2-norm
regularization term, and the difference is that each method
is associated with a particular loss function f(.):

1. Ridge Regression:
Flyw'xi) = (1 —yiw"x;)°

2. Regularized Logistic Regression:
Flyiw"x;) = log(1 + exp(—y;w"x))

3. Linear SVM:

Flyi(w"xi +b)) = max{0,1 — yi(w'x; + )}

It would be meaningful to compare their loss functions
against the mis-classification error in Figure 1 [3], which can
help us understand different behaviors among three meth-
ods.
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Figure 1: Loss Functions

We can see from the graphs (or simply derive from their
formulas) that all three loss functions are convex functions,
and they are also upper bounds of the mis-classification er-
ror.

It is believed that squared loss is not as robust as the
other two loss functions since its loss function will be more
influenced by extreme data, as we can see from the graph.
Another disadvantage of squared loss is that it also penalizes
those correctly classified data points if their output values
are larger than 1. Meanwhile, it has the good property that
both the first and second derivatives of its objective function
are well-behaved, and it can be solved with simple optimiza-
tion techniques.

SVM loss is linear, and logistic loss is close to linear. Both
loss functions are less sensitive to extreme data points com-
pared with squared loss. The non-differentiable characteris-
tic of SVM loss function makes it harder to solve than the
other two methods.

To show how effective these loss functions are, we plot
the score distributions (w”x) for three methods over test
data in figure 2. We can see that most of the dense of the
distributions has loss close to zero, which shows that our
data is linear-separable to a great degree. Also notice that

of wl'x for positive and negative data (over test data, feature size=3000)

the overlapping of ridge regression is small compared with
the other two methods, which is consistent with its good
performance reported in section 5.

3.2 Generalization Error

We first refer to two theorems of Vapnik[12, 13]:
Theorem 1 Suppose f(x,a) is a set of learning functions
for binary classification with adjustable parameters «, then
the following bound holds with a probability of at least 1—n:

R(0) < Remp(a) + \/ Allog(en] 1) + 1) og(o/ )

where R(a) = [ L(y, f(x,a))dF(x,y) is the expected risk,
Remp(@) = L3 | L(ys, f(xi,v:)) is the empirical risk, n
is the size of training data, h is the VC dimension of the
learning model, L(.) is the mis-classification error loss, and
F(.) is the underlying data distribution which is unknown.

Theorem 2 A subset of separating hyperplane defined
on x = {(x1,91), (X2,%2), -+, (Xn, yn)} (Vi : %37 % < D?)
satisfying y; (WP x; +b) > 1: Vi and w/'w < A? has the VC
dimension h bounded by

h < min([D*A%],n) + 1

From the above theorems we know that for linear-separable
data, if we shrink the hypothesis space by putting limit on
the 2-norm of the weight vector w of linear classification
methods, we can potentially reduce the VC dimension, thus
reduce the generalization error bound.

On the other hand, we know that the optimization prob-
lem[8]

min f(w) subject to: w' w < A®
is equivalent to the problem
min f(w) + Aw’ w

given the function f(.) and the constraint are convex. So,
by appropriately choosing A, we are actually limiting our
hypothesis space by the constraint w’w < A2. This estab-
lishes the connection between all three regularized methods
and the above generalization error bound, which has been
regarded as one major theoretical advantage of SVM.

3.3 Implementation Issue

For real-world applications, computational efficiency is
another important issue. In our experiments, we use SV M9h¢



[5] for the linear kernel SVM model, and use iterative algo-
rithms[17] that are variants of Gauss-Seidel[2] for solving
both the ridge regression and regularized logistic regression.
The algorithm of ridge regression is very simple and more
efficient than the other two methods. Another advantage of
ridge regression (though we did not apply in this paper) is
that for collections that contain large number of categories
(like Ohsumed), we can first compute the matrix inverse

M = (Z xixiT + n)\I)_l
=1

which is independent of category?, followed by the compu-
tation of M >_7_| x;y; for each individual category.

4. EXPERIMENTAL SETUP

Reuters-21578 (ModApte split) is used as our data col-
lection, which is a standard testbed for text categorization.
Since every document in the collection can have multiple
labels, we split the classification problem into multiple bi-
nary classification problems with respect to each category.
All numbers and stopwords are removed, and words are con-
verted into lowercase without stemming. Infrequent features
(occur less than 3 times) are filtered out. Feature selec-
tion is done using Information Gain[16] per category, binary
term weighting is applied, and words in document titles are
treated as different words in document bodies.

Precision (p) and recall (r) are used to evaluate methods
in their combined form F1, which is defined as

2rp
(r+p)

In order to compare the global performance of different
methods, MacroqwgF1 and Microg.gF'1 are also used. As
we know, Macroa.gF1 gives the same weight to all cate-
gories, and thus it will be mainly influenced by the per-
formance of rare categories for our data collection due to
the skewed category distribution of the Reuters-21578 col-
lection. On the contrary, Microq.qF'1 will be dominated by
the performance of common categories.

We conduct our experiments under three sets of condi-
tions:

1. Robustness in terms of small number of features: We
compare classifiers’ performance as the number of fea-
tures varies. Particularly, we examine their perfor-
mance in case of very few features, which are top-
ranked features by Information Gain.

2. Robustness in terms of “noise” level (mis-labeled data):
We randomly pick up some portion of training exam-
ples and flip their labels. Performance is measured
with respect to the percentage of flipped training ex-
amples.

3. Robustness in terms of “rare” positive training data:
In order to study different behaviors of three classifiers
in case of rare positive training data, we use the top
12 common categories in our data collection and sim-
ulate the process by reducing the available percent of
positive training data.

2Suppose features are independent of categories.

5. RESULTS AND DISCUSSIONS

5.1 Performance vs. Feature Size

In this subsection we show how well those methods can
perform with relatively small number of features.

Both thresholds and the regularization coefficient A (A =
107%* &k = 0,1,---,5) are chosen by maximizing F1 over
training data with 5-fold cross-validation.

Our results in both Micro..gF'1 and Macrog,gF1 are
shown in figure 3. And F1 results of the most common
12 categories (with 3000 features) are also listed in table
1, which are consistent with previous published results [17].
From the figure 3 we can see that even with 30 features, the
Microawg F'1 of three methods can still be above 80%, which
is an acceptable performance for some applications. On the
other hand, the Macrog,yF1s of three methods behave dif-
ferently with ridge regression the best and logistic regression
the worst. The difference of MacroF1 results (right graph
in Figure 3) between ridge regression and SVM (and logistic
regression) are significant®.

Since the MacroqvwgF'1 performance is mainly influenced
by rare categories, we believe that three methods must have
different behaviors in case of rare categories. Our later ex-
periments about “rare positive data” will further explore the
differences.

Table 1: F'1 performance of SVM, ridge regression
and regularized logistic regression (Reuters-21578,
top 12 categories, feature size=3000)

# of positive [ g I opp | IR
training examples

earn 2877 0.978 | 0.976 | 0.980
acq 1650 0.962 | 0.956 | 0.960
money-fx 538 0.762 | 0.728 | 0.779
grain 433 0.912 | 0.929 | 0.902
crude 389 0.886 | 0.865 | 0.879
trade 368 0.741 | 0.700 | 0.754
interest 347 0.764 | 0.785 | 0.743
wheat 212 0.902 | 0.903 | 0.895
ship 197 0.830 | 0.846 | 0.834
corn 180 0.920 | 0.917 | 0.889
money-supply 140 0.820 | 0.836 | 0.825
dlr 131 0.791 | 0.727 | 0.791

5.2 Performance vs. Noise Level

In order to conduct experiments under noisy settings, we
randomly pick up 1%, 3%, 5%, 10%, 15%, 20% and 30%

training data respectively and flip their labels. Thresholds
and the regularization coefficient A are tuned with 5-fold
cross-validation under each condition to make sure that the
term Aw”w can play an active role for every method to
resist noisy data.

We only reported Microq.gF'1 versus noise level in figure
4. MacroqsgF1 results of all three methods drop dramati-
cally (below 0.05) after noise level is greater than 3%. This
can be explained as follows: Most of the 90 categories in

3We use Macro t-test [15] with significant level 0.05.
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our data collection are relatively small, and due to the way
we manipulate our data, a p% flip of negative data (which
become “positive” now) will overwhelm the amount of re-
maining positive data which are correct. Thus, it is very
hard to learn the target correctly for small categories, which
leads to the poor performance in Macrog.gF'1.

Our results show that SVM is superior to the other two
methods as the noise level initially goes up, as we anticipated
4. Ridge regression works reasonably well though it failed
in the significant test compared with SVM, if we consider
the large number of decisions it made (number of document
times number of categories). This tells us that for text col-
lection, squared loss is acceptable even with certain amount

*For example, the results between SVM and ridge regression
at noise level 3% is significant at level 0.05 with Micro s-test
[15], since SVM wins 211 out of 365 different decisions.

of mis-labeled documents.

5.3 Performance vs. Rare Positive Data

There are many cases where only small number of positive
examples are available to our classifiers. Here we want to
examine the different behaviors of the three methods under
such cases, which can help us further explain the perfor-
mance differences of Macroa.¢F'1 in figure 3.

One way to deal with rare class classification problems is
to re-weight the training data (or change the cost function
to be asymmetric) so that the same amount of positive data
play more important roles than negative data. All three
methods can be adapted in to this version by slightly mod-
ifying the original optimization problem into:

Ci/- Xiep, Flyw™x) + Y cp Flyiw™x)

W = argmin{

(ID+|C/- +1D-1)
+ aw'w}

where D4 and D_ are sets of positive and negative exam-
ples, [D+| and |D_| are their cardinalities, C;,_ measures
the relative importance between positive and negative data,
and (|D+|C4/- + |D—_]) is the normalization factor so that
A is set to be independent of number of examples.

We did not apply this approach in our experiments for sev-
eral reasons: First of all, all three methods can be adapted
in this way, which does not help to reflect different charac-
teristics among three methods. Second, we want to examine
the capabilities of dealing with rare class in a natural way,
while this adaptation changes the data prior distribution.
And the weight ratio C';,_ between positive and negative
data need to be chosen empirically per category by cross-
validation, which may be unstable for rare class.

Instead, we design our experiments to directly examine
different behaviors of the three methods without the chang-
ing the optimization objective function.

In order to examine performance under this condition, we
choose the most 12 common categories (in terms of number
of positive training examples, see table 1) in our data collec-
tion. Since these categories are relatively common, we can
randomly hold some portion of the positive examples, thus



investigate the behaviors as the available amount of positive
data changes. In order to make our results stable, results are
averaged from 5 to 20 times (the less the percent of positive
data used, the more times it is averaged over).

Results here are reported in terms of “best possible” F'1
over test data, which avoids the tuning of thresholds. Figure
5 shows the F1 results of 12 common categories (as shown
in table 1) as the available percent of positive data changes
(1%, 3%, 5%, 10%, 30%, and 50%).

From the results we can see that though results vary from
category to category, logistic regression is much worse than
both SVM and ridge regression. Ridge regression performs
slightly better than SVM for small categories, which further
confirms our results in figure 3.

Note that for all three methods, when the amount of neg-
ative data is much larger than positive data, the objective
function’s value will be initially dominated by negative data.
However, since logistic loss is strictly greater than 0 even for
correctly classified data, the optimization process will keep
pushing the majority (correctly classified negative data) fur-
ther down the loss function as long as their role in the objec-
tive function is still larger than (or comparable to) that of
rare positive data, thus sacrifice the performance of positive
data, which will lead to poor F'1 score. Both SVM loss and
squared loss will have some point(s) that have exactly zero
loss with finite yw”'x value (contrast to logistic loss which
goes to 0 as yw’ x goes to 00), and thus their performance
for rare class will not drop as dramatic as logistic regression.

6. CONCLUDING REMARKS

In this paper we presented a controlled study on the ro-
bustness of three regularized linear classification methods in
text categorization. We discussed their loss functions and re-
lated score distributions, as well as establishing the connec-
tion between their optimization targets and the generaliza-
tion error bounds. In our experiments, we investigated their
performance under conditions of small number of features,
noisy settings and rare positive data. Their performance
differences are compared and analyzed. Our concluding re-
marks are:

e Theoretically, all three methods can be treated as shrink-

ing the hypothesis space when performing the opti-
mization, thus they have similar generalization error
bounds. Practically, they all perform very well in
Microavg F'1 even with very few selected features.

e Under noisy settings, SVM is better than logistic re-
gression and ridge regression. Ridge regression, as in-
dicated by its loss function, performs the worst.

e Ridge regression is better than SVM when only small
number of positive examples are available. We show
that logistic regression performs very badly in this
case, as well as give explanations.
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