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Abstract

Many corpus-based Machine Translation (MT) systems generate a number of partial translations
which are then pieced together rather than immediately producing one overall translation. While
this makes them more robust to ill-formed input, they are subject to disfluencies at phrasal trans-
lation boundaries even for well-formed input. We address this “boundary friction” problem by
introducing a method that exploits overlapping phrasal translations and the increased confidence
in translation accuracy they imply. We specify an efficient algorithm for producing translations
using overlap. Finally, our empirical analysis indicates that this approach produces higher quality
translations than the standard method of combining non-overlapping fragments generated by our
Example-Based MT (EBMT) system in a peak-to-peak comparison.

1 Introduction

Corpus-Based Machine Translation approaches, in-
cluding Statistical MT (SMT) (Brown et al., 1990;
Brown et al., 1993; Yamada and Knight, 2002), and
Example-Based MT (EBMT) (Nagao, 1984; Niren-
burg et al., 1994; Sumita and Iida, 1991; Veale and
Way, 1997; Brown, 2001) use a sentence-aligned
bilingual corpus to train translation models. The
former relies on word and n-gram statistics to seek
the most probable translation, and the latter relies
on finding translated maximal-length phrases that
combine to form a translation. Each method has its
strengths and weaknesses: EBMT can exploit long
translated phrases, but does not combine phrasal
translations well, whereas SMT combines word and
short n-gram translations well, but cannot readily
exploit long pre-translated phrases. This paper ad-
dresses in part the major shortcoming of EBMT: how
to better combine phrasal translations. When stan-
dard corpus-based approaches find several long n-
grams with known translations in the sentence being
translated, they can only exploit these if the frag-

ments are non-overlapping. Similarly, multi-engine
MT (MEMT) systems may be forced to select a
poorer translation for one portion of the input after
selecting the best translation for another portion.

We have developed a method of combining over-
lapping fragments so that if they also have con-
sistent overlapping translations, they compose a
legitimate translation more likely to be accurate
than sequentially-abutting translated fragments. We
call this method “maximal left-overlap composi-
tional MT”, or for short “maximal overlap MT.” Al-
though we had previously experimented with one-
word overlap at EBMT fragment boundaries, the n-
word overlap version is clearly more powerful, par-
ticularly in conjunction with multiple translation en-
gines.

This paper is organized as follows. First, we
give a presentation and illustration of the maximal
overlap MT method. Then we describe the lattice
search method and how to incorporate overlap into
the search. Finally, we present clear results demon-
strating the power of Overlap MT on the Hansard
Corpus.



Input: Je doute qu’il soit nécessaire de lancer une enquête complète pour l’instant.

Fragment

1 Je doute qu’il

I do not think it is

2 Je doute qu’il soit

I doubt whether that will be

3 qu’il soit nécessaire de

not think it is necessary to

4 nécessaire de lancer

necessary to start

5 une enquête complète

a full investigation

6 pour l’instant.

for the moment.

Human reference translation:

“I do not think it is necessary to launch a full inquiry at this time.”

Standard MEMT selection combines fragments 2, 4, 5, and 6, to produce the output:

“I doubt whether that will be necessary to start a full investigation for the moment.”

MEMT selection with overlap combines fragments 1, 3, 4, 5, and 6, to produce the output:

“I do not think it is necessary to start a full investigation for the moment.”

Figure 1: A Portion of an MEMT Translation Lattice. Fragments 1 and 3 overlap while 2 and 3 do not
(since they do not match in the target language). The standard method cannot combine Fragments 2 and
3 because of their source overlap, and thus outputs a syntactically coherent but incorrect translation (as a
result of the use of “that” which implies a referent), whereas the method using overlap is both syntactically
and semantically correct. The full translation lattice for this example has approximately 60 fragments.

2 Maximal Overlap Method

When the EBMT engine is given a sentence for trans-
lation, it outputs a list of source fragments (contigu-
ous portions) from the input sentence and candidate
translations obtained from its word-level alignment
of the example translations it was originally given.
Each source/target fragment pair has its own qual-
ity score, and we refer to a pair as simply a frag-
ment below (specifying source or target as neces-
sary). A general method that considers overlap must
balance the fragment scores obtained from the trans-
lation engine(s) with the amount of overlap between
these fragments as well as other possible factors
(e.g., fragment length).

Figure 1 shows an excerpt from an MEMT trans-
lation lattice into which the fragments that the EBMT

engine retrieved from the parallel training corpus it
was given have been placed. Translation proceeds
by finding a path through the translation lattice that
combines the fragments. Traditionally, such com-

bination procedures have required the source frag-
ments to have no overlap. Our method stems from
the motivation that when both the source and target
of two adjacent fragments overlap, then there is an
increased likelihood their combination is an accurate
translation.1

In the example in Figure 1, the standard combina-
tion procedure yields a syntactically coherent but se-
mantically incorrect translation. The result is a sen-
tence where the use of “that” implies a referent, and
thus, the statement is interpreted as, “A specific con-
dition is not required to start a full investigation.”
The combination procedure that uses overlap pro-
duces a translation with the correct semantics, “It
is the speaker’s opinion that a full investigation is
not necessary.” This is a direct result of consider-

1Sometimes there is no opportunity to exploit overlap when
translating a sentence, because the full sentence and its trans-
lation occur verbatim in the training corpus, or because some
portion of the input produces no translations at all, leaving an
unbridgeable gap.



ing overlap in the fragments. The reason is that the
“il” in the context of “qu’il...nécessaire de” should
never be translated as a word with a referent. Thus, a
training set with correct translations will never con-
tain a fragment such as Fragment 2 that extends all
the way to “de”. However, when overlapping frag-
ments are used, an example of the initial portion of
the phrase (Fragment 1) and an example continuing
with the idiomatic “qu’il soit” (Fragment 3) can be
combined to produce an accurate translation. In gen-
eral, both syntactic and semantic problems can occur
at the boundaries of fragments when overlap is not
considered.

3 Incorporating Overlap

3.1 The EBMT Engine

The EBMT system that we used for our experiments
was intended from the very beginning (Brown,
1996) to act as one engine in a multi-engine ma-
chine translation (MEMT) system (Frederking et al.,
1994). As a result, it differs in a number of aspects
from most implementations of EBMT. For our pur-
poses, the important difference is that the engine it-
self need not find a single best overall translation
because its output is intended to be fed into a sep-
arate selection step. Instead, the EBMT engine out-
puts translations of all the phrasal matches it finds
in the training corpus and is able to align at the
word level within the example containing the phrase.
These partial translations may be ambiguous and can
overlap (either partially or subsuming some shorter
translations), as was illustrated in Figure 1.

The EBMT engine assigns each candidate transla-
tion a quality score, which is computed as a linear
combination of an alignment score and the transla-
tion probability for that candidate. The alignment
score is based on a weighted set of heuristics and in-
dicates the engine’s confidence that it has selected
the proper target-language phrase corresponding to
the source-language phrase which was found in the
training corpus. The translation probability is sim-
ply the proportion of times each distinct alterna-
tive translation was encountered out of all successful
alignments for a particular source-language phrase.

3.2 The Multi-Engine Machine Translation
Architecture

Our multi-engine MT system (Brown and Frederk-
ing, 1995) applies several differing translation tech-
niques in parallel, and then selects the best over-
all translation from among the partial translations
(fragments) generated by the various engines. Each
engine is permitted to segment the input text in
whichever way is appropriate for it, e.g. a dictio-
nary lookup would generate a separate fragment for
each source word, the EBMT engine generates one
fragment for each distinct source phrase found in the
corpus, and a knowledge-based system might gener-
ate a fragment for each semantic unit.

All translation candidates are placed into a com-
mon lattice, from which a best overall path is se-
lected. Each fragment is weighted by the quality
score assigned by the engine which generated it, an
overall weight assigned to that engine, and bonus
and penalty factors – bonuses are given for longer
fragments, penalties for length mismatches between
source and target halves, untranslated words, etc.
A multi-level beam search guided by the frag-
ment weights and a target-language trigram lan-
guage model (with smoothing and back-off where
necessary) is then used to select the optimal set
of fragments that produces a complete translation.
Prior to the work described in this paper, this opti-
mal set was restricted to non-overlapping fragments.

We have, in the past, used varying combinations
of word-for-word dictionaries, phrasal glossaries,
EBMT, SMT, knowledge-based MT, and transfer-rule
engines in the multi-engine architecture. For the
purposes of the experiments described in this paper,
we used only the EBMT engine. This simplifies the
process of tuning the system for the various experi-
mental conditions and reduces any confounding fac-
tors.

3.3 Modifying the Search Procedure

The search procedure in our MEMT system is a
multi-level beam search. A separate priority queue
is maintained for each word position in the input
text, and they are processed in order from left to
right. As each search node is removed from the ac-
tive queue, it is expanded by adding on each frag-
ment that could possibly extend it, and the new



nodes are added to the priority queues corresponding
to the last input word covered by each extended path.
The priority queues are pruned on each addition
by removing the lower-scoring of duplicate nodes
(those with the same last two target-language words,
since earlier words can no longer affect scores) or
the lowest-scoring node if the addition would cause
the length of the queue to exceed the specified beam
width.

Updating the search procedure to handle overlap-
ping fragments required only two changes: a new
definition of “fragment that can extend the current
partial path” and a means of giving a bonus to the
path’s score when an overlapping fragment is added.

The original set of fragments which could ex-
tend a path was simply those which started with the
word immediately following the last one covered by
the path. In the event that no engine generated a
candidate covering a particular word, a dummy arc
with a large penalty is inserted before the search
begins, so that there is always a possible extension
available. To permit overlapping fragments, we de-
fined the notions of “source-language overlap” and
“target-language overlap”, and the criteria for allow-
able ranges for those two values.

The source-language overlap is simply the num-
ber of words in common between the two fragments,
based on their starting and ending word numbers in
the input. For example, if the current path ends with
word number 6, then a fragment starting on word 6
would have a one-word source overlap, one starting
on word 5 would have a two-word source overlap,
etc. This is trivial to compute since the start and end
points are provided by the translation engine(s) to
identify where the candidate is to be placed in the
lattice.

For target-language overlap, we have chosen the
simplest possible definition likely to produce ac-
ceptable results: the number of words in the suf-
fix of the left-hand fragment that exactly matches
a prefix of the right-hand fragment. Should there
be multiple possible values, the length closest to
the source-language overlap is chosen. The target-
language overlap can be ambiguous in cases where
a word is repeated, and selecting the phrase which
is most similar in length to the common section on
the source-language half will yield the phrase most
likely to be the common section’s translation. For

example, if we have fragments with translations

was the best of the
the best of the rest

the alignment shown would be appropriate for a
three- or four-word source overlap, but rarely for a
single-word source overlap. In the latter case, we
probably want

was the best of the
the best of the rest

The criteria for allowing a fragment to be added
to a path through the lattice are now:

� the source-language overlap is no more than
��� �����	 �
	����;

� the target-language overlap is within a certain
range of the source-language overlap; and

� the fragment extends the path by at least one
word on the source-language side.

Setting ��� �����	 �
	���� to zero produces the
previous behavior of allowing only non-overlapping
arcs in the path. The limit on target-language over-
lap may be specified as either an absolute differ-
ence in length between source and target overlaps,
or as the minimum ratio between the shorter and the
longer of the two values (i.e. a value of 0.5 means
that a source-overlap of 2 words yields allowable tar-
get overlaps between one word [�� � ���] and four
words [�� � ���]).

Our means for giving a bonus for using overlap-
ping fragments is to boost the score assigned to the
words in the overlap region. The overall score for a
path through the translation lattice is the arithmetic
average of the scores for each target word on that
path (this avoids systematic biases toward shorter or
longer outputs). In the absence of overlap, the score
for an individual target-language word is a combi-
nation of the weight of the arc containing that word
and the language-model score for the trigram end-
ing on that word. When overlap occurs, the individ-
ual scores for each word in the overlap region are
increased by some multiple weighting � of their
existing weights. We have found that values of �
between 3 and 6 generally perform well, though
for some training corpora substantially larger values
can produce a slight increase in evaluation metrics



over values in this range. This method automati-
cally gives preference to larger overlaps by boosting
the scores of more words when the overlap region is
larger.

The overall score for a path is thus

�

�

��

���

�� ����� 	������� � � ��������������

�� 	 � �� �
	���� ��	� ��� ��� � ���	����	

where � is the number of target-language words in
the path, 	� is the sum of the engine weights for
the translation engines producing the fragment con-
taining word �, �� � � is the bonus factors for the
fragment, �� � � is the penalty factors for the frag-
ment, and �� is the engine-assigned quality score for
the fragment, and � ������������� is the language-
model probability. To maintain consistency, �

��

and �� are the sentence-end and sentence-start con-
text cues, respectively.

The lattice search is quite efficient, typically tak-
ing only a few milliseconds per sentence, though
some long and highly ambiguous sentences can take
considerably longer. Adding overlapping fragments
to the search roughly doubles the search time (e.g.
from 2.4 to 3.9 seconds for the 1000 sentences in
our test sets), primarily as a result of increasing the
search space. However, since this represents only a
small portion of the total run time (470 seconds), the
overall impact on translation speed is negligible.

4 Experiments

4.1 Data Set

All of the data used for the primary experiments de-
scribed below came from the Hansard corpus, which
consists of parallel French and English versions of
Canadian parliamentary debates and related docu-
ments. In all experiments using the Hansard corpus,
the source language was French and the target lan-
guage was English. The corpus as available from the
Linguistic Data Consortium consists of 273 files of
10,000 sentences for each language. We constructed
a training set consisting of all sentence pairs from
files 090 through 099, for a total of 100,000 sen-
tence pairs. The two validation sets used to optimize
the parameters for the EBMT engine consisted of the
first one hundred sentences in files 020 and 040, re-
spectively. The test data consisted of ten different

mutually-exclusive one-hundred sentence segments
drawn from files 060 and 080. (Some of our early
experiments used a larger training set consisting of
files 000 through 099, omitting files 020, 040, 060,
and 080 for use as validation and test data.)

4.2 Machine Translation Quality Scoring
Function

For empirical evaluation, we use the metric pro-
posed by IBM, called BLEU (Papineni et al., 2002)
and the metric developed by NIST based on BLEU,
called simply NIST below ((NIST), 2002). Both
metrics try to assess how close a machine transla-
tion is to a set of reference translations generated by
humans. Our experiments use the single reference
translation provided by the Hansard transcripts.

The BLEU and NIST metrics are based on n-gram
co-occurrences between the system output and the
reference translations, for each size of n-gram from
unigram to 4-gram (BLEU) or 5-gram (NIST). BLEU

computes the geometric mean of the n-gram preci-
sions and then applies a brevity penalty for system
outputs which are shorter than the reference trans-
lations. NIST computes the arithmetic mean of the
information-weighted n-gram co-occurrences and
then applies a brevity penalty which is less sensitive
to small variations but more extreme than BLEU’s for
very brief outputs. The information weight places
greater emphasis on n-grams for which the last word
is “suprising”, i.e. unlikely to be predicted by the
preceding words of the n-gram based on the totality
of the text in the reference translations.

Both BLEU and NIST scores are sensitive to the
number of reference translations, yielding higher
scores with more reference translations. Although
both are also sensitive to the number of words in
the reference corpus, NIST is much more so because
of the language model implied by the information
weights, which are often zero for large � in small
corpora.

Note that BLEU and NIST scores in DARPA eval-
uations are against multiple reference translations
for each test sentence. We only have one reference
translation per sentence, and hence scores are uni-
formly lower than in recent DAPRA evaluations by
as much as a factor of 2 solely as a result of this
scoring artifact.



4.3 Experimental Conditions

We compared four variations of the multi-engine
combination, each evaluated at its peak performance
levels according to the BLEU and NIST scores, for a
total of eight experimental conditions. The four vari-
ations, and the names by which they will be identi-
fied are

� “noOV-noLM”: disallow overlapping frag-
ments and use uniform trigram probability (i.e.
ignore language-model information)

� “OV-noLM”: allow overlapping fragments to
combine (where none are present, continue to
use non-overlapping fragments) and use uni-
form trigram probabilities

� “noOV-LM”: disallow overlapping fragments,
but make use of a trigram language model of
the target language; for our experiments, the
language model was built from the Xinhua
portion of the LDC GigaWord English corpus
(Consortium, 2003), approximately 150 mil-
lion words.

� “OV-LM”: use both overlapping fragments
(where available) and a language model.

The noOV-LM case was the normal mode of oper-
ation for our multi-engine system prior to the work
described in this paper.

4.4 Parameter Optimization

To ensure a peak-to-peak comparison of the highest
possible performance for all four systems we empir-
ically optimized key parameters for each variation.

The EBMT engine takes four parameters to define
its search space. We tuned these four parameters
by running the system on each validation set us-
ing the cross-product of several values for each pa-
rameter, then (as appropriate) re-running with more
closely-spaced values for the parameters. Typical
values for the parameters are ��� ��������	�=500-
1000 (number of occurrences of a phrase to exam-
ine), ��� �����=50-100 (number of occurrences to
align and use for computing translation probabil-
ities), 
�� ���	�����
	�=1-3 (number of alterna-
tive translations to generate), and ���	��=0.05-0.15
(required word-alignment score). While the peak
of the performace space is relatively flat (one can
change the parameters substantially away from the
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Figure 2: Number of fragments combined to form
the output translation for each sentence.

exact optimum without losing more than 1-2% on
the metrics), it is somewhat irregular. Therefore, af-
ter finding the optimal settings for the validation sets
drawn from Hansard files 020 and 040, we then se-
lected in-between values for the test runs.

4.5 Experimental Results

In Table 1, we show results for each of the exper-
imental conditions described above. The scores in
Table 1 are evaluated using only one reference trans-
lation, which yields lower scores than the multiple
reference translations used in DARPA evaluations.
The highest performing system is highlighted in the
table for both BLEU and NIST. We also report two
types of significance tests to compare the systems
using overlap against those not using it. The first is
a sign test, performed on the set of individual sen-
tence scores of the test set. The null hypothesis is
that each of the two systems being compared trans-
lates a given sentence better about half the number
of times that they receive different scores on a sen-
tence. The second test is a two-sided t-test on the
difference between each pair of scores over the ten
files that comprised the test set. The null hypothesis
is that the difference is zero.

5 Discussion

We conclude from the results presented above that
the OV-LM system is superior to the standard
noOV-LM system. For the Hansard training corpus,
adding overlap to language modeling improves the



Training Set System Mean BLEU St. Dev. BLEU Mean NIST St. Dev. NIST

noOV-noLM 0.1412 0.0248 4.3017 0.3914
Hansard noOV-LM 0.1549* 0.0302 4.3591 0.3771

100k pairs OV-noLM 0.1553* 0.0293 4.4433* 0.4121
OV-LM 0.1707*+ 0.0359 4.4578*+ 0.3942

Table 1: A performance summary of the described methods. Starred and plus-marked results are highly
significant against the noOV-noLM and noOV-LM systems, respectively, according to the two-sided t-test
(� � �����). Italicized and boldface results are significant against noOV-noLM and noOV-LM according
to the sign test (� � ����).
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Figure 3: Target-language words of overlap between
each selected fragment and its predecessor.

BLEU score by 10.2% and the NIST score by 2.3%.
Both the t-test and sign test rate these differences as
highly significant, with � � �����.

Figure 2 shows that on average, the OV-LM sys-
tem uses more fragments per sentence than the
noOV-LM system. This is as expected, since an
overlapping fragment of a given size extends the
path through the lattice less than a non-overlapping
fragment. Figures 3 and 4 show that both the num-
ber of overlap regions in a sentence and the size of
those overlaps skews higher when a language model
is added. This may be a consequence of the slightly
higher average fragment length when using a lan-
guage model.

713 of the 1000 sentences in the test files made
use of overlap in the OV-noLM system, 698 in the
OV-LM system. Those two systems had 1870 of
9546 and 1870 of 9309, respectively, non-initial
fragments that were selected for the final transla-
tion overlapping their left neighbors. It is interest-
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Figure 4: Number of overlapping regions per sen-
tence.

ing that overlap provides as much of a performance
boost as a language model trained on substantially
more text than is contained in the EBMT corpus de-
spite being inapplicable in three out of every ten sen-
tences and only being used at about 20% of fragment
boundaries. An improvement to allow more over-
laps should thus improve performance even further.

6 Conclusions and Future Work

In summary, we have presented a method of com-
bining partial translations (whether from a single
translation engine or multiple engines) that exploits
the reinforcement inherent in overlapping translated
phrases. Our overlap method produces a statistically
significant improvement in translation quality over a
system in the traditional non-overlapping paradigm.
While we have not performed detailed analyses or
peak-to-peak comparisons in other cases, we con-
sistently – across multiple test sets in multiple lan-
guages – achieve a 1-4% increase in NIST score and



3-6% increase in BLEU score when enabling overlap
in our multi-engine system running both a word-for-
word dictionary engine and the EBMT engine. Our
statistical MT group has implemented a version of
the overlap method into their system’s decoder, and
reports similar increases in scores when enabling
overlap in conjunction with phrasal transducers.

Overlap seems to be beneficial in two ways. The
first is that it allows a system to use long phrasal
translations that cannot be used by standard MEMT
because they overlap with each other, while never
preventing the use of any non-overlapping transla-
tions that are combinable by the standard system.
Additionally, systems benefit when overlap occurs
frequently enough to take advantage of consistent
translations of shorter fragments.

We intend to pursue a number of extensions to
this work. The first of these is to generalize the
notion of target-language overlap to take into ac-
count word-order differences between source and
target languages. The EBMT engine could provide
its internal word-level alignments for the translation
fragments that it outputs, in which case the overlap
mechanism could select fragments where the match-
ing words are not necessarily a suffix of the left-hand
or prefix of the right-hand fragment. We also plan to
investigate using overlap in conjunction with gram-
mar rules.
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