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Abstract. There is an increasing interest in categorizing texts using learning al-
gorithms. While the majority of approaches rely on learning linear classifiers, there
is also some interest in describing document categories by text patterns. We intro-
duce a model for learning patterns for text categorization (the LPT-model) that
does not rely on an attribute-value representation of documents but represents doc-
uments essentially “as they are”. Based on the LPT-model, we focus on learning
patterns within a relatively simple pattern language. We compare different search
heuristics and pruning methods known from various symbolic rule learners on a
set of representative text categorization problems. The best results were obtained
using the m-estimate as search heuristics combined with the likelihood-ratio-statics
for pruning. Even better results can be obtained, when replacing the likelihood-
ratio-statics by a new measure for pruning; this we call l-measure. In contrast to
conventional measures for pruning, the l-measure takes into account properties of
the search space.
Key Words: Text Categorization, Rule Learning, Overfitting, Pruning, Applica-
tion

1 Introduction

Assigning text documents to content specific categories is an important task
in document analysis. In office automation, systems for document catego-
rization are used to categorize documents into categories such as invoices,
confirmation of order [4]. These assignments can be used to distribute mail
in the house, but they are also used for triggering document-specific infor-
mation extraction tools, extracting, e.g, the total amount from an invoice.
Automatic categorization systems rely on hand-crafted categorization rules of
the form “if text pattern pc occurs in document d then document d belongs
to category c”. Typical pattern languages rely on the boolean combination of
tests on word occurrences. Within this language, the pattern (or (and gold
jewelry) (and silver jewelry)) can be used to find documents which deal with
gold or silver jewelry. More elaborated pattern constructs generally also allow
tests on word sequences and word properties. The most prominent example
for a rule-based automatic categorization system is TCS [6].

Since hand-crafting categorization rules is labor intensive, there is interest
in automatic document categorization based on example documents. The
majority of these algorithms rely on linear classifiers [12]. Until now, only a
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few rule learners have been applied to text categorization [1,3]. Nevertheless,
rule learners offer some practical advantages:

• they produce very compact classifiers,
• the classifiers are easy to understand and to modify by humans (if, e.g.,

manual fine tuning is needed), and
• the classifiers are portable in the sense that the classifier can be used to

query nearly any IR search engine.

In the remainder of the paper we first introduce our model for learning
patterns for text categorization (Section 2). Based on a set of text cate-
gorization problems (described in Section 3) we then investigate different
search heuristics to avoid overfitted pattern (Section 4), standard pruning
techniques (Section 5), and a new pruning method relying on a measure we
call l-measure (Section 6). A summary is is given in Section 7.

2 The LPT-Mo del

A text categorization problem in our sense is characterized as follows: Given

• an (in general infinite) set D, the text domain;
• a category K ⊂ D, the target category
• positives B⊕ and negatives examples B	 for K ⊂ D , i.e. B⊕ ⊆ K and
B	 ⊆ D \ K

• a representation language TLPT for documents and a transformation
tLPT : D → TLPT

• a pattern language P with an associated function m : P×TLPT → {0, 1}
We search for an algorithm that computes a pattern pK ∈ P from B⊕ and
B	 which approximates

m(pK, tLPT (δ)) =

{
1 : δ ∈ K
0 : δ ∈ D \ K , the match function.

In our model, real world documents (usually given as character sequences)
are transformed via the transformation function tLPT into the LPT document
representation language. Within this language a document d is represented
as a word sequence (w1 . . . wn) while a word wi is represented as a character
sequence. It is important to note that the transformation preserves almost
all information in the original document. This allows us to, e.g. define pattern
language constructs that rely on word sequences or complex word properties.

We did not commit to a specific pattern language P but only give a
general frame for simplifying the construction of pattern languages. Here, we
only introduce one very simple instance of possible pattern languages. This
instance relies on a set of so-called word tests with w ∈ P iff w is a word.
The semantics of word tests is given by

m(w, (w1, . . . , wn)) =

{
1 : ∃iw = wi

0 : else
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Based on word tests we define the simple pattern language used in the fol-
lowing by k1 ∨ k2 ∨ · · · ∨ kn with ki = wi,1 ∧ · · · ∧ wi,mi and wi,jword test
The LPT-document representation also allows much more complex pattern
languages which rely on word orderings and word properties [7].

Learning Algorithm The search for patterns is done using a separate-and-
conquer algorithm as used in the well-known rule learner CN2 [2]. To simplify
the representation we use ⊕ (respectively 	) as a unary operator that returns
the set of all positives (respectively negatives) example documents for a given
example document set. The inputs of the algorithm are example documents
B for the target category, a search heuristics sh and a pruning method sig
(figure 1). It first initializes the document set R by B and the pattern p by
false. Using the function s the algorithm then chooses the “best” conjunction
of words cbest for describing a subset of the positives examples in R. All
documents of R covered by cbest are then removed from R and the algorithm
iterates until the best conjunction of words results in true. The disjunction
of all conjunctions given by s is the pattern p which is returned as learning
result.

Input: Example documents B for target category
Output: “best” pattern p for target category

R← B, p← false
repeat

S = s (B,R, {true}) ∪ {true}
cbest ← “best” conjunction in R
R ← R \ {d ∈ R⊕ | m(cbest, d) = 1}
p← p ∨ cbest

until (cbest = true)

Fig. 1. Algorithm for finding the best pattern

Finding the best conjunction cbest is done using the algorithm shown
in figure 2. The algorithm starts with the empty conjunction as the best
conjunction cbest. Within a loop this conjunction is refined by word tests.
From those refinements that are significant with respect to sig, the best one
according to the search heuristics sh is taken as the new best conjunction.
The loop ends if no better significant refinement than the current cbest can
be found anymore.

3 Methods and Material

For the experimental evaluation we rely on four text collections with posi-
tive and negative examples for 98 different categories: a collection of German
technical abstracts with categories such as “computer science and modeling”
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Input: Example documents R, search heuristic sh, significance criterion sig
Output: “best” conjunction cbest in R for target category

cbest ← true, c← cbest

repeat
S = {cbest ∧ w | w word occurring inR}
Spruned = {c ∈ S | sig(B,R, cbest, c)}
c← c′ ∈ Spruned with best value of sh(R, c′)

until cbest = c

Fig. 2. Algorithm for finding the best conjunction

and “classification, document analysis and recognition”, a collection of of-
fice documents which consists of OCR’ed German business letters and with
categories such as “invoice” and “offer” and two freely available English col-
lections: the Reuters-collection1 and a collection of newsgroups articles 2. For
the evaluation we split each collection 1:1 in a learning and a test set.

For the evaluation of learned patterns on the test set, we use the effec-
tiveness measures recall and precision which are widespread in information
retrieval [9]. Recall and precision correspond to the characteristic require-
ments on patterns: They should cover a category as completely as possible
(measured by the recall) and they should cover it as correctly as possible
(measured by the precision). For each learned pattern p = k1∨· · ·∨kn a range
of recall/precision values corresponding to pi = k1 ∨ · · · ∨ ki for i = 0 . . . n
was computed. Averaging over the categories was done at predefined recall
points by averaging the approximated precision for all patterns at these re-
call points. The resulting range of recall/precision points will be graphically
shown in recall/precision diagrams. The little arrows in the diagrams shown
later indicate the minimum increase in recall or effectiveness needed at cer-
tain recall/precision points for significance according to the p-Test as used in
[12] (error probability 5%).

4 Search Heuristics

In literature in different rule learners various search heuristics for complexes
are used [5] of which some of the most prominent ones are (we use the ab-
breviations p = |m(k,R⊕)|, n = |m(k,R	)|, P = |R⊕|, and N = |R	|):
Precision ( p

p+n), Information Content (− log( p
p+n)), Entropy (− log( p

p+n)),

Laplace Estimate ( n+1
n+p+2 ), Accuracy (p+(N−n)

P+N ), and m-Estimate (
p+m P

P+N

p+n+m ).
Figure 3 compares the effectiveness we obtained on our text categorization
problems with the search heuristics. To alleviate problems arising with small
coverages when using precision, information content and entropy the order

1 available via http://www.research.att.com/∼lewis
2 available via http://www.cs.cmu.edu/afs/cs/project/theo-11/www/

naive-bayes.html
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given by these function were refined as follows: If two complexes obtain
the same weight, the one which covered more documents was preferred (i.e.
the one with p + n maximal). In addition, for the entropy, complexes with
p

p+n < 1
2 were excluded. For the m-estimate we evaluated the parameters

m ∈ {0.01, 1, 10, 20, 50, 100}.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

Precision/InfoContent 
Entropy               
Laplace Estimate      
Accuracy              

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

m−Estimate (m=0.01)   
m−Estimate (m=1)      
m−Estimate (m=10)     
m−Estimate (m=20)     
m−Estimate (m=50)     
m−Estimate (m=100)    

Fig. 3. Influence of the search heuristics on the effectiveness

It can be observed that the effectiveness of precision/information content
and entropy do not differ much.This can be explained by the equivalence of
precision/informations content and entropy for p

p+n > 1
2 . Compared to preci-

sion/information content and entropy the Laplace estimate performs better.
This can be explained by the weighting of complexes with small coverages
close to 1

2 . The rather pessimistic estimate gives, e.g., a better weight to a
complex with p = 100 and n = 1 than for a complex with p = 2 and n = 0.
The accuracy shows a lower precision on a lower recall, but obtains a higher
precision at higher recalls than the other search heuristics. In general by go-
ing from precision/information content and entropy to the Laplace-estimate
and from the Laplace-Estimate to the accuracy a high precision at low recalls
is replaced by a high precision at higher recalls. The same also holds for the
m-estimate with increasing m. Choosing the right value for m for each recall,
a precision can be obtained that is better than the one of all other search
heuristics on this recall.

5 Pruning Methods

Table 1 shows the pruning methods we have evaluated on our text catego-
rization problems. The method syntactic constraints restricts conjunctions
to a maximal number of arguments nmax. The intention for this method
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is the belief that complexes with more arguments are more likely to ob-
tain a good rating by the search heuristics just by chance. Another pruning
method, minimum coverages, requires complexes to cover at least c posi-
tive examples in the remaining learning set R. It follows the belief that the
values of the search heuristic are more reliable if more (positive) examples
can be used for its computation. Furthermore, we considered two pruning
methods relying on the likelihood ratio statics (lrs). This measure gives high
significance to complexes whose distribution of covered positive and nega-
tive example differs much from the distribution on some reference set. The
variants of the lrs differ in what set it used as reference set. In the CN2
variant used in the rule learner CN2 the whole example set B is used as
reference, i.e. P ′ = |B⊕| and N ′ = |B	|. The BEXA variant (used in BEXA
[11]) uses the predecessor complex kpre of the complex to be judged, i.e.
P ′ = |m(kpre, R

⊕)|, N ′ = |m(kpre, R
	)|.

syntactic
constraints

sig(B,R, kpre, w1 ∧ · · · ∧ wn) =

�
1 : n ≤ nmax, nmax ∈ IN
0 : else

minimum
coverages

sig() =

�
1 : |m(k,R⊕)| ≥ c
0 : else

lrs sig() =

8<
:

1 : −2

�
p log

�
p

(p+n) P ′
P ′+N′

�
+ n log

�
n

(p+n) N′
P ′+N′

��
≥ ϑ

0 : else

Table 1. Pruning methods and their definitions

Figure 4 summarizes the results obtained with the different pruning meth-
ods (the diagram showed in the lower right will be subject of the next section).
The results of the CN2 and BEXA variants are practically indistinguishable.
It can be observed that:

• The method minimum coverages (upper right) has practically no positive
influence on the effectiveness over the whole recall range. Increasing the
minimal number of documents in R⊕ even decreases the precision.

• The effect of the other pruning methods syntactic constraints (upper
left) and likelihood ratio statics (lower left) depends on the respective
parameter and is very similar. By varying the parameter, high precision
at low recall levels is traded for high precision at high recall levels.

• Pruning with the likelihood ratio statistics (lower left) slightly outper-
forms syntactic constraints (upper left). While with the lrs and ϑ = 20
the precision is higher at the high recall level, the corresponding decrease
in precision at lower recall levers is less dramatic than when using syn-
tactic constraints.
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Fig. 4. Influence of pruning methods on the effectiveness: syntactic constraints
(upper left), minimum coverages (upper right), lrs (BEXA) (lower left), l-measure
(lower right)

6 A New Pruning Method

In this section we propose a new pruning method that does —in contrast to
the methods listed in table 1— takes the size of the search space into account.
In order to motivate the new significance measure, table 2 shows a part of
the learning process for the category invoice in the German office document
collection3. The first column contains the i-th iteration in the separate-and-
conquer algorithms according to figure 1. For each iteration step the following
two columns contain the number of remaining positives (|R⊕|) and negatives

3 The words in the table translate as follows: rechnung(s) – invoice, zahlung –
payment, angeben – specify
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documents (|R	|). The following columns show the best conjunctions built
within the algorithm to find the best conjunction (cmp. figure 2) as well as
the number of positives and negatives examples p = |m(ci,j , R

⊕)| respectively
n = |m(ci,j , R

	)| they cover in R. The column sh(R, ci,j) shows the value
of the m-estimate for ci,j (m = 10). Finally, the last column contains the

value l =
∣∣∣{c ∈ S

∣∣ | m(c, R)| = |m(ci,j , R)|
}∣∣∣ with S = {ci,j−1 ∧ w | w ∈

words(R)} the local search space. According to this definition l is the number
of refinements of ci,j−1 that covers the same number of documents in R as
the conjunction ci,j .

i |R⊕| |R	| j conjunction ci,j p n sh(R, ci,j) l

1 357 513 0 true 357 513 0.41
1 rechnung 203 54 0.78 2
2 rechnung ∧ rechnungs 37 1 0.87 5

2 320 513 0 true 320 513 0.38
1 rechnung 166 54 0.74 4
2 rechnung ∧ zahlung 57 2 0.78 3
3 rechnung ∧ zahlung ∧ angeben 28 2 0.80 2

. . . . . . . . .

10 171 513 0 true 171 513 0.25
1 rechnung 60 54 0.50 5
2 rechnung ∧ 10060 8 0 0.58 64

. . . . . . . . .

19 119 513 0 true 119 513 0.19
1 1157 4 1 0.39 506

Table 2. Capture of the learning process for the category Rechnung

In order to motivate the l-measure we first consider the refinement step
from c19,0 to c19,1. The conjunction c19,0 covers 119 positives and 513 nega-
tives examples. The probability of an example being a positive one can thus
be estimated with 119

119+513 ≈ 0.19. This probability can be interpreted as the
a-priori probability for covering a positive example by a refinement of c19,0.

The value of the m-estimate for c19,0 is
4+10 119

119+513

4+1+10 ≈ 0.39. Each refine-
ment of c19,0 that covers exactly 5 documents (as does c19,1) has a weighting
at least as good as 0.39 iff the refinement covers at least as many positives
examples as c19,1: 4. The probability for covering randomly at least 4 positive
examples can be computed using the a-priori probability estimated by c19,0
with

(
5
4

)
0.194(1 − 0.19)1 +

(
5
5

)
0.195(1 − 0.19)0 ≈ 0.0055 The low value indi-

cates that the observed good coverage of c19,1 has not occurred by chance.
Thus, we would not prune c19,1.
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If we take into account how many refinements of c19,0 exist that also
cover exactly 5 documents, the result changes. This number is given as l in
table 2 with 506. If we assume that the coverage of all 506 words that cover
exactly 5 documents is random, the probability of covering 4 or more positive
examples by chance (and thus the probability of getting a better weight than

0.39) increases drastically. It can be approximated by
∑509

i=1

(
509
i

)
0.0055i(1−

0.0063)(509−i) = 1 − (1 − 0.0055)509 ≈ 0.94. In this way, the consideration
of the value l computed by the local search space would suggest we should
prune k19,1.

Without going into the details of the general derivation, the idea given
by the above example can be used to formulate a new significance measure
as follows. Using

Bin (p + n,w, p) =

p+n∑
i=p

(
p + n

i

)
wi(1 − w)p+n−i

and

l =
∣∣∣{c′ ∈ S

∣∣ |m(c′, R)| = |m(c, R)|
}∣∣∣ ,

the new pruning method can be formulated as

sig(B,R, cpre, S, k) =

{
1 : sigm(B,R, cpre, S, c) ≥ ϑ
0 : else

with

sigm(B,R, cpre, S, c) = 1 − (1−Bin (p + n,w, p))

���
n

c′∈S

�� |m(c′,R)|=|m(c,R)|
o���

The results of the new pruning method using the l-measure are shown in
the lower right corner of figure 4 for ϑ ∈ {0.25, 0.5, 0.75, 0.9}. It can observed
that with increasing ϑ the precision for higher recall values can be increased
without harming the precision at lower recall as much as the likelihood-ratio-
statistics does. Thus, the new pruning method — taking account of the local
search space— outperforms the previously investigated pruning methods for
our text categorization problems.

7 Summary

In this paper we have shown our model for learning patterns for text catego-
rization. In contrast to the conventional models we do not use an attribute
value representation of documents but represent documents as they are, i.e. as
a sequence of words which again are represented by a sequence of words. This
enables us to introduce complex pattern languages with patterns relying on
word orders and word properties. Within the model, in this paper, we focused
on preventing from overfitting in a simple pattern language, in which pattern
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are disjunctions of conjuncted word tests. We proposed and evaluated differ-
ent methods for optimizing the effectiveness of patterns within this language.
Of all search heuristics we evaluated the best results on our set of text cate-
gorization methods was obtained with the m-estimate. In addition to search
heuristics we investigated pruning methods for text categorization. The best
pruning method we found was the likelihood-ratio-statistics. We proposed a
pruning method relying new measure we call l-measure. To our knowledge
this is the only pruning method that takes into account the size of the search
space. An experimental comparison of the new methods showed that the new
pruning method gives better effectiveness than the likelihood-ratio-statistics.
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