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Outline

• Introduction to text categorization
• Manual categorization
• Automatic categorization

– Algorithms 
– Training data 
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Automatic Text Categorization:
Introduction

• Categorization:  Assigning labels to objects
– One label per object
– Multiple labels per object

• Automatic text categorization: Labels assigned by computer
– Lower cost
– Greater consistency
– Maybe greater accuracy (or, maybe not)

• Class labels are equivalent to controlled vocabulary terms
– A form of metadata

• Text categorization is an “old” research area
– Renewed interest due to growing use of  electronic documents
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Document Classification
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Document Classification
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Text Categorization Examples

• Topic names to newswire publications
• LCSH codes to library materials
• MeSH codes to medical publications
• MeSH codes to Medline queries
• ICD9 codes to patient discharge summaries
• Patent classes to patent applications
• Priority classes to email messages
• Pornography probabilities to Web pages
• Yahoo! subject categories to Web pages
• Individuals to customer support email
• Advertising categories to prospective customers
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Approaches to
Automatic Text Categorization

• Classifier:  A process that assigns one or more labels to objects
• Manual classifier:  A person creates a classifier manually

– Examples:  Email filters
– Usually rule-based
– Classifier usually easy for humans to understand

• Automatic classifier:  A machine learning algorithm creates the classifier
– Requires a set of documents classified manually (training data)
– Many algorithms

» Rule-based, decision tree, nearest neighbor, EM, Ripper, …
– Classifier often difficult for humans to understand
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Automatic Text Categorization:
Rules Created Manually

Manual rules are usually based on intuition and experience
• Advantages:  Leverage human abilities, meet expectations
• Disadvantage:  Human classifiers may not provide good recall

V1:  machine AND learning
V2:  (machine AND learning) OR (neural AND networks) OR

(decision AND tree)
V3:  (machine AND learning) OR (neural AND networks) OR

(decision AND tree) AND C4.5 OR Ripper OR EG OR EM
V4:  (machine AND learning) OR (neural AND networks) OR

(decision AND tree) AND C4.5 OR (Ripper AND NOT Jack) OR
(EG AND algorithm AND gradient) OR (EM AND NOT printing)
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Automatic Text Categorization:
Rules Created Manually

• Human classifiers are based on all of a person’s experiences
– Manual classifiers are often not corpus-specific
– Too much effort on patterns that probably won’t occur
– Not enough effort on patterns that make sense only within that 

corpus
• Example:  The task is to identify news stories about terrorist events

– People think of words such as “bomb” and “kill”
– Those words also occur in stories about wars
– “broken windows” is highly correlated with terrorist events

• The human tendency to produce classifiers that “make sense” 
causes them to miss effective corpus-specific language patterns
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Cost of Manual Text Categorization

• Yahoo!
– 200 (?) people manually labeling Web pages
– Using a hierarchy of 500,000 categories

• MEDLINE (National Library of Medicine)
– $2 million/year for manual indexing of journal articles
– Using MeSH headings (18,000 categories)

• Mayo Clinic
– $1.4 million annually for coding patient-record events
– Using the International Classification of Diseases (ICD) for billing 

insurance companies
• U.S. Census Bureau decennial census (1990, 22 million responses)

– 232 industry categories and 504 occupation categories
– $15 million if done completely manually

(Yang, 2001)



© 2002, Jamie Callan
11

Automatic Text Categorization:
Classifiers Created Automatically

• A set of training data is provided to a machine learning algorithm
– A set of representative objects, with labels
– The larger the set, the better (usually)
– The algorithm searches for patterns correlated with each label
– Patterns are used to create a classifier

• Good training data is crucial
– The labels must be assigned accurately and consistently
– The objects must be described accurately and consistently

• How should a text document be described?
– By the words it contains
– By any known metadata (e.g., author, publisher, …)
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Nearest Neighbor

To classify a new object, find the most similar object in a 
training set.  Assign the new object the same label(s).
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Nearest Neighbor

To classify a new object, find the most similar object in a 
training set.  Assign the new object the same label(s).

• This obviously works well if there is an exact match
• It usually works well if there is a close match
• Generalization:  Use the k most similar neighbors (KNN)

– k-NN is usually more robust than nearest neighbor (k=1)
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k-Nearest Neighbor (KNN)
in an IR Environment

• Represent each training document as a vector of term weights
– E.g., tf.idf

• Treat new document as a query vector
• Retrieve the top k documents

– E.g., using cosine similarity as a distance function
• Score each category associated with any returned document

– Returned documents define the neighborhood
• Apply thresholds to convert scores into yes/no decisions

(Yang, 2001)
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k-Nearest Neighbor

To classify a new object, find the k most similar objects in a 
training set.  Assign the new object the same label(s).
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k-Nearest Neighbor (KNN):
Distance Function

• It is important to select a good distance function
– Often it is not obvious what distance function to use

» Selected empirically, tuned empirically
• For text data, the cosine similarity metric is often effective

– Represent each document as a word vector
» Scalar values indicates the “weight” of each word

– Similarity is inversely related to the cosine of the angle 
between the vectors
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k-Nearest Neighbor (KNN)

What if the neighbors have different labels?
• Intersection:  Assign only labels that all k neighbors share
• Union:  Assign any label assigned to any of the k neighbors
• Voting:  Assign any label assigned to at least t neighbors, t ≤ k
• The effect of a neighbor may be weighted by its distance

– Distant neighbors have less influence than near neighbors
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k-Nearest Neighbor (KNN):
Choosing k

• k is usually determined empirically, e.g., by cross-validation
• Hold out a subset of training data as validation set

– Don’t use for training or testing
• For all reasonable values of k

– Train on training data
– Evaluate on validation data

• Select value of k that gives best value
• Test on testing data
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Low bias, high variance for K = 1

Source : Elements of Statistical Learning (2001): Hastie, Tibshirani, Friedman
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Higher bias, lower variance with higher K

Source : Elements of Statistical Learning (2001): Hastie, Tibshirani, Friedman
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k-Nearest Neighbor (KNN):
Summary

• KNN is a relatively simple algorithm to implement
– Need a distance function
– Need a label selection method
– Need a k

• KNN can be computationally expensive
– O(number of training items)
– The distance calculation is O(number of dimensions)
– Usually, one dimension per database vocabulary word

• KNN can be very effective
– If training set is large, error rate approaches twice Bayes error rate

» Bayes error rate is optimal error rate if distribution is known
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Other Learning Algorithms

There are many categorization algorithms
• Perceptron
• Widrow-Hoff
• Decision trees
• Support Vector Machines (SVM)
• Naïve Bayes
• Neural networks
• Maximum Entropy Modeling
• :           :           :         :
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Automatic Categorization:
Datasets

• Reuters collection (Modified Apte Split)
– 12,902 Reuters newswire documents from 1987
– 9,603 training articles, 3,299 test articles
– Articles categorized into more than 100 topics

» “mergers and acquisitions”, “interest rates”, “earnings”, ….
• Oregon Health Sciences University Medical database (OHSUMED)

– 348,566 Medline medical journal articles (1987-1991)
– 106 queries
– Articles categorized with MeSH codes
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Automatic Categorization:
What Makes it Hard?

• Many similar categories
• Categories with small classes
• Hierarchical categorization
• Monothetic vs Polythetic categories:

– Human categories tend to be monothetic
» Every object shares one or more traits
» Monotheism is often conceptual, not vocabulary-based
» Example:  Every document is about cancer

– Machine learning categories are often polythetic
» Objects share a set of traits, but no trait is common to all
» Example:  Documents contain words correlated with cancer
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Automatic Categorization:
State of the Art

Task Computers Humans
Essay grading (e.g., GMAT) 96-97% 95%
Medical (OHSUMED, MESH) 50-60% ?
Medical (ICD9) 45-60% ?
Newswire (Reuters) 80-90% ?
Yahoo! Science categories 60-70% ?
Web pages 80-90% ?
Internet newsgroups 80-90% ?
TREC relevance assessments ? 70%
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Automatic Categorization:
Assessment

• Humans are not perfect
– but human error-rate is often ignored

• Computers are not perfect
– but computer error-rate is often discussed

• Cost factors encourage greater use of automatic categorization
– automatic categorization in relatively easy domains
– the 80/20 rule applies in some domains (80% automatic, …)
– human-assisted categorization

• Current algorithms appear reasonably accurate
– significant research activity, considerable progress

Automatic categorization is practical
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For More Information

• Y. Yang and X. Liu.  “A re-examination of text categorization methods.”  In  Proceedings 
of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),
pp 42-49.  1999.
http://www.cs.cmu.edu/~yiming/publications.html

• Y. Yang and J.O. Pedersen.  “A comparative study on feature selection in text 
categorization.”  In Proceedings of the Fourteenth International Conference on Machine 
Learning (ICML'97), 1997.
http://www.cs.cmu.edu/~yiming/publications.html


