
QProber: A System for Automatic Classification of
Hidden-Web Resources

Panagiotis G. Ipeirotis and Luis Gravano

Computer Science Department

Columbia University

and

Mehran Sahami

E.piphany, Inc.

The contents of many valuable web-accessible databases are only available through search inter-
faces and are hence invisible to traditional web “crawlers.” Recently, commercial web sites have
started to manually organize web-accessible databases into Yahoo!-like hierarchical classification
schemes. Here, we introduce QProber, a modular system that automates this classification process
by using a small number of query probes, generated by document classifiers. QProber can use a
variety of types of classifiers to generate the probes. To classify a database, QProber does not
retrieve or inspect any documents or pages from the database, but rather just exploits the number
of matches that each query probe generates at the database in question. We have conducted an
extensive experimental evaluation of QProber over collections of real documents, experimenting
with different types of document classifiers and retrieval models. We have also tested our system
with over one hundred web-accessible databases. Our experiments show that our system has low
overhead and achieves high classification accuracy across a variety of databases.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: Abstracting
Methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
Clustering, Information Filtering, Search Process, Selection Process; H.3.4 [Systems and Soft-
ware]: Information Networks, Performance Evaluation (efficiency and effectiveness); H.3.5 [Infor-
mation Storage and Retrieval]: Online Information Services—Web-based Services; H.3.7
[Information Storage and Retrieval]: Digital Libraries; H.2.4 [Database Management]:
Systems—Textual Databases, Distributed Databases; H.2.5 [Database Management]: Sys-
tems—Heterogeneous Databases; H.4.3 [Communications Applications]: Information Browsers

General Terms: Database Classification, Web Databases

1. INTRODUCTION

As the World-Wide Web continues to grow at an exponential rate, the problem of ac-
curate information retrieval in such an environment also continues to escalate. One
especially important facet of this problem is the ability to not only retrieve static
documents that exist on the web, but also effectively determine which searchable
databases are most likely to contain the relevant information that a user is looking
for. Indeed, a significant amount of information on the web cannot be accessed
directly through links, but is available only as a response to a dynamically issued
query to the search interface of a database. The results page for a query typi-
cally contains dynamically generated links to these documents. Traditional search
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engines cannot index documents hidden behind such interfaces and ignore the con-
tents of these resources, since they only take advantage of the static link structure
of the web to “crawl” and index web pages.

Even sites that have some static links that are “crawlable” by a search engine
may have much more information available only through a query interface, as the
following real example illustrates.

Example 1.: Consider the medical bibliographic database CANCERLIT r© from
the National Cancer Institute’s International Cancer Information Center, which
makes medical bibliographic information about cancer available through the web1. If
we query CANCERLIT for documents with the keywords lung AND cancer, CAN-
CERLIT returns 67,518 matches, corresponding to high-quality citations to medical
articles. The abstracts and citations are stored locally at the CANCERLIT site and
are not distributed over the web. Unfortunately, the high-quality contents of CAN-
CERLIT are not “crawlable” by traditional search engines. A query2 on AltaVista3

that finds the pages in the CANCERLIT site with the keywords “lung” and “cancer”
returns only 4 matches, which illustrates that the valuable content available through
CANCERLIT is not indexable by traditional crawlers. 2

Additionally, some web sites prevent crawling by restricting access via a robots.txt
file. Such sites then also become de-facto non-crawlable.

In this paper we concentrate on searchable web databases of text documents
regardless of whether their contents are crawlable or not. More specifically, for
our purposes a searchable web database is a collection of text documents that is
searchable through a web-accessible search interface. The documents in a searchable
web database do not necessarily reside on a single centralized site, but can be
scattered over several sites. While some searchable sites offer access to other kinds
of information (e.g., image databases and shopping/auction sites), a discussion on
the classification of these sites is out of the scope of this paper.

In order to effectively guide users to the appropriate searchable web database,
some web sites (described in more detail below) have undertaken the arduous task
of manually classifying searchable web databases into a Yahoo!-like hierarchical
categorization scheme. While we believe this type of categorization can be im-
mensely helpful to web users trying to find information relevant to a given topic, it
is hampered by the lack of scalability inherent in manual classification. By provid-
ing an efficient automatic means for the accurate classification of searchable text
databases into topic hierarchies, we hope to alleviate the scalability problems of
manual database classification, and make it easier for end-users to find the relevant
information they are seeking on the web.

Consequently, in this paper we describe our system, named QProber, which auto-
mates the categorization of searchable web databases into topic hierarchies. QProber
uses a combination of machine learning and database querying techniques. We use
machine learning techniques to initially build document classifiers that have been
trained to classify documents that may be hidden behind searchable interfaces.

1The query interface is available at http://cancernet.nci.nih.gov/cancerlit.shtml.
2The query is lung AND cancer AND host:cancernet.nci.nih.gov.
3http://www.altavista.com
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Rather than actually using these classifiers to categorize individual documents, we
extract classification rules from the document classifiers, and we transform these
rules into a set of query probes that can be sent to the search interface of the
available text databases. Our algorithm then simply uses the number of matches
reported for each query to make classification decisions, without having to retrieve
and analyze any of the actual database documents. This makes our approach very
efficient and scalable.

The contributions presented in this paper are organized as follows: In Section 2
we more formally define and provide various strategies for database classification.
In Section 3 we present the details of our query probing algorithm for database
classification and we describe a rule extraction algorithm that can be used to extract
query probes from a variety of both rule-based and linear document classifiers. In
Sections 4 and 5 we provide the experimental setting and results, respectively.
We compare variations of QProber with existing methods for automatic database
classification. QProber is shown to be both more accurate as well as more efficient
on the database classification task. Also, we examine how different parameters
affect the performance of QProber ; we report results for the different types of
classifiers used as well as results for different probing strategies and document
retrieval models. Finally, Section 6 describes related work, and Section 7 provides
conclusions and discusses possible future research directions.

2. CLASSIFICATION OF TEXT DATABASES

The web contains many collections of documents whose contents are only accessible
through a search interface. In this section we discuss how we can organize the
space of such searchable databases in a hierarchical categorization scheme. We first
define appropriate classification schemes for such databases in Section 2.1, and then
present alternative methods for text database categorization in Section 2.2.

2.1 Classification Schemes for Databases

Web directories like Yahoo! organize web pages into categories for users to browse.
In this section we extend this classification scheme to searchable web databases and
discuss classification alternatives.

Several commercial web directories have recently started to manually classify
searchable web databases, so that users can browse through these categories to find
the databases of interest. Examples of such directories include InvisibleWeb4 and
SearchEngineGuide5. Figure 1 shows a small fraction of InvisibleWeb’s classification
scheme.

Formally, we can define a hierarchical classification scheme like the one used by
InvisibleWeb as follows:

Definition 1.: A hierarchical classification scheme is a rooted directed tree
whose nodes correspond to (topic) categories and whose edges denote specialization.
An edge from category v to another category v′ indicates that v′ is a subcategory of
v. 2

4http://www.invisibleweb.com
5http://www.searchengineguide.com
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Fig. 1. Portion of the InvisibleWeb classification scheme.

Given a classification scheme, our goal is to automatically populate it with search-
able databases where we assign each database to the “best” category or categories
in the scheme. For example, InvisibleWeb has manually assigned WNBA to the
“Basketball” category in its classification scheme. In general we can define what
category or categories are “best” for a given database in several different ways,
according to the needs the classification will serve. We describe different such ap-
proaches next.

2.2 Alternative Classification Strategies

We now turn to the central issue of how to automatically assign databases to
categories in a classification scheme, assuming complete knowledge of the contents
of these databases. Of course, in practice we will not have such complete knowledge,
so we will have to use the probing techniques of Section 3 to approximate the “ideal”
classification definitions that we give next.

To assign a searchable web database to a category or set of categories in a classi-
fication scheme, one possibility is to manually inspect the contents of the database
and make a decision based on the results of this inspection. Incidentally, this is the
way in which commercial web directories like InvisibleWeb operate. This approach
might produce good quality category assignments, but, of course, is expensive (it
includes human participation) and does not scale well to the large number of search-
able web databases.

Alternatively, we could follow a less manual approach and determine the category
of a searchable web database based on the category of the documents it contains. We
can formalize this approach as follows: Consider a web database D and a number of
categories C1, . . . , Cn. If we knew the category of each of the documents inside D,
then we could use this information to classify database D in at least two different
ways. A coverage-based classification will assign D to all categories for which D
has sufficiently many documents. In contrast, a specificity-based classification will
assign D to the categories that cover a significant fraction of D’s holdings.

Example 2.: Consider topic category “Basketball.” CBS SportsLine has a large
number of articles about basketball and covers not only women’s basketball but other
basketball leagues as well. It also covers other sports like football, baseball, and
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hockey. On the other hand, WNBA only has articles about women’s basketball. The
way that we will classify these sites depends on the use of our classification. Users
who prefer to see only articles relevant to basketball might prefer a specificity-based
classification and would like to have the site WNBA classified into node “Basket-
ball.” However, these users would not want to have CBS SportsLine in this node,
since this site has a large number of articles irrelevant to basketball. In contrast,
other users might prefer to have only databases with a broad and comprehensive cov-
erage of basketball in the “Basketball” node. Such users might prefer a coverage-
based classification and would like to find CBS SportsLine in the “Basketball”
node, which has a large number of articles about basketball, but not WNBA with
only a small fraction of the total number of basketball documents. 2

More formally, we can use the number of documents fi in category Ci that we
find in database D to define the following two metrics, which we will use to specify
the “ideal” classification of D.

Definition 2.: Consider a web database D, a hierarchical classification scheme
C, and a category Ci ∈ C. Then the coverage of D for Ci, Coverage(D, Ci), is the
number of documents in D in category Ci, fi.

Coverage(D, Ci) = fi

If Cj is the parent of Ci in C, then the specificity of D for Ci, Specificity(D, Ci),
is the fraction of Cj documents in D that are in category Ci. More formally, we
have:

Specificity(D, Ci) =
fi

|Coverage(D,Cj)|
As a special case, Specificity(D, root) = 1. 2

Specificity(D, Ci) gives a measure of how “focused” the database D is on a subcat-
egory Ci of Cj . The value of Specificity ranges between 0 and 1. Coverage(D,Ci)
defines the “absolute” amount of information that database D contains about cat-
egory Ci

6. For notational convenience we define:

Coverage(D)=〈Coverage(D, Ci1), . . . ,Coverage(D,Cim)〉
Specificity(D)=〈Specificity(D,Ci1), . . . ,Specificity(D, Cim)〉

when the set of categories {Ci1 , . . . , Cim} is clear from the context.
Now, we can use the Specificity and Coverage values to decide how to classify

D into one or more categories in the classification scheme. As described above,
a specificity-based classification would classify a database into a category when a
significant fraction of the documents it contains are of this specific category. Alter-
natively, a coverage-based classification would classify a database into a category
when the database has a substantial number of documents in the given category.
In general, however, we are interested in balancing both Specificity and Coverage

6It would be possible to normalize Coverage values to be between 0 and 1 by dividing fi with the total
number of documents in category Ci across all databases. Although intuitively appealing (Coverage
would then measure the fraction of the universally available information about Ci that is stored in D),
this definition is “unstable” since each insertion, deletion, or modification of a web database changes
the Coverage of the other available databases.
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through the introduction of two associated thresholds, τs and τc, respectively, as
captured in the following definition.

Definition 3.: Consider a classification scheme C with categories C1, . . . , Cn,
and a searchable web database D. The ideal classification of D in C is the set
Ideal(D) of categories Ci that satisfy the following conditions:

—Specificity(D, Ci) ≥ τs.
—Specificity(D, Cj) ≥ τs for all ancestors Cj of Ci.
—Coverage(D,Ci) ≥ τc.
—Coverage(D,Cj) ≥ τc for all ancestors Cj of Ci.
—Coverage(D,Ck) < τc or Specificity(D, Ck) < τs for all children Ck of Ci.

with 0 ≤ τs ≤ 1 and τc ≥ 1 given thresholds. 2

The ideal classification definition given above provides alternative approaches for
“populating” a hierarchical classification scheme with searchable web databases,
depending on the values of the thresholds τs and τc. A low value for the specificity
threshold τs will result in a coverage-based classification of the databases. Similarly,
a low value for the coverage threshold τc will result in a specificity-based classifica-
tion of the databases. The values of choice for τs and τc are ultimately determined
by the intended use and audience of the classification scheme. Next, we introduce
a technique for automatically populating a classification scheme according to the
ideal classification of choice.

3. CLASSIFYING DATABASES THROUGH PROBING

In the previous section we defined how to classify a database based on the number of
documents that it contains in each category. Unfortunately, databases typically do
not export such category-frequency information. In this section we describe how
we can approximate this information for a given database without accessing its
contents. The whole procedure is divided into two parts: First we train our system
for a given classification scheme and then we probe each database with queries to
decide the categories to which it should be assigned. More specifically, we follow
the algorithm below:

(1) Train a document classifier with a set of preclassified documents (Section 3.1).
(2) Extract a set of classification rules from the document classifier and transform

classifier rules into queries (Sections 3.2 and 3.3).
(3) Adaptively issue queries to databases, extracting and adjusting the number of

matches for each query using the classifier’s “confusion matrix” (Section 3.4).
(4) Classify databases using the adjusted number of query matches (Section 3.5).

3.1 Training a Document Classifier

Our database classification technique relies on a document classifier to create the
probing queries, so our first step is to train such a classifier. We use supervised
learning to construct the classifier from a set of preclassified documents. The pro-
cedure follows a sequence of steps, described below.

The first step, which helps both efficiency and effectiveness, is to eliminate from
the training set all words that appear very frequently in the training documents, as
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well as very infrequently appearing words. This initial “feature selection” step is
based on Zipf’s law [Zipf 1949], which provides a functional form for the distribu-
tion of word frequencies in document collections. Very frequent words are usually
auxiliary words that bear no information content (e.g., “am”, “and”, “so” in En-
glish). Infrequently occurring words are not very helpful for classification either,
because they appear in so few documents that there are no significant accuracy
gains from including such terms in a classifier.

The elimination of words dictated by Zipf’s law is a form of feature selection.
However, frequency information alone is not, after some point, a good indicator to
drive the feature selection process further. Thus, we use an information theoretic
feature selection algorithm that eliminates the terms that have the least impact on
the class distribution of documents [Koller and Sahami 1997; Koller and Sahami
1996]. This step eliminates the features that either do not have enough discriminat-
ing power (i.e., words that are not strongly associated with one specific category) or
features that are redundant given the presence of another feature. Using this algo-
rithm we decrease the number of features in a principled way and we can use a much
smaller subset of words to create the classifier, with minimal loss in accuracy. Addi-
tionally, the remaining features are generally more useful for classification purposes,
so classifiers constructed from these features will tend to include more meaningful
terms.

After selecting the features (i.e., words) that we will use for building the document
classifier, we can use an existing machine learning algorithm to create a document
classifier. Many different algorithms for creating document classifiers have been
developed over the last few decades. Well-known techniques include the Naive
Bayes classifier [Duda and Hart 1973], C4.5 [Quinlan 1992], RIPPER [Cohen 1996],
and Support Vector Machines [Joachims 1998], to name just a few. These document
classifiers work with a flat set of categories. To define a document classifier over an
entire hierarchical classification scheme (Definition 1), we train one flat document
classifier for each internal node of the hierarchy.

Once we have trained a document classifier, we could use it to classify all the
documents in a database of interest to determine the number of documents about
each category in the database. We could then classify the database itself according
to the number of documents that it contains in each category, as described in
Section 2. Of course, this requires having access to the whole contents of the
database, which is not a realistic requirement for web databases. We relax this
requirement next.

3.2 Defining Query Probes from a Rule-Based Document Classifier

In this section we describe first the class of rule-based classifiers and then we show
how we can use a rule-based classifier to generate a set of query probes that will help
us estimate the number of documents for each category of interest in a searchable
web database.

For the rule-based classifiers, the classification decisions are based on a set of
logical rules; the antecedents of the rules are a conjunction of words and the conse-
quents are the category assignments for each document. For example, the following
rules are part of a classifier for the three categories “Sports,” “Health,” and “Com-
puters”:
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IF ibm AND computer THEN Computers

IF jordan AND bulls THEN Sports

IF diabetes THEN Health

IF cancer AND lung THEN Health

IF intel THEN Computers

Such rules are used to classify previously unseen documents (i.e., documents
not in the training set). For example, the first rule would classify all documents
containing the words “ibm” and “computer” into the category “Computers.”

Definition 4.: A rule-based document classifier for a flat set of categories C =
{C1, . . . , Cn} consists of a set of rules pk → Clk , k = 1, . . . , m, where pk is a
conjunction of words and Clk ∈ C. A document d matches a rule pk → Clk if all
the words in that rule’s antecedent, pk, appear in d. If a document matches multiple
rules with different classification decisions, the final classification decision depends
on the specific implementation of the rule-based classifier. 2

We can simulate the behavior of a rule-based classifier over all documents of a
database by mapping each rule pk → Clk of the classifier into a boolean query
qk that is the conjunction of all words in pk. Thus, if we send the query probe
qk to the search interface of a database D, the query will match exactly the f(qk)
documents in the database D that would have been classified by the associated rule
into category Clk . For example, we map the rule IF jordan AND bulls THEN Sports
into the boolean query jordan AND bulls. We expect this query to retrieve mostly
documents in the “Sports” category. Now, instead of retrieving the documents
themselves, we just keep the number of matches reported for this query (it is quite
common for a database to start the results page with a line like “X documents
found”), and use this number as a measure of how many documents in the database
match the condition of this rule.

From the number of matches for each query probe, we can construct a good
approximation of the Coverage and Specificity vectors for a database D (Section 2).
We can approximate the number of documents fj in Cj in D as the total number of
matches from all query probes derived from rules with category Cj as a consequent.
The result approximates the distribution of categories of the documents in D. Using
this information we can approximate the Coverage and Specificity vectors as follows:

Definition 5.: Consider a searchable web database D and a rule-based classifier
for a set of categories C. For each query probe q derived from the classifier, database
D returns the number of matches f(q). Then the estimated coverage of D for a
category Ci ∈ C, ECoverage(D,Ci), is the total number of matches for the Ci query
probes.

ECoverage(D,Ci) =
∑

q is a query probe for Ci

f(q)

The estimated specificity of D for Ci, ESpecificity(D,Ci), is

ESpecificity(D,Ci) =
ECoverage(D,Ci)∑

q is a query probe for for either Ci or a sibling of Ci
f(q)

2
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For notational convenience we define:

ECoverage(D) = 〈ECoverage(D,Ci1), . . . ,ECoverage(D,Cim
)〉

ESpecificity(D) = 〈ESpecificity(D, Ci1), . . . ,ESpecificity(D,Cim)〉
when the set of categories {Ci1 , . . . , Cim

} is clear from the context.

Example 3.: Consider a small rule-based document classifier for categories
C1=“Sports,” C2=“Computers,” and C3=“Health” consisting of the five rules listed
in Section 3.1. Suppose that we want to classify the ACM Digital Library database.
We send the query ibm AND computer, which results in 6646 matching documents
(Figure 2). The other four queries return the matches described in Figure 2. Using
these numbers we can estimate that the ACM Digital Library has 0 documents about
“Sports,” 6646+2380=9026 documents about “Computers,” and 18+34=52 docu-
ments about “Health”. Thus, the ECoverage(ACM) vector for this set of categories
is:

ECoverage(ACM) = (0, 9026, 52)

and the respective ESpecificity(ACM) vector is:

ESpecificity(ACM) =
(

0
0 + 9026 + 52

,
9026

0 + 9026 + 52
,

52
0 + 9026 + 52

)

2

ACM
Digital Library34 matches

6646 matches

0 matches

18 matches

2380 matches

diabetes

intel

cancer AND lung

jordan AND bulls

ibm AND computer

Fig. 2. Sending probes to the ACM Digital Library database with queries derived from a docu-
ment classifier.

A shortcoming of the approach described so far is that the same document in
the database can match multiple query probes and hence can be counted multiple
times. One solution is to send the query probes in order, augmenting each query
probe with the negation of all the query probes sent so far. For example, if we
send the probes described above in order, the probe jordan AND bulls will become
jordan AND bulls AND NOT (ibm AND computer). The same principle applies for
the remaining query probes.
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Unfortunately, this overlap-elimination strategy may result in rather long query
probes. This problem could be partially solved by “breaking” the long queries
into smaller conjunctive queries and then sending them to the database as different
probes. Then by exploiting the inclusion-exclusion principle and the number of
matches for each of the derived probes we can calculate the number of matches
for the complex query. For example, instead of sending the query jordan AND
bulls AND NOT (ibm AND computer), we can send the query jordan AND bulls
and then subtract from its number of matches the hits generated for the query
jordan AND bulls AND ibm AND computer. Unfortunately, the number of probes
increases exponentially with the query length. In Section 5 we study the accuracy
and performance implications of this overlap-elimination strategy.

3.3 Extracting Query Probes from Numerically Parameterized Document Classifiers

We have seen so far that we can use directly a rule-based classifier to generate the
query probes required for our classification technique. However, restricting QProber
to only rule-based classifiers would prevent us from exploiting other classification
strategies as they are developed. In this section we describe how we can adapt nu-
merically parameterized classifiers for use with QProber. In particular we describe
an algorithm that approximates a linear binary classifier with a set of classification
rules. We also describe briefly how the same algorithm can be modified to approx-
imate different types of classifiers. Finally, we give some pointers to existing work
in the area of rule extraction.

Before describing the algorithm in detail, we give the notation and the definition
that we will use.

Definition 6.: A binary classifier decides whether a document belongs to one
class or not. Assume that documents are represented using m features (terms). A
binary linear classifier makes this decision by calculating during the training phase
m weights w1, . . . , wm and a threshold b to determine a hyperplane of all points
t = 〈t1, . . . , tm〉 such that:

m∑

i=1

witi = b (1)

This hyperplane divides the m-dimensional document space into two regions: the
region with the documents that belong to the class in question, and the region with all
other documents. Then, given the m-dimensional representation 〈s1, . . . , sm〉 of a
document [Salton and Buckley 1988], the classifier calculates the document’s “score”
as

∑m
i=1 wisi. The value of this score relative to that of threshold b determines the

classification decision for the document. 2

A classifier for m classes can be created using m binary classifiers, one for each class.
Note that such a composite classifier may result in a document being categorized
into multiple classes or into no classes at all.

A large number of classifiers fall into the category of linear classifiers. Examples
include Naive Bayes, and Support Vector Machines (SVM) with linear kernel func-
tions. Details on how to calculate these weights for SVMs and for Naive Bayesian
classifiers can be found in [Burges 1998] and in [Nilsson 1990], respectively.

We can use Equation 1 to approximate a linear classifier with a rule-based clas-
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sifier that will be used to generate the query probes. The intuition is that the
presence of a few highly weighted terms in a document suffices for the linear clas-
sifier to make a positive decision (i.e., go above threshold).

The algorithm works by generating rules in different runs. In each run it cre-
ates rules of different length, i.e., with a different number of terms as antecedents.
During the first run it considers only rules with one term. If the weight of a term
is higher than the threshold b, then this term is qualified to form a rule, since the
presence of this term alone suffices to classify a document in the category. For
efficiency and simplicity, the rules are formed as conjunctions of terms with no
negations. After creating all the rules with one term, the algorithm proceeds to the
next run, in which it creates rules with two words, and so on.

In general, the sufficient condition for a set of terms to form a rule is that the
sum of the weights wi of its terms should exceed the value of the threshold b. The
algorithm is described in more detail in Figure 3. A candidate will be a rule if the
sum of the weights of its terms is greater than the threshold b. Also the derived
rule has to be considered to be “useful”: a rule is useful if and only if it covers a
given number of examples from the training set and its precision is greater than 0.5
(i.e., it matches more correct documents than incorrect ones). The terms that form
a rule are removed from the set of candidate terms and will not participate in later
runs of the algorithm. Also, examples that match a produced rule are removed from
the training set, and will not be used in later runs. To proceed to the next run, the
algorithm uses the remaining candidates and forms candidates that are bigger by
one term in a spirit similar to an algorithm for finding “association rules” [Agrawal
and Srikant 1994]. The difference in our algorithm is that now the definition of
“support” for a set of terms is defined as the sum of the weights of its terms, and
the objective is to extend the “small” itemsets (i.e., the set of terms whose sum of
weights is smaller than b) to get new itemsets with larger support.

GenerateRules(int[] w, int b) {
Rules R = ∅
Candidates C = { {f1}, {f2}, . . . , {fm} }
for each set s ∈ C

support = CalculateSupport(s, w)
if (support< ε)

then C = C − s
k = 1
while (C 6= ∅)

for each set s ∈ C
support = CalculateSupport(s, w)
if (support> b AND Useful(GetRule(s)))

then R = R ∪GetRule(s); C = C − s
C = GenerateNewSets(C, k)
k = k + 1

return R
}

CalculateSupport(Set s, int[] w) {
int sup = 0
for each term ti ∈ s

sup = sup + wi

return sup
}

GenerateNewSets(Set C, int k) {
// All sets in C have the same size, k

set R = ∅
for each set ci ∈ C

find the set F of all sets in C
that have k − 1 common
elements with ci

for each set fi ∈ F
R = R ∪ {ci ∪ fi}

return R
}

Fig. 3. Algorithm to generate rules from a set of weights wi and a threshold b.
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The algorithm described in this section can be used to simulate classifiers that
divide the space using a non-linear polynomial as well. For example, SVMs with
polynomial kernels can be simulated in a similar way by considering the weights
associated with all the higher order terms in the function, but in that case the
possible combinations that need to be considered is greatly increased.

The task of rule extraction from classification models that do not explicitly rep-
resent their output as a set of rules has been studied extensively in the machine
learning community. A typical example is the C4.5RULES algorithm [Quinlan
1992], which generates a set of production rules from a decision tree. In [Craven
1996], Craven describes Trepan, an algorithm for extracting a comprehensible set
of rules from a neural network. We expect that on-going research in the field of rule
extraction can be used for adapting different learning models for use with QProber.

3.4 Adjusting Probing Results

Our goal is to get the exact number of documents in each category for a given
database. Unfortunately, if we use classifiers to automate this process, then the
final result may not be perfect. Classifiers can misclassify documents into incorrect
categories, and may not classify some documents at all if those documents do not
match any rules. Thus, we need to adjust our initial probing results to account for
such potential errors.

It is common practice in the machine learning community to report the document
classification results as a confusion matrix [Kohavi and Provost 1998]. We adapt
this notion of a confusion matrix to match our probing scenario:

Definition 7.: The normalized confusion matrix M = (mij) of a set of query
probes for categories C1, . . . , Cn is an n× n matrix, where mij is the probability of
a document in category Cj being counted as a match by a query probe for category
Ci. Usually,

∑n
i=1 mij 6= 1 because there is a non-zero probability that a document

from Cj will not match any query probe. 2

The algorithm to create the normalized confusion matrix M is:

(1) Generate the query probes from the classifier rules and probe a database of
unseen, preclassified documents (i.e., the test set).

(2) Create an auxiliary confusion matrix X = (xij) and set xij equal to the number
of documents from Cj that were retrieved from probes of Ci.

(3) Normalize the columns of X by dividing column j with the number of docu-
ments in the test set in category Cj . The result is the normalized confusion
matrix M .

Example 4.: Suppose that we have a document classifier for three categories
C1=“Sports,” C2=“Computers,” and C3=“Health.” Consider 5100 unseen, pre-
classified documents with 1000 documents about “Sports,” 2500 documents about
“Computers,” and 1600 documents about “Health.” After probing this set with
the query probes generated from the classifier, we construct the following confusion
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matrix:

M =




600
1000

100
2500

200
1600

100
1000

2000
2500

150
1600

50
1000

200
2500

1000
1600


 =




0.60 0.04 0.125
0.10 0.80 0.09375
0.05 0.08 0.625




Element m23 = 150
1600 indicates that 150 C3 documents mistakenly matched probes of

C2 and that there are a total of 1600 documents in category C3. The diagonal of the
matrix gives the probability that documents that matched query probes were assigned
to the correct category. For example, m11 = 600

1000 indicates that the probability that
a C1 document is correctly counted as a match for a query probe for C1 is 0.6. 2

Interestingly, multiplying the confusion matrix with the Coverage vector repre-
senting the correct number of documents for each category in the test set yields, by
definition, the ECoverage vector with the number of documents in each category
in the test set as matched by the query probes.

Example 4.: (cont.) The Coverage vector with the actual number of documents
in the test set T for each category is Coverage(T) = (1000, 2500, 1600). By multi-
plying M by this vector we get the distribution of T documents in the categories as
estimated by the query probing results.




0.60 0.04 0.125
0.10 0.80 0.09375
0.05 0.08 0.625




︸ ︷︷ ︸
M

×



1000
2500
1600




︸ ︷︷ ︸
Coverage(T)

=




900
2250
1250




︸ ︷︷ ︸
ECoverage(T)

2

Proposition 1.: The normalized confusion matrix M is invertible when the
document classifier used to generate M classifies each document correctly with prob-
ability > 0.5. 2

Proof: From the assumption on the document classifier, it follows that mii >∑n
j=0,i6=j mij . Hence, M is a diagonally dominant matrix with respect to columns.

Then the Gershgorin disk theorem [Johnston 1971] indicates that M is invertible.
2

We note that the condition that a classifier have better than 0.5 probability of
correctly classifying each document is in most cases true, but a full discussion of
this point is beyond the scope of this paper.

Proposition 1, together with the observation in Example 4, suggests a way to
adjust probing results to compensate for classification errors. More specifically, for
an unseen database D that follows the data distribution in our training collections
it follows that:

M × Coverage(D) ∼= ECoverage(D)

Then, multiplying by M−1 we have:

Coverage(D) ∼= M−1 × ECoverage(D)

Hence, during the classification of a database D, we will multiply M−1 by the prob-
ing results summarized in vector ECoverage(D) to obtain a better approximation
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Classify(Category C, Database D) {
Result = ∅
if (C is a leaf node)

then return {C}
Probe database D with the probes derived from the classifier for the subcategories of C
Calculate ECoverage from the number of matches for the probes.
ECoverage(D) = M−1×ECoverage(D) // Confusion Matrix Adjustment
Calculate the ESpecificity vector for C
for all subcategories Ci of C

if (ESpecificity(D, Ci) ≥ τes AND ECoverage(D, Ci) ≥ τec)
then Result = Result ∪ Classify(Ci, D)

if (Result == ∅)
then return {C} // D was not “pushed” down
else return Result

}

Fig. 4. Algorithm for classifying a database D into the category subtree rooted at category C.

of the actual Coverage(D) vector. We will refer to this adjustment technique as
Confusion Matrix Adjustment or CMA for short.

3.5 Using Probing Results for Classification

So far we have seen how to accurately approximate the document category distri-
bution in a database. We now describe a probing strategy to classify a database
using these results.

We classify databases in a top-to-bottom way. Each database is first classified
by the root-level classifier and is then recursively “pushed down” to the lower
level classifiers. A database D is pushed down to the category Cj when both
ESpecificity(D,Cj) and ECoverage(D,Cj) are no less than both threshold τes (for
specificity) and τec (for coverage), respectively. These thresholds will typically be
equal to the τs and τc thresholds used for the Ideal classification. The final set of
categories in which we classify D is the approximate classification of D in C.

Definition 8.: Consider a classification scheme C with categories C1, . . . , Cn

and a searchable web database D. If ESpecificity(D) and ECoverage(D) are the
approximations of the ideal Specificity(D) and Coverage(D) vectors, respectively,
the approximate classification of D in C, Approximate(D), consists of each category
Ci such that:

—ESpecificity(D,Ci) ≥ τes.

—ESpecificity(D,Cj) ≥ τes for all ancestors Cj of Ci.

—ECoverage(D, Ci) ≥ τec.

—ECoverage(D, Cj) ≥ τec for all ancestors Cj of Ci.

—ECoverage(D, Ck) < τec or ESpecificity(D, Ck) < τes for all children Ck of Ci.

with 0 ≤ τes ≤ 1 and τec ≥ 1 given thresholds. 2

The algorithm that computes this set is in Figure 4. To classify a database D in
a hierarchical classification scheme, we call Classify(“root”, D).
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C/C++ Java Visual BasicPerl

Arts
(0,0)

Sports
(22, 0.008)

Science
(430, 0.042)

Health
(0,0)

Programming
(1042, 0.18)

Hardware
(2709, 0.465)

Software
(2060, 0.355)

Computers
(9919, 0.95)

Root

Fig. 5. Classifying the ACM Digital Library database.

Example 5.: Figure 5 shows how we categorized the ACM Digital Library data-
base. Each node is annotated with the ECoverage and ESpecificity estimates deter-
mined from query probes. The subset of the hierarchy that we explored with these
probes depends on the τes and τec thresholds of choice, which for this case were
τes = 0.5 and τec = 100. For example, the subtree rooted at node “Science” was not
explored, because the ESpecificity of this node, 0.042, is less than τes. Intuitively,
although we estimated that around 430 documents in the collection are generally
about “Science,” this was not the focus of the database and hence the low ESpeci-
ficity value. In contrast, the “Computers” subtree was further explored because
of its high ECoverage (9919) and ESpecificity (0.95), but not beyond its children,
since their ESpecificity values are less than τes. Hence the database is classified in
Approximate={“Computers”}. 2

A potential problem with this algorithm is that a correct classification decision
depends on correct classifications in all the nodes that are on the path from the root
node to the correct category node(s). Any error made along the path to the correct
node is unrecoverable. An alternative approach is to probe the database using
the classifiers of all the nodes in the classification scheme and then decide on the
classification based on the overall results. However, this approach would require a
much larger number of probe queries and would increase considerably the cost of our
method. Previous work in hierarchical document classification [Sahami 1998] has
outlined other approaches for this problem, but a full discussion of such extensions
is beyond the scope of this paper. We simply note here that the techniques used in
the case of hierarchical document classification can be adapted for use in the case
of hierarchical database classification that we address in this work.

4. EXPERIMENTAL SETTING

We now describe the data (Section 4.1), techniques we compare (Section 4.2), and
metrics (Section 4.3) of our experimental evaluation.
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4.1 Data Collections

To evaluate our classification techniques, we first define a comprehensive classifica-
tion scheme (Section 2.1) and then build text classifiers using a set of preclassified
documents. We also specify the databases over which we tuned and tested our
probing techniques.

Rather than defining our own classification scheme arbitrarily from scratch we
instead rely on that of existing directories. More specifically, for our experiments we
picked the five largest top-level categories from Yahoo!, which were also present in
InvisibleWeb. These categories are “Arts,” “Computers,” “Health,” “Science,” and
“Sports.” We then expanded these categories up to two more levels by selecting the
four largest Yahoo! subcategories also listed in InvisibleWeb. (InvisibleWeb largely
agrees with Yahoo! on the top-level categories in their classification scheme.) The
resulting three-level classification scheme consists of 72 categories, 54 of which are
leaf nodes in the hierarchy. A small fraction of the classification scheme was shown
in Figure 5.

To train a document classifier over our hierarchical classification scheme we used
postings from newsgroups that we judged relevant to our various leaf-level cate-
gories. For example, the newsgroups comp.lang.c and comp.lang.c++ were con-
sidered relevant to category “C/C++.” We collected 500,000 articles from April
through May 2000. 54,000 of these articles, 1000 per leaf category, were used to
train the document classifiers, and 27,000 articles were set aside as a test collection
for the classifier (500 articles per leaf category). We used the remaining 419,000
articles to build controlled databases as we report below.

To evaluate database classification strategies we use two kinds of databases:
“Controlled” databases that we assembled locally and that allowed us to perform
a variety of sophisticated studies, and real “Web” databases:

Controlled Database Set: We assembled 500 databases using 419,000 news-
group articles not used in the classifier training. As before, we assume that each
article is labeled with one category from our classification scheme, according to the
newsgroup where it originated. Thus, an article from newsgroups comp.lang.c
or comp.lang.c++ will be regarded as relevant to category “C/C++,” since these
newsgroups were assigned to category “C/C++.” The size of the 500 Controlled
databases that we created ranged from 25 to 25,000 documents. Out of the 500
databases, 350 are “homogeneous,” with documents from a single category, while
the remaining 150 are “heterogeneous,” with a variety of category mixes. We define
a database as “homogeneous” when it has articles from only one node, regardless of
whether this node is a leaf node or not. If it is not a leaf node, then it has equal num-
ber of articles from each leaf node in its subtree. The “heterogeneous” databases,
on the other hand, have documents from different categories that reside in the same
level in the hierarchy (not necessarily siblings), with different mixture percentages.
We believe that these databases model real-world searchable web databases, with a
variety of sizes and foci. These databases were indexed and queried by a SMART-
based program [Salton and McGill 1997] supporting both boolean and vector-space
retrieval models.

Web Database Set: We also evaluate our techniques on real web-accessible
databases over which we do not have any control. We picked the first five databases
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URL InvisibleWeb Category

http://www.cancerbacup.org.uk/search.shtml Cancer

http://search.java.sun.com Java

http://hopkins-aids.edu/index search.html AIDS

http://www.agiweb.org/htdig/search.html Earth Science

http://mathCentral.uregina.ca/QQ/QQsearch.html Mathematics

Table 1. Some of the real web databases in the Web set.

listed in the InvisibleWeb directory under each node in our classification scheme
(recall that our classification scheme is a portion of InvisibleWeb). This resulted in
130 real web databases. (Some of the lower level nodes in the classification scheme
have fewer than five databases assigned to them.) 12 databases out of the 130
have articles that were “newsgroup style” discussions similar to the databases in
the Controlled set, while the other 118 databases have articles of various styles,
ranging from research papers to film reviews. For each database in the Web set, we
constructed a simple wrapper to send a query and get back the number of matches
for each query, which is the only information that our database classification pro-
cedure requires. Table 1 shows a sample of five databases from the Web set.

4.2 Techniques for Comparison

We tested variations of our probing technique, which we refer to as “QProber,”
against two alternative strategies. The first one is an adaptation of the technique
described in [Callan et al. 1999], which we refer to as “Document Sampling.” The
second one is a method described in [Wang et al. 2000] that was specifically designed
for database classification. We will refer to this method as “Title-based Querying.”
The methods are described in detail below.

4.2.1 QProber. This is our technique, described in Section 3, which uses a doc-
ument classifier for each internal node of our hierarchical classification scheme.
Several parameters and options are involved in the training of the document clas-
sifiers. For feature selection, we start by eliminating from consideration any word
in a list of 400 very frequent words (e.g., “a”, “the”) from the SMART [Salton and
McGill 1997] information retrieval system. We then further eliminate all infrequent
words that appeared in fewer than three documents. We treated the root node of
the classification scheme as a special case, since it covers a much broader spectrum
of documents. For this node, we only eliminated words that appeared in fewer than
five documents. Also, we considered applying the information theoretic feature
selection algorithm from [Koller and Sahami 1997; Koller and Sahami 1996]. We
studied the performance of our system without this feature selection step (FS=off )
or with this step, in which we kept only the top 10% most discriminating words
(FS=on). We also experimented with different kinds of classifiers. We created
rule-based classifiers using RIPPER [Cohen 1996], as well as using C4.5RULES to
extract rules from decision trees generated by C4.5 [Quinlan 1992]. We refer to
these two versions of QProber as QP-RIPPER and QP-C4.5 respectively. Addi-
tionally, we used our technique of Section 3.3 to derive rule-based classifiers from
Naive Bayes classifiers [Duda and Hart 1973] and from Support Vector Machines
with linear kernels [Joachims 1998]. We refer to these versions as QP-Bayes and
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QP-SVM respectively. After setting up the system, the main parameters that can
be varied in our database classification technique are thresholds τec (for coverage)
and τes (for specificity). Different values for these thresholds result in different
approximations Approximate(D) of the ideal classification Ideal(D).

4.2.2 Document Sampling (DS). Callan et al. in [Callan et al. 1999; Callan and
Connell 2001] use query probing to automatically construct a “language model”
of a text database (i.e., to extract the vocabulary and associated word-frequency
statistics). Queries are sent to the database to retrieve a representative random
document sample. The documents retrieved are analyzed to extract the words that
appear in them. Although this technique was not designed for database classifica-
tion, we decided to adapt it to our task as follows:

(1) Pick a random word from a dictionary and send a one-word query to the
database in question.

(2) Retrieve the top-N documents returned by the database for the query.
(3) Extract the words from each document and update the list and frequency of

the words accordingly.
(4) If a termination condition is met, go to Step 5; else go to Step 1.
(5) Use a modification of the algorithm in Figure 4 that classifies the documents

in the sample document collection rather than probing the database itself with
the classification rules.

For Step 1, we use a random word from the approximately 100,000 words in our
newsgroup collection. For Step 2, we use N = 4, which is the value that Callan
et al. recommend in [Callan et al. 1999]. Finally, for the termination condition in
Step 4 we used both the termination conditions described in [Callan and Connell
2001] and in [Callan et al. 1999]. In [Callan and Connell 2001] the algorithm
terminates after the retrieval of 500 documents, while in [Callan et al. 1999] the
algorithm terminates when the vocabulary and frequency statistics associated with
the sample document collection converge to a reasonably stable state. We refer to
the version of the Document Sampling technique described in [Callan et al. 1999]
as DS99, while we refer to the newer version described in [Callan and Connell 2001]
simply as DS. After the construction of the local document sample, the adapted
technique can proceed almost identically as in Section 3.5 by classifying the locally
stored document sample rather than the original database. In our experiments
using Document Sampling and linear classifiers, we used the originally generated
linear classifiers and not the rule-based approximations, since the documents in
this case are available locally and there is no need to approximate the existing
classifiers with rule sets. The variations of Document Sampling that use different
classifiers are named DS-RIPPER, DS-C4.5, DS-Bayes, and DS-SVM, depending
on the classifier used. We also tested the DS99 technique with different classifiers;
the results, however, were consistently worse compared to those for the newer DS
technique. For conciseness, in Section 5 we only report the results obtained for
DS99 with the RIPPER document classifier. A crucial difference between the
Document Sampling technique and QProber is that QProber only uses the number
of matches reported by each database, while the Document Sampling technique
requires retrieving and analyzing the actual documents from the database.
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4.2.3 Title-based Querying (TQ). Wang et al. [Wang et al. 2000] present three
different techniques for the classification of searchable web databases. For our ex-
perimental evaluation we picked the method they deemed best. Their technique
creates one long query for each category using the title of the category itself (e.g.,
“Baseball”) augmented by the titles of all of its subcategories. For example, the
query for category “Baseball” is “baseball mlb teams minor leagues stadiums statis-
tics college university...” The query for each category is sent to the database in
question, the top ranked results are retrieved, and the average similarity [Salton
and McGill 1997] of these documents and the query defines the similarity of the
database with the category. The database is then classified into the categories that
are most similar with it. A significant problem with this approach is the fact that
a large number of web-based databases will prune the query if it exceeds a specific
length. For example, Google7 truncates any query of more than ten words. The
results returned from the database in this case will not be the expected ones. The
details of the algorithm are described below.

(1) For each category Ci:
(a) Create an associated “concept query,” which is simply the title of the cat-

egory augmented with the titles of its subcategories.
(b) Send the “concept query” to the database in question.
(c) Retrieve the top-N documents returned by the database for this query.
(d) Calculate the similarity of these N documents with the query. The average

similarity will be the similarity of the database with category Ci.
(2) Rank the categories in order of decreasing similarity with the database.
(3) Assign the database to the top-K categories of the hierarchy.

To create the concept queries of Step 1, we augmented our hierarchy with an extra
level of “titles,” as described in [Wang et al. 2000]. For Step 1(c) we used the value
N = 10, as recommended by the authors. We used the cosine similarity function
with tf.idf weighting [Salton and Buckley 1988]. Unfortunately, the value of K in
Step 3 is left as an open parameter in [Wang et al. 2000]. We decided to favor this
technique in our experiments by “revealing” to it the correct number of categories
into which each database should be classified. Of course this information would not
be available in a real setting, and was not provided to QProber or the Document
Sampling technique.

4.3 Evaluation Metrics

We evaluate classification algorithms by comparing the approximate classification
Approximate(D) that they produce against the ideal classification Ideal(D). We
could just report the fraction of the categories in Approximate(D) that are correct
(i.e., that also appear in Ideal(D)). However, this would not capture the nuances
of hierarchical classification. For example, we may have classified a database in
category “Sports,” while it is a database about “Basketball.” The metric above
would consider this classification as absolutely wrong, which is not appropriate
since, after all, “Basketball” is a subcategory of “Sports.” With this in mind, we
adapt the precision and recall metrics from information retrieval [Cleverdon and

7http://www.google.com
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Mills 1963]. We first introduce an auxiliary definition. Given a set of categories N ,
we “expand” it by including all the subcategories of the categories in N – in essence,
taking the downward closure of the set of categories N in the classification hierarchy
C. Thus Expanded(N) = {c ∈ C|c ∈ N or c is in a subtree of some n ∈ N}. Now,
we can define precision and recall as follows.

Definition 9.: Consider a database D that is classified into the set of cate-
gories Ideal(D), and an approximation of Ideal(D) given in Approximate(D). Let
Correct = Expanded(Ideal(D)) and Classified = Expanded(Approximate(D)). Then
the precision and recall of the approximate classification of D are:

precision =
|Correct ∩ Classified|

|Classified|
recall =

|Correct ∩ Classified|
|Correct|

2

To condense precision and recall into one number, we use the F1-measure met-
ric [van Rijsbergen 1979],

F1 =
2× precision× recall

precision + recall

which is only high when both precision and recall are high, and is low for design
options that trivially obtain high precision by sacrificing recall or vice versa.

Example 6.: Consider the classification scheme in Figure 5. Suppose that the
ideal classification for a database D is Ideal(D)={“Programming”}. Then, the
Correct set of categories include “Programming” and all its subcategories, namely
“C/C++,” “Perl,” “Java,” and “Visual Basic.” If we approximate Ideal(D) as Ap-
proximate(D)={“Java”} using the algorithm in Figure 4, then we do not manage
to capture all categories in Correct. In fact we miss four out of five such categories
and hence recall=0.2 for this database and approximation. However, the only cat-
egory in our approximation, “Java,” is a correct one, and hence precision=1. The
F1-measure summarizes recall and precision in one number, F1 = 2×1×0.2

1+0.2 = 0.33.
2

An important property of classification strategies over the web is scalability. We
measure the efficiency of the various techniques that we compare by modelling their
cost. More specifically, the main cost we quantify is the number of “interactions”
required with the database to be classified, where each interaction is either a query
submission (needed for all three techniques) or the retrieval of a database document
(needed only for Document Sampling and Title-based Querying). Of course, we
could include other costs in the comparison (namely, the cost of parsing the results
and processing them), but we believe that they would not affect our conclusions,
since these costs are CPU-based and small compared to the cost of interacting with
the databases over the Internet.

All methods parse the query result pages to get the information they need. Our
method requires very simple parsing, namely just getting the number of matches
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from a line of the result. The other two methods require a more expensive analysis
to identify the actual documents in the result. To simplify our analysis, we disregard
this result parsing cost, since considering this cost would only benefit our technique
in the comparison. Additionally, all methods have a local processing cost to analyze
the results of the probing phase. This cost is negligible compared to the cost of query
submission and document retrieval: Our method requires the multiplication of the
results with the inverse of the normalized confusion matrices. These are m × m
matrices where m is at most the largest number of subcategories for a category
in the hierarchical classification scheme. (Recall that we have a small rule-based
document classifier for each node in a hierarchical classification scheme.) Since m
will rarely exceed 15 categories or so in a reasonable scheme, this cost will be small.
The local processing costs for Document Sampling are similar to our method, except
for the fact that Document Sampling has to classify the locally stored collection
of sample documents. We also consider this cost negligible relative to other cost
components. Finally, Title-based Querying requires calculating the similarities of
the documents with the query, and ranking the categories accordingly.

5. EXPERIMENTAL RESULTS

We now report experimental results that we used to tune our system (Section 5.1)
and to compare the different classification alternatives both for the Controlled
database set (Section 5.2) and for the Web database set (Section 5.3).

5.1 Tuning QProber

QProber has some open parameters that we tuned experimentally by using a set of
100 Controlled databases (Section 4.1). These databases did not participate in any
of the subsequent experiments.

We examined whether the theoretic feature selection step (Section 4.2) and the
confusion matrix adjustment of the probing results (Section 3.4) affected the clas-
sification accuracy. We ran QProber with (FS=on) and without (FS=off ) this
feature selection step, and with (CMA=on) and without (CMA=off ) the confusion
matrix adjustment step, and we evaluated the classification results of the individ-
ual classifiers. We did this for our four versions of QProber, namely QP-RIPPER,
QP-C4.5, QP-Bayes, and QP-SVM. Unfortunately, the C4.5 classifier underlying
QP-C4.5 could not handle the training set with all the features, so we could not
create the C4.5 classifiers with FS=off. However, it is reported that feature selec-
tion helps C4.5 avoid overfitting [Kohavi and John 1997; Koller and Sahami 1996],
hence we believe that the results without feature selection would have been worse
for QP-C4.5 anyway.

As the evaluation metric we used the F1-measure for the flat set of categories
associated with each classifier. In particular, we measured the F1-measure for each
classifier and for each of the 100 databases, as long as this database contained
documents assigned to any of the classifier’s categories. Then we compared the
average performance of the classifiers over the training set (Tables 2 through 5; the
best results appear in boldface). The tables include the results for all the non-leaf
nodes of our classification scheme.

The results were conclusive for the confusion matrix adjustment (CMA). For
QP-RIPPER, the results were consistently better after the application of the ad-
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justment. For the other QProber versions, CMA improved the results in the ma-
jority of the cases, especially for the nodes in the higher levels of the hierarchy,
which have the highest impact on overall classification accuracy. We believe that
the adjustment did not have the desired results in some lower-level nodes because
the number of documents used to create the confusion matrices was smaller for the
lower-level nodes than for the higher-level ones (where CMA was always beneficial).
Notwithstanding these shortcomings of CMA, we decided to use CMA for the rest
of our experiments.

Our results for the feature selection step agreed mostly with existing results in
the area. In particular, the results for QP-Bayes were consistently better after
the application of the feature selection step. This result agrees with earlier work
in the field of feature selection [Koller and Sahami 1996]. For QP-RIPPER the
results were mixed: feature selection improved the classifier’s accuracy for most,
but not all, of the nodes. However, the loss in accuracy was small for those cases
where feature selection hurt accuracy. Hence, given that after feature selection the
training of the classifier can be performed in a fraction of the time that would be
required otherwise, we believe that feature selection is a worthwhile step in this
case as well. Finally, the results for QP-SVM were inconclusive: the impact of the
feature-selection step on this version of QProber was significantly smaller than on
the other cases.

For the experiments in the remainder of the paper, we picked the best classifier
for each node individually. Hence some nodes used the feature-selection step while
others did not. This flexibility is an advantage of the hierarchical classification
scheme over a simple flat scheme: each node can be configured separately. Even if
this results in longer tuning time, this can produce better classification results. It
is also possible to use different kinds of classifiers for each node; for example, we
could have used an SVM classifier for one node and a RIPPER classifier for another.
To keep our experiments manageable, we did not try this otherwise interesting
variation.

We now turn to reporting the results of the experimental comparison of the
different versions of QProber, Document Sampling, and Title-based Querying over
the 400 unseen databases in the Controlled set and the 130 databases in the Web
set.

5.2 Results over the Controlled Databases

Accuracy for Different τs and τc Thresholds. As explained in Section 2.2, Defi-
nition 3, the ideal classification of a database depends on two parameters: τs (for
specificity) and τc (for coverage). The values of these parameters are an “edito-
rial decision” and depend on whether we decide that our classification scheme is
specificity- or coverage-oriented, as discussed previously. To classify a database,
both QProber and the Document Sampling techniques need analogous thresholds
τes and τec. We ran experiments over the Controlled databases for different combi-
nations of the τs and τc thresholds, which result in different ideal classifications for
the databases. Intuitively, for low specificity threshold τs the Ideal classification will
have the databases assigned mostly to leaf nodes, while a high specificity thresh-
old might lead to databases being classified at more general nodes. Similarly, low
coverage thresholds τc produce Ideal classifications where the databases are mostly
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QP-Bayes

FS=on FS=off
Node CMA=on CMA=off CMA=on CMA=off

root 0.8957 0.8025 0.8512 0.7811
root-arts 0.9152 0.9136 0.8223 0.8313
root-arts-literature 0.6811 0.6984 0.6595 0.6822
root-arts-music 0.8736 0.8712 0.5298 0.8160
root-computers 0.7715 0.7384 0.7515 0.7245
root-computers-programming 0.9617 0.8854 0.8297 0.8633
root-computers-software 0.7158 0.7654 0.6679 0.7856
root-health 0.7966 0.7871 0.5740 0.7036
root-health-diseases 0.9213 0.9034 0.7213 0.8060
root-health-fitness 0.8707 0.8854 0.7516 0.8620
root-science 0.9034 0.8070 0.7009 0.7769
root-science-biology 0.9293 0.8829 0.8762 0.8383
root-science-earth 0.8555 0.8165 0.6062 0.8520
root-science-math 0.7805 0.7373 0.6907 0.6150
root-science-socialsciences 0.9282 0.8797 0.8092 0.7020
root-sports 0.9205 0.8657 0.8944 0.9095
root-sports-basketball 0.9214 0.8252 0.8028 0.8229
root-sports-outdoors 0.9674 0.9295 0.9459 0.8814

Table 2. The F1-measure for QP-Bayes, with and without feature selection (FS), and with and
without confusion-matrix adjustment (CMA).

QP-C4.5

Node CMA=on CMA=off

root 0.9195 0.8509
root-arts 0.9000 0.8693
root-arts-literature 0.7895 0.7774
root-arts-music 0.8755 0.8898
root-computers 0.8620 0.8374
root-computers-programming 0.9226 0.9017
root-computers-software 0.8151 0.8497
root-health 0.8724 0.8580
root-health-diseases 0.9611 0.9374
root-health-fitness 0.7976 0.8251
root-science 0.9322 0.9108
root-science-biology 0.9160 0.9201
root-science-earth 0.5299 0.6198
root-science-math 0.6992 0.6977
root-science-socialsciences 0.9262 0.8898
root-sports 0.9189 0.8864
root-sports-basketball 0.8486 0.8463
root-sports-outdoors 0.8405 0.8510

Table 3. The F1-measure for QP-C4.5 with and without confusion-matrix adjustment (CMA).
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QP-SVM

FS=on FS=off
Node CMA=on CMA=off CMA=on CMA=off

root 0.9384 0.8876 0.9170 0.8503
root-arts 0.9186 0.7704 0.9109 0.8373
root-arts-literature 0.6891 0.7543 0.6307 0.7547
root-arts-music 0.9436 0.9031 0.9422 0.9126
root-computers 0.7531 0.7529 0.5575 0.7510
root-computers-programming 0.9193 0.9305 0.9714 0.9375
root-computers-software 0.6347 0.7102 0.6930 0.8587
root-health 0.9149 0.8811 0.9406 0.9001
root-health-diseases 0.9414 0.9159 0.9545 0.9052
root-health-fitness 0.9299 0.9441 0.9165 0.8764
root-science 0.9368 0.8535 0.9377 0.8675
root-science-biology 0.9704 0.9623 0.9567 0.9120
root-science-earth 0.8302 0.8092 0.6579 0.8076
root-science-math 0.7847 0.8088 0.5419 0.8173
root-science-socialsciences 0.7802 0.7312 0.7733 0.7633
root-sports 0.8990 0.7958 0.9330 0.8323
root-sports-basketball 0.9099 0.8466 0.9727 0.9523
root-sports-outdoors 0.9724 0.9205 0.9703 0.9431

Table 4. The F1-measure for QP-SVM, with and without feature selection (FS), and with and
without confusion-matrix adjustment (CMA).

QP-RIPPER

FS=on FS=off
Node CMA=on CMA=off CMA=on CMA=off

root 0.9578 0.8738 0.9274 0.8552
root-arts 0.9521 0.8293 0.9460 0.8763
root-arts-literature 0.8220 0.7872 0.8462 0.8374
root-arts-music 0.9555 0.9386 0.9622 0.9259
root-computers 0.9412 0.8844 0.9376 0.8997
root-computers-programming 0.9701 0.9444 0.9546 0.9368
root-computers-software 0.7923 0.7321 0.8125 0.7694
root-health 0.9801 0.9301 0.9606 0.8956
root-health-diseases 0.9678 0.9156 0.9658 0.9221
root-health-fitness 0.9259 0.8878 0.9136 0.8946
root-science 0.9651 0.8817 0.9634 0.8854
root-science-biology 0.9720 0.9391 0.9717 0.9391
root-science-earth 0.9038 0.8639 0.8905 0.8403
root-science-math 0.9244 0.8806 0.9326 0.8849
root-science-socialsciences 0.9320 0.8932 0.9207 0.8824
root-sports 0.9458 0.8939 0.9447 0.8832
root-sports-basketball 0.9536 0.9107 0.9591 0.9024
root-sports-outdoors 0.9720 0.9357 0.9566 0.9227

Table 5. The F1-measure for QP-RIPPER, with and without feature selection (FS), and with
and without confusion-matrix adjustment (CMA).
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Fig. 6. The average F1-measure of the different techniques for varying specificity threshold τs

(τc = 8).

assigned to the leaves, while higher values of τc tend to produce classifications with
the databases assigned to higher level nodes.

For the different versions of QProber and of DS we set τes = τs and τec = τc.
Title-based Querying does not use any such threshold, but instead needs to decide
how many categories K to assign a given database (Section 4.2). Although of course
the value of K would be unknown to a classification technique (unlike the values
for thresholds τs and τc), we reveal K to this technique, as discussed in Section 4.2.

Figure 6 shows the average value of the F1-measure for varying τs and for τc = 8,
over the 400 unseen databases in the Controlled set. The results were similar for
other values of τc as well. In general, two variations of QProber, QP-RIPPER and
QP-SVM, perform best for a wide range of τs values, with QP-RIPPER exhibiting
a small performance advantage over QP-SVM. This similar performance is expected
since SVMs are known to perform well with text, so even a rule-based approximation
of them can reach the performance of a pure rule-based classifier like RIPPER.
Given that the optimization of rule extraction was not the focus of this article, we
expect that QP-SVM can be further optimized. The effectiveness of two variations
of DS, DS-RIPPER and DS-SVM, was also good, although it was slightly inferior
than that of their QProber counterparts. Additionally, as we will see, their cost
is much higher than the QProber versions. As expected, the performance of DS-
SVM is better than that of DS-RIPPER: SVMs are reported to perform better than
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other classification approaches for text, so it is no surprise that for this classification
task they perform better. The comparison of the other versions of QProber with
their DS analogs reveals that QProber generally performs better than DS and that
sampling using random queries is inferior than using a focused, carefully chosen set
of queries learned from training examples.

An interesting conclusion from our experiments is that the new version of DS
that retrieves a constant number of documents from each database performs much
better than the old version, DS99. The results for DS99 were consistently worse
than those for DS because DS99 usually stops before retrieving as many documents
as DS, and hence it does not manage to create a good representative profile of the
databases.

Finally, the comparison of the remaining techniques with Title-based Querying
(TQ) reveals that TQ cannot outperform any version of QProber and Document
Sampling except for the case when τs = 1. For this setting even very small esti-
mation errors for QProber and Document Sampling result in errors in the database
classification (e.g., even if QProber estimates 0.9997 specificity for one category it
will not classify the database into that category, due to its “low specificity”).

Figure 7 shows the average value of the F1-measure for varying τc with τs = 0.3.
The results were similar for other values of τs as well. Again, QP-RIPPER and QP-
SVM outperform the other alternatives and each version of QProber outperforms
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its DS counterpart. Title-based Querying in general performs worse than any other
technique, and only outperforms DS99 for high values of threshold τc.

Effect of Depth of Hierarchy in Accuracy. An interesting question is whether
classification performance is affected by the depth of the classification hierarchy.
We tested the different methods against “adjusted” versions of our hierarchy of
Section 4.1. Specifically, we first used our original classification scheme with three
levels (level=3 ). Then we eliminated all the categories of the third level to create
a shallower classification scheme (level=2 ). We repeated this process again, until
our classification schemes consisted of one single node (level=0 ). Of course, the
performance of all the methods at this point was perfect. In Figure 8 we compare
the performance of the different methods for τs = 0.3 and τc = 8 (the trends
were the same for other threshold combinations as well). The results confirmed
our earlier observations: QProber performs better than the other techniques for
different depths, with only a smooth degradation in performance for increasing
depth, which suggests that our approach can scale to a large number of categories.

Efficiency of the Classification Methods. As we discussed in Section 4.3, we com-
pare the number of queries sent to a database during classification and the number
of documents retrieved, since the other costs involved are comparable for the three
methods. The Title-based Querying technique has a constant cost for each clas-
sification: it sends one query for each category in the classification scheme and
retrieves 10 documents from the database. Thus, this technique sends 72 queries
and retrieves 720 documents for our 72-node classification scheme. QProber sends
a variable number of queries to the database being classified. The exact number de-
pends on how many times the database will be “pushed” down a subcategory (Fig-
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ure 4). Our technique does not retrieve any documents from the database. Finally,
the Document Sampling methods (DS and DS99 ) send queries to the database and
retrieve four documents for each query until the termination condition is met. We
list in Figure 9 the average number of “interactions” for varying values of specificity
threshold τes with τec = 8. Figure 10 shows the average number of “interactions”
for varying coverage threshold τec with τes = 0.3. The results show that both
variations of Document Sampling are the most expensive methods. This happens
because Document Sampling sends a large number of queries to the database that
do not match any documents. Such queries in the Document Sampling method
are a large source of overhead. On the other hand, when few documents match a
specific query probe from QProber, this reveals that there is a lack of documents
that belong to the category associated with this probe. The results of such queries
are thus effectively used by QProber for the final classification decision.

For low values of the specificity and coverage thresholds τes and τec, Title-based
Querying performs fewer “interactions” than some versions of QProber. This hap-
pens because for these settings the variations of QProber tend to push databases
down the hierarchy more easily, which in turn translates into more query probes.
However, the cheapest method of QProber, namely QP-SVM, is always cheaper than
Title-based Querying, and it always greatly outperforms it in terms of accuracy.



QProber: A System for Automatic Classification of Hidden-Web Resources · 29

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Tec

N
um

be
r 

of
 In

te
ra

ct
io

ns


QP-RIPPER QP-SVM

QP-Bayes QP-C4.5

DS99 TQ

DS

Fig. 10. The average number of “interactions” with the databases as a function of threshold τec

(τes = 0.3).

Finally, the QProber queries are short, consisting on average of only 1.5 words,
with a maximum of four words. In contrast, the average Title-based Querying query
probe consisted of 18 words, with a maximum of 348 words. Such long queries may
be problematic to process for some searchable web databases.

Eliminating Overlap between Query Probes. As discussed in Section 3.2, a po-
tential problem with QProber is that its query probes overlap. A single document
might match several query probes for a single category and would then be “counted”
multiple times by QProber. A possible fix for this problem is to augment each query
probe with the negation of all earlier probes so that only “new” matches are counted
each time. (See Section 3.2 for more details.) Figure 11 shows the performance of
this overlap-elimination refinement of QP-RIPPER and QP-SVM against the per-
formance of their original versions without overlap elimination. Surprisingly, the
overlap-elimination refinement resulted in slightly degraded classification accuracy.
A possible explanation for this phenomenon is that the original versions of QProber
might actually benefit from probe overlap, since “double-counting” might help com-
pensate for the low recall of some of the query probes. Given these results, and
especially considering that overlap elimination is expensive (Section 3.2), we do not
consider this QProber refinement further.
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Using Different Document Retrieval Models. Up until now, we have assumed that
the text databases to classify support a boolean model of document retrieval. In
other words, given a boolean query (e.g., a conjunction of terms), each database
returns the exact number of documents that match the query in a boolean sense
(e.g., the number of documents in the database that contain all query terms in a
conjunction). We now relax this assumption and study the accuracy of the classi-
fication algorithms over databases that support other document retrieval models.
Specifically, we focus on databases supporting the popular vector-space retrieval
model [Salton and McGill 1983], where a query is simply a list of words, and the
query results are a list of documents ordered by document-query similarity. Hence,
the number of “matches” returned by a vector-space database for a query is no
longer the number of documents with, say, all query terms, but usually a higher
number. We ran the various classification algorithms over the Controlled databases,
now running a vector-space query interface based on the SMART system [Salton
and McGill 1997]. Figure 12 shows the results that we obtained, together with the
corresponding earlier results for a boolean interface. As expected, the accuracy of
all QProber versions is somewhat worse for the vector-space case, and QP-SVM
and QP-RIPPER still dominate with high F1-measure values.

5.3 Results over the Web Databases

The experiments over the Web databases involved only the QProber system. The
main reason for this was the prohibitive cost of running such experiments for the
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Fig. 12. The average F1-measure for the classification techniques over databases with boolean
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Document Sampling and the Title-based Querying techniques, which would have
required constructing “wrappers” for each of the 130 databases in the Web set.
Such wrappers would have to extract all necessary document pointers from result
pages from each query probe returned by the database, so defining them involves
non-trivial human effort. In contrast, the “wrappers” needed by QProber are sig-
nificantly simpler, which is a major advantage of our approach. As we will discuss
in Section 7, the QProber wrappers only need to extract the number of matches
from each results page, a task that could be automated since the patterns used by
search engines to report the number of matches for queries are quite uniform. Also,
to keep the overall load on the test sites low, we have probed the sites in the Web
set using only the probes for the QP-RIPPER version of QProber. This version
had the highest performance for the Controlled set.

For the experiments over the Controlled set, the classification thresholds τs and
τc of choice were known. In contrast, for the databases in the Web set we are as-
suming that their Ideal classification is whatever categories were chosen (manually)
by the InvisibleWeb directory (Section 4.1). This classification of course does not
use the τs and τc thresholds in Definition 3, so we cannot use these parameters
as in the Controlled case. However, we assume that InvisibleWeb (and any con-
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Training

Subset

Learned τs, τc F1-measure over

Training Subset

Test Subset F1-measure over

Test Subset

W1∪W2 0.3, 16 0.77 W3 0.79

W1∪W3 0.3, 8 0.78 W2 0.75

W2∪W3 0.3, 8 0.77 W1 0.77

Table 6. Results of three-fold cross-validation over the Web databases.

sistent categorization effort) implicitly uses the notion of specificity and coverage
thresholds for their classification decisions. Hence we try and learn such thresholds
from a fraction of the databases in the Web set, use these values as the τes and
τec thresholds for QProber, and validate the performance of our technique over the
remaining databases in the Web set.

Accuracy for Different τs and τc Thresholds. For the Web set, the Ideal classifi-
cation for each database is taken from InvisibleWeb. To find the τs and τc that are
“implicitly used” by human experts at InvisibleWeb we have split the Web set in
three disjoint sets W1, W2, and W3. We first use the union of W1 and W2 to learn
the values of τs and τc by exhaustively exploring a number of combinations and
picking the τes and τec value pair that yielded the best F1-measure (Figure 13). As
we can see, the best values corresponded to τes = 0.3 and τec = 16, with F1 = 0.77.
To validate the robustness of the conclusion, we tested the performance of QProber
over the third subset of the Web set, W3: for these values of τes and τec the F1-
measure over the unseen W3 set was 0.79, very close to the one over training sets W1,
W2. Hence, the training to find the τs and τc values was successful, since the pair of
thresholds that we found performs equally well for the InvisibleWeb categorization
of unseen web databases. We performed three-fold cross-validation [Mitchell 1997]
for this threshold learning by training on W2 and W3 and testing on W1, and finally
learning on W1 and W3 and testing on W2. Table 6 summarizes the results. The
results were consistent, confirming the fact that the values of τes = 0.3 and τec ≈ 8
are not overfitting the databases in our Web set.

Effect of Depth of Hierarchy in Accuracy. We also tested our method for hier-
archical classification schemes of various depths using τes = 0.3 and τec = 8. The
F1-measure was 1, 0.89, 0.8, and 0.75 for hierarchies of depth zero, one, two, and
three respectively. We can see that F1-measure drops smoothly as the hierarchy
depth increases, which leads us to believe that our method can scale to even larger
classification schemes without significant degradation in accuracy.

Efficiency of the Classification Method. The cost of classification for different
combinations of thresholds is shown in Figure 14. As the thresholds increase, the
number of queries sent decreases, as expected, since it is more difficult to “push”
a database down a subcategory and trigger another probing phase. The cost is
generally low: only a few hundred queries suffice on average to classify a database
with high accuracy. Specifically, for the best setting of thresholds (τs = 0.3 and
τc = 8), QProber sends on average only 185 query probes to each database in the
Web set. As we mentioned, the average query probe consists of only 1.5 words.
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6. RELATED WORK

While work in text database classification is relatively new, there has been sub-
stantial on-going research in text document classification. Such research includes
the application of a number of learning algorithms to categorizing text documents.
In addition to the rule-based classifiers based on RIPPER used in our work, other
methods for learning classification rules based on text documents have been ex-
plored [Apte et al. 1994]. Furthermore, many other formalisms for document clas-
sifiers have been the subject of previous work, including the Rocchio algorithm
based on the vector space model for document retrieval [Rocchio 1971], linear clas-
sification algorithms [Lewis et al. 1996], Bayesian networks [McCallum and Nigam
1998], and, most recently, support vector machines [Joachims 1998], to name just a
few. Moreover, extensive comparative studies among text classifiers have also been
performed [Schuetze et al. 1995; Dumais et al. 1998; Yang and Liu 1999], reflecting
the relative strengths and weaknesses of these various methods.

Orthogonally, a large body of work has been devoted to the interaction with
searchable databases, mainly in the form of metasearchers [Gravano et al. 1999;
Meng et al. 1998; Xu and Callan 1998]. A metasearcher receives a query from a
user, selects the best databases to which to send the query, translates the query in
a proper form for each search interface, and merges the results from the different
sources.

Query probing has been used in this context mainly for the problem of database
selection. Specifically, Callan et al. [Callan et al. 1999; Callan and Connell 2001]
probe text databases with random queries to determine an approximation of their
vocabulary and associated statistics (“language model”). (We adapted this tech-
nique for the task of database classification to define the Document Sampling tech-
nique of Section 4.2.) Craswell et al. [Craswell et al. 2000] compared the perfor-
mance of different database selection algorithms in the presence of such “language
models.” Hawking and Thistlewaite [Hawking and Thistlewaite 1999] used query
probing to perform database selection by ranking databases by similarity to a given
query. Their algorithm assumed that the query interface can handle normal queries
and query probes differently and that the cost to handle query probes is smaller
than that for normal queries. Recently, Etzioni and Sugiura [Sugiura and Etzioni
2000] used query probing for query expansion to route web queries to the appro-
priate search engines.

Query probing has also been used for other tasks. Meng et al. [Meng et al. 1999]
used guided query probing to determine sources of heterogeneity in the algorithms
used to index and search locally at each text database. Query probing has been
used by Perkowitz et al. [Perkowitz et al. 1997] to automatically understand query
forms and extract information from web databases to build a comparative shopping
agent. In [Grefenstette and Nioche 2000] query probing was employed to determine
the use of different languages on the web.

For the task of database classification, Gauch et al. [Gauch et al. 1996] manu-
ally construct query probes to facilitate the classification of text databases. Dolin
et al. [Dolin et al. 1999] used Latent Semantic Indexing [Deerwester et al. 1990]
with metrics similar to Specificity and Coverage to categorize collections of docu-
ments. The crucial difference with QProber is that the documents in the collection
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were available for inspection and not hidden behind search interfaces. Wang et al.
[Wang et al. 2000] presented the Title-based Querying technique that we described
in Section 4.2. Our experimental evaluation showed that our QProber technique
significantly outperforms theirs, both in terms of efficiency and effectiveness. Our
technique also outperforms our adaptation of the random document sampling tech-
nique in [Callan et al. 1999; Callan and Connell 2001]. We originally presented
the QP-RIPPER version of QProber in [Ipeirotis et al. 2001], on which this paper
builds.

7. CONCLUSIONS AND FUTURE WORK

This paper introduced QProber, a technique for hierarchically classifying text da-
tabases that are accessible on the web. We provided a formal definition of our
classification task, together with a scalable classification algorithm that adaptively
issues query probes to databases. This algorithm involves learning a document
classifier, which serves as the foundation for building query probes. Turning a
rule-based classifier into query probes is straightforward. For non-rule-based nu-
merically parameterized classifiers, we described an algorithm for extracting rules
that can then be easily turned into query probes. We also presented a method
for adjusting the number of matches returned by the databases as a response to
the query probes to improve categorization accuracy and compensate for classifier
errors. Finally, we showed how to make classification assignments based on the
adjusted count information. Our technique is efficient and scalable, and does not
require retrieving any documents from the databases. Extensive experimental re-
sults show that the method proposed here is both more accurate and more efficient
than existing methods for database classification.

A further step that would completely automate the classification process is to
eliminate the need for a human to construct the simple wrapper for each database
to classify. This step can be eliminated by automatically learning how to parse the
query result pages. Perkowitz et al. [Perkowitz et al. 1997] have studied how to
automatically characterize and understand web forms, and we plan to apply some
of these results to automate the interaction with search interfaces. Our technique
is particularly well suited for this automation, since it needs only very simple infor-
mation from result pages (i.e., the number of matches for a query). Furthermore,
the patterns used to report the number of matches for queries by the search en-
gines and tools that are popular on the web are quite similar. For example, one
representative pattern is the appearance of the word “of” before reporting the ac-
tual number of matches for a query (e.g., “30 out of 1024 matches displayed”).
76 of the 130 web databases in the Web set use this pattern to report the num-
ber of matches, and of course there are other common patterns as well. Based on
this anecdotal information, it seems realistic to envision a completely automatic
classification system.
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