15-492 / 11-682: Introduction to IR, NLP, MT, and Speech

Text Categorization

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

Outline

- Introduction to text categorization
- Manual categorization
- Automatic categorization
 - Algorithms
 - Training data

Automatic Text Categorization: Introduction

- Categorization: Assigning labels to objects
 - One label per object
 - Multiple labels per object
- Automatic text categorization: Labels assigned by computer
 - Lower cost
 - Greater consistency
 - Maybe greater accuracy (or, maybe not)
- Class labels are equivalent to controlled vocabulary terms
 - A form of metadata
- Text categorization is an "old" research area
 - Renewed interest due to growing use of electronic documents

Document Classification

YAHOO! SHOPPING

Shopping Home - Yahoo! - Help

Thousands of Stores. Millions of Products. All with one Wallet. NEW!

Toys and Games

The one reliable name in toys for fifty-years is now on-line with a whole new look! Toysrus.com is the place to shop for the best deals for your toy needs.

all about ease

Shopping at gap.com is all about ease with features like 1-800-GAP-STYLE (our 24 hour customer service line) and easy returns to any Gap store near you.

Document Classification

Search Result: Found 335 products in 90 stores for "MP3 players"

Merchants: 3 matching 'MP3 players':

- MP3's from i2Go.com: eGo Interactive portable digital audio (MP3) player.
- HyCD Store @ Yahool: CD Recording software supports MP3 encoder and MP3 Player.
- Frontier Labs Online Store: Portable audio digital MP3 devices and players.

Categories: 1 matching 'MP3 players':

Electronics > Portable Audio > MP3 Players

Products: Found 335 products in 90 stores matching 'MP3 players'. Showing stores 1 - 20:

Playstation MP3 Player	(1 match)	\$41.00
------------------------	-----------	---------

Playstation **MP3** Player Brand new device for 1999 / 2000: This device is capable of playing **MP3** CD files on your playstation as well as use cheat codes (from the Gameshark) and play import / CDR backups games. Due to the compression ratio of **MP3** files, you can fit over 100 songs on 1 CD and still...

© 2002, Jamie Callan

sort listing by: relevance | increasing price | decreasing price

5

Shopping Home - Yahoo! - Help

Shopping Home

Text Categorization Examples

- Topic names to newswire publications
- LCSH codes to library materials
- MeSH codes to medical publications
- MeSH codes to Medline queries
- ICD9 codes to patient discharge summaries
- Patent classes to patent applications
- Priority classes to email messages
- Pornography probabilities to Web pages
- Yahoo! subject categories to Web pages
- Individuals to customer support email
- Advertising categories to prospective customers

Approaches to Automatic Text Categorization

- **Classifier:** A process that assigns one or more labels to objects
- Manual classifier: A person creates a classifier manually
 - Examples: Email filters
 - Usually rule-based
 - Classifier usually easy for humans to understand
- Automatic classifier: A machine learning algorithm creates the classifier
 - Requires a set of documents classified manually (training data)
 - Many algorithms
 - » Rule-based, decision tree, nearest neighbor, EM, Ripper, ...
 - Classifier often difficult for humans to understand

Automatic Text Categorization: Rules Created Manually

Manual rules are usually based on intuition and experience

- Advantages: Leverage human abilities, meet expectations
- **Disadvantage:** Human classifiers may not provide good recall
- V1: machine AND learning
- V2: (machine AND learning) OR (neural AND networks) OR (decision AND tree)
- V3: (machine AND learning) OR (neural AND networks) OR (decision AND tree) AND C4.5 OR Ripper OR EG OR EM
- V4: (machine AND learning) OR (neural AND networks) OR(decision AND tree) AND C4.5 OR (Ripper AND NOT Jack) OR(EG AND algorithm AND gradient) OR (EM AND NOT printing)

Automatic Text Categorization: Rules Created Manually

- Human classifiers are based on <u>all</u> of a person's experiences
 - Manual classifiers are often not corpus-specific
 - Too much effort on patterns that probably won't occur
 - Not enough effort on patterns that make sense <u>only</u> within that corpus
- **Example:** The task is to identify news stories about terrorist events
 - People think of words such as "bomb" and "kill"
 - Those words also occur in stories about wars
 - "broken windows" is highly correlated with terrorist events
- The human tendency to produce classifiers that "make sense" causes them to miss effective corpus-specific language patterns

Cost of Manual Text Categorization

• Yahoo!

- 200 (?) people manually labeling Web pages
- Using a hierarchy of 500,000 categories
- MEDLINE (National Library of Medicine)
 - \$2 million/year for manual indexing of journal articles
 - Using MeSH headings (18,000 categories)
- Mayo Clinic
 - \$1.4 million annually for coding patient-record events
 - Using the International Classification of Diseases (ICD) for billing insurance companies
- U.S. Census Bureau decennial census (1990, 22 million responses)
 - 232 industry categories and 504 occupation categories
 - \$15 million if done completely manually

(Yang, 2001)

Automatic Text Categorization: Classifiers Created Automatically

- A set of training data is provided to a machine learning algorithm
 - A set of representative objects, with labels
 - The larger the set, the better (usually)
 - The algorithm searches for patterns correlated with each label
 - Patterns are used to create a classifier
- Good training data is crucial
 - The labels must be assigned accurately and consistently
 - The objects must be described accurately and consistently
- How should a text document be described?
 - By the words it contains
 - By any known metadata (e.g., author, publisher, ...)

Nearest Neighbor

To classify a new object, find the most similar object in a training set. Assign the new object the same label(s).

Nearest Neighbor

To classify a new object, find the most similar object in a training set. Assign the new object the same label(s).

- This obviously works well if there is an exact match
- It usually works well if there is a close match
- Generalization: Use the *k* most similar neighbors (KNN)
 - *k*-NN is usually more robust than nearest neighbor (*k*=1)

k-Nearest Neighbor (KNN) in an IR Environment

- Represent each training document as a vector of term weights

 E.g., tf.idf
- Treat new document as a query vector
- Retrieve the top k documents
 - E.g., using cosine similarity as a distance function
- Score each category associated with any returned document
 - Returned documents define the neighborhood
- Apply thresholds to convert scores into yes/no decisions

(Yang, 2001)

k-Nearest Neighbor

To classify a new object, find the *k* most similar objects in a training set. Assign the new object the same label(s).

k-Nearest Neighbor (KNN): Distance Function

- It is important to select a good distance function
 - Often it is not obvious what distance function to use
 - » Selected empirically, tuned empirically
- For text data, the cosine similarity metric is often effective
 - Represent each document as a word vector
 - » Scalar values indicates the "weight" of each word
 - Similarity is inversely related to the cosine of the angle between the vectors

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}|| \vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

k-Nearest Neighbor (KNN)

What if the neighbors have different labels?

- Intersection: Assign only labels that all k neighbors share
- Union: Assign any label assigned to any of the k neighbors
- Voting: Assign any label assigned to at least t neighbors, $t \le k$
- The effect of a neighbor may be weighted by its distance
 - Distant neighbors have less influence than near neighbors

k-Nearest Neighbor (KNN): Choosing k

- k is usually determined empirically, e.g., by cross-validation
- Hold out a subset of training data as validation set
 - Don't use for training or testing
- For all reasonable values of k
 - Train on training data
 - Evaluate on validation data
- Select value of k that gives best value
- Test on testing data

Low bias, high variance for K = 1

Source : Elements of Statistical Learning (2001): Hastie, Tibshirani, Friedman

Higher bias, lower variance with higher K

Source : Elements of Statistical Learning (2001): Hastie, Tibshirani, Friedman

k-Nearest Neighbor (KNN): Summary

• KNN is a relatively simple algorithm to implement

- Need a distance function
- Need a label selection method
- Need a k
- KNN can be computationally expensive
 - O(number of training items)
 - The distance calculation is O(number of dimensions)
 - Usually, one dimension per database vocabulary word
- KNN can be very effective
 - If training set is large, error rate approaches twice Bayes error rate
 - » Bayes error rate is optimal error rate if distribution is known

Other Learning Algorithms

There are many categorization algorithms

- Perceptron
- Widrow-Hoff
- Decision trees
- Support Vector Machines (SVM)
- Naïve Bayes
- Neural networks
- Maximum Entropy Modeling
- : : : :

Automatic Categorization: Datasets

• **Reuters collection (Modified Apte Split)**

- 12,902 Reuters newswire documents from 1987
- 9,603 training articles, 3,299 test articles
- Articles categorized into more than 100 topics
 - » "mergers and acquisitions", "interest rates", "earnings",
- Oregon Health Sciences University Medical database (OHSUMED)
 - 348,566 Medline medical journal articles (1987-1991)
 - 106 queries
 - Articles categorized with MeSH codes

Automatic Categorization: What Makes it Hard?

- Many similar categories
- Categories with small classes
- Hierarchical categorization
- Monothetic vs Polythetic categories:
 - Human categories tend to be monothetic
 - » Every object shares one or more traits
 - » Monotheism is often conceptual, not vocabulary-based
 - » Example: Every document is about cancer
 - Machine learning categories are often polythetic
 - » Objects share a set of traits, but no trait is common to all
 - » Example: Documents contain words correlated with cancer

Automatic Categorization: State of the Art

Task	Computers	Humans
Essay grading (e.g., GMAT)	96-97%	95%
Medical (OHSUMED, MESH)	50-60%	?
Medical (ICD9)	45-60%	?
Newswire (Reuters)	80-90%	?
Yahoo! Science categories	60-70%	?
Web pages	80-90%	?
Internet newsgroups	80-90%	?
TREC relevance assessments	?	70%

Automatic Categorization: Assessment

• Humans are not perfect

- but human error-rate is often ignored
- Computers are not perfect
 - but computer error-rate is often discussed
- Cost factors encourage greater use of automatic categorization
 - automatic categorization in relatively easy domains
 - the 80/20 rule applies in some domains (80% automatic, ...)
 - human-assisted categorization
- Current algorithms appear reasonably accurate
 - significant research activity, considerable progress

Automatic categorization is practical

For More Information

• Y. Yang and X. Liu. "A re-examination of text categorization methods." In *Proceedings* of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), pp 42-49. 1999.

http://www.cs.cmu.edu/~yiming/publications.html

• Y. Yang and J.O. Pedersen. "A comparative study on feature selection in text categorization." In *Proceedings of the Fourteenth International Conference on Machine Learning (ICML'97)*, 1997.

http://www.cs.cmu.edu/~yiming/publications.html