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Abstract

Machine-learning researchers face the om-
nipresent challenge of developing predictive
models that converge rapidly in accuracy with
increases in the quantity of scarce labeled train-
ing data. We introduce Layered Abstraction-
Based Ensemble Learning (LABEL), a method
that shows promise in improving generaliza-
tion performance by exploiting additional la-
beled data drawn from related discrimination
tasks within a corpus and fromother corpora.LA-
BEL first maps the original feature space, targeted
at predicting membership in a specific topic, to a
new feature space aimed at modeling the reliabil-
ity of an ensemble of text classifiers. The result-
ing abstracted representation is invariant across
each of the binary discrimination tasks, allow-
ing the data to be pooled. We then construct a
context-sensitive combination rule for each task
using the pooled data. Thus, we are able to
more accurately model domain structure which
would not have been possible using only the lim-
ited labeled data from each task separately. Us-
ing several corpora for an empirical evaluation of
topic classification accuracy of text documents,
we demonstrate thatLABEL can increase the gen-
eralization performance across a set of related
tasks.
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1. Introduction

Given the typical scarcity of labeled data for building pre-
dictive models, the Machine Learning community has pur-
sued methods which make use of information sources be-
yond the labeled data associated with a pure supervised-
learning framework. An example of research in this arena
is multitask learning (Caruana, 1997). In multitask learn-
ing, additional information for building models comes in
the form of labels for related functions which can be
learned over the same input. Although such additional
labels are typically unavailable at prediction time, results
have demonstrated that generalization performance can be
improved on the primary task by learning to predict the new
variables in addition to the output variable of interest.

We are interested in improving the performance of predic-
tive models for cases where we have inadequate amounts
of labeled training data. In contrast to multitask learn-
ing, we seek to leverage labeled data from related prob-
lems over different examples to enhance the final model
used in prediction. Problems related to this challenge have
been termedclassifier re-use (Bollacker & Ghosh, 1998) or
knowledge transfer (Cohen & Kudenko, 1997). We intro-
duce a new approach to the challenge that hinges on map-
ping the original feature space, targeted at predicting mem-
bership in a specific topic, to a new feature space aimed at
modeling the reliability of an ensemble of text classifiers.

The approach, which we callLayeredAbstraction-Based
Ensemble Learning (LABEL), has two subcomponents.
First, a set of classifiers are trained on each task accord-
ing to the standard supervised learning framework; a prob-
lem or task consists of determining binary membership in a
specific topic. Then, we build a context-sensitive ensemble
model using these classifier outputs and a set ofreliability-
indicators—a set of features that provide an abstraction of
discriminatory context appropriate for modeling classifier
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reliability. We thus abstract away the problem of predicting
specific class membership to that of predicting the reliabil-
ity of a set of classifiers for a given class. As a result, both
the input features and their relationship to the class variable
are the same at the metalevel; this enables the simultaneous
use of all the data as a model bias across the entire set of
tasks.

We first review related work and our previous work that
demonstrated robust gains on a task-by-task basis across
a variety of topic classification problems using reliabil-
ity indicators. Then we describe in detail how theLA-
BEL methodology generalizes the earlier work by provid-
ing a means for using data across tasks. Finally, we present
an empirical analysis of this methodology applied to text
classification and summarize the strengths and weaknesses
of the approach.

2. Related Work

Before moving on, we shall highlight a few of the research
veins that have tackled issues related to knowledge trans-
fer. Caruana (1997) presents an approach to and analysis
of multitask learning when then function-approximation
tasks are over the same input (i.e., a labeled example con-
sists ofx1, . . . , xm data attributes and the values for this
example of then functions to be learnedf1(�x), . . . , fn(�x)).
In this analysis, the main concern is generalization perfor-
mance for one particularfi, the primary problem. Like-
wise, The Curds & Whey approach proposed by Breiman
and Friedman (1995) solves a similarly formulated prob-
lem but attempts to minimize the squared error across all
of then functions instead of placing emphasis on one task.

Thrun and O’Sullivan (1996) present methods for identify-
ing related tasks and sequentially transferring knowledge
when using a nearest-neighbor classifier. These methods
are applicable when the input has the same representation
across tasks. Both Thrun & O’Sullivan’s and Breiman &
Friedman’s work could be applied to the problem here af-
ter transforming the data to theLABEL representation that
generalizes across tasks.

Cohen and Kudenko (1997) perform an analysis of class-
ifier re-use and sequential knowledge transfer in informa-
tion filters for text documents. This work showed that sig-
nificant improvements could be introduced when the class-
ifiers were constructed to primarily model features posi-
tively correlated with the topic (i.e., word presence that is
positively correlated with beingIn-Topic). However, the
method also relies on the new task and the old task sharing
significant overlap in the underlying concept to be learned.

Bollacker and Ghosh (1998) present a novel mechanism for
classifier re-use where a classifier is constructed for each of
a set of support tasks that are later used in predictions for

a primary task. The final classification is selected by pre-
dicting the same class as the training data item (from the
primary task data) that has the most similar prediction pat-
tern using the support classifiers. Since each support class-
ifier is applied to examples from every task, the input rep-
resentation for each of the related tasks must be the same.
Additionally, the scheme, like error-correcting output cod-
ing (Dietterich, 2000), relies more on an assumption that
the extra-task labels will serve as a natural encoding for the
data rather than other re-use mechanisms that specifically
bias models or build representations of domain knowledge.

3. Problem Approach

In distinction to prior efforts, we introduce a representation
that is semantically coherent across tasks. Such semantic
coherence facilitates the use of standard methods of induc-
tive transfer.

In earlier work, we developed a classifier combination pro-
cedure that hinged on learning and harnessing thecontext-
sensitive reliabilities of different classifiers (Bennett, Du-
mais, and Horvitz, 2002; 2003). We found that the
reliability-indicator methodology is useful in the arena of
text classification for providing context-sensitive signals
about accuracy that can be used to weave together multi-
ple classifiers in a coherent probabilistic manner to boost
overall accuracy.1

We first discuss our formulation of reliability-indicators
that lays the groundwork for both a standard task-specific
metaclassifier approach and its extension to multi-task,
multi-dataset learning.

3.1. Reliability Indicator Variables

Previous approaches to classifier combination have typi-
cally limited the input at the metalevel to the output of the
classifiers (Ting & Witten, 1999) and/or the original fea-
ture space (Gama, 1998). Since a classifier rarely is the
best choice across a whole domain, an intuitive alternative
is to identify the document-specific context that differenti-
ates between regions where a base classifier has higher or
lower reliability.

We address the challenge of learning about the reliability of
different classifiers in different neighborhoods of the class-
ification domain at hand by introducing variables referred
to asreliability indicators which represent the “discrimina-
tory context” of a specific document. A reliability indicator
is an evidential distinction with states that are linked prob-

1Throughout the remainder of this paper, we will give concrete
examples in terms of text classification, however, the general ap-
proach promises to be applicable for predictive modeling outside
of text classification.
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Figure 1. Portion of decision tree, learned bySTRIVE-D for the Business & Finance class in the MSN Web Directory corpus, repre-
senting a combination policy at the metalevel that considers scores output by classifiers (dark nodes) and values of indicator variables
(lighter nodes).

abilistically to regions of a classification problem where a
classifier performs relatively strongly or poorly.

The reliability-indicator methodology was introduced by
Toyama and Horvitz (2000) and applied initially to the task
of combining multiple machine-vision analyses in a sys-
tem for tracking the head and pose of computer users. The
value of the methodology in vision motivated us to explore
the analogous application of the approach for representing
and learning about the reliability of text classifiers. For
the task of combining classifiers, we formulate and include
sets of variables that hold promise as being related to the
performance of the underlying classifiers. We consider the
states of reliability indicators and the scores of classifiers
directly, and, thus, bypass the need to make ad hoc modifi-
cations to the base classifiers. This allows the metaclassi-
fier to harness the reliability variables if they contain useful
discriminatory information, and, if they do not, to fall back
in a graceful manner on outputs of the base classifiers.

As an example, let us consider three types of documents
where: (1) the words in the document are either uninfor-
mative or strongly associated with one class; (2) the words
in the document are weakly associated with several disjoint
classes; or (3) the words in the document are strongly as-
sociated with several disjoint classes. Classifiers (e.g., a
unigram model) will sometimes demonstrate different pat-
terns of error on these different document types. If we
can characterize a document as belonging to one of these
model-specific failure types, then we can assign the appro-
priate weight to the model’s output for this kind of docu-
ment. We pursued the formulation of reliability indicators
that capture different association patterns among words in
documents and the structure of classes under consideration.
We seek indicator variables that allow us to learn context-
sensitive reliabilities of classifiers, conditioned on the ob-
served states of the variable in different settings.

To highlight the approach with a concrete example, Fig-
ure 1 shows a portion of the type of combination func-
tion we can capture with the reliability-indicator method-
ology. The nodes on different branches of a decision tree
include the values output by base classifiers, as well as
the values of reliability indicators for the document be-
ing classified. The decision tree provides a probabilistic,
context-sensitive combination rule indicated by the partic-
ular relevant branching of values of classifier scores and
indicator variables. In this case, the portion of the tree
displayed shows a classifier-combination function that con-
siders thresholds on scores provided by a base-level linear
SVM (OutputOfSmox) classifier and a base-level unigram
classifier (OutputOfUnigram), and then uses the context es-
tablished by reliability-indicator variables (UnigramVari-
ance and%FavoringInClassAfterFS) to make a final deci-
sion about a classification. The annotations in the figure
show the threshold tests that are being performed, the num-
ber of examples in the training set that satisfied the test, and
a graphical representation of the probability distribution at
the leaves. The likelihood of class membership is indicated
by the length of the bars at the leaves of the tree.2

The variableUnigramVariance represents the variance of
unigram weights for words present in the current document.
The intuition behind the formulation of this reliability-
indicator variable is that the unigram classifier would be
accurate when there is low variance in weights. The vari-
able%FavoringInClassAfterFS is the percentage of words
(after feature selection) that occur more often in documents
within a target class than in other classes. Classifiers that
weight positive and negative evidence differently should be
distinguished by this variable. Bennett et al. (2002; 2003)

2For theSTRIVE-D excerpt shown in Figure 1 we have further
normalized the metafeatures to have zero mean and unit standard
deviation so most values fall between -1 and 1 as a result.



give further details about the reliability indicators used in
these experiments.

The reliability-indicator variables used in our studies are
an intuitive attempt at formulating states that represent in-
fluential contexts. We defined variables to represent a va-
riety of contexts that showed promise as being predictive
of accuracy—e.g., the number of features present in a doc-
ument before and after feature selection, the distribution
of features across the positive vs. negative classes, and the
mean and variance of classifier-specific weights. The ex-
periments reported here use a total of 49 reliability indica-
tors which were formulated by hand as an initial pass at rep-
resenting potentially valuable contexts. See Bennett et al.
(2002; 2003) for additional discussion of these reliability-
indicators.

3.2. STRIVE

We refer to the task-specific classifier combination frame-
work asSTRIVE for StackedReliability IndicatorVariable
Ensemble. We select this name because the approach can
be viewed as extending the stacking framework by intro-
ducing reliability indicators at the metalevel. TheSTRIVE
architecture is depicted graphically in Figure 2.

The STRIVE methodology transforms the original learning
problem into a new learning problem. In the initial prob-
lem, the base classifiers simply predict the class from a
word-based representation of the document. More gener-
ally, in the original problem, each base classifier outputs
a distribution (possibly unnormalized) over class labels.
STRIVE adds another layer of learning to the base prob-
lem. Reliability-indicator functions consider the words in
the document and the classifier outputs to generate the reli-
ability indicator values,ri, for a particular document. This
approach yields a new representation of the document that
consists of the values of the reliability indicators, as well
as the outputs of the base classifiers. The metaclassifier
exploits this new representation for learning and classifi-
cation. This enables the metaclassifier to employ a model
that uses the output of the base classifiers as well as the
context established by the reliability indicators to make a
final classification.

We require the outputs of the classifiers to train the meta-
classifier. Thus, we perform cross-validation over the train-
ing data, and use the values obtained while an example
serves as a validation item as the input to the metaclassi-
fier. We note that, in the case where the set of reliability
indicators are restricted to be the identity function over the
original data, the resulting scheme can be viewed as a vari-
ant of cascade generalization (Gama, 1998).

3.3. LABEL: Layered Abstraction-Based Ensemble
Learning

Intuitively, regardless of the particular topic or source (e.g.,
news feed, web page, etc.), topic discrimination tasks share
some common structure. For example, longer documents
tend to provide more information for identifying topics.
Furthermore, documents containing words strongly corre-
lated with a single topic more likely belong to that topic
than documents containing words strongly correlated with
several topics. Additionally, these conditions may inter-
act with each other based on their particular values. Re-
searchers in the field may often make similar observations
after studying multiple classification problems. We seek
to design a system capable of both inducing such gener-
alizations automatically and applying them to improve the
predictive performance of models.

A training corpus in text classification consists of a set of
example documents labeled with each of their proper topics
from a prespecified corpus-specific topic list (a document
may have more than one topic). When the same represen-
tation is used for each of the binary discrimination tasks in
a corpus, standard multitask learning can be used to per-
form classification for all of the topics in the corpus’ topic
list. However, standard multitask learning cannot leverage
information across corpora since it would typically require
knowing whether a document belongs to each of the top-
ics from all of the corpora (where we only have in-corpus
information). Additionally, the basic feature space is quite
different in documents from different corpora as particu-
lar language usage varies widely. Therefore, we desire a
standard representation that has the same semantics across
separate tasks from both the same and different corpora.

Although STRIVE uses data from each task separately to
build a metaclassifier for that specific task, it is straight-
forward to extend it to make use of labeled data across
tasks. The key point is that the reliability-indicators we
chose carefully abstracted away from a document’s task-
specific statistical regularities of word usage while main-
taining the discriminatory relationship of the document’s
context to the task. For example, documents that come
from a general topic corpus where we are trying to dis-
tinguish Health & Fitness from not Health & Fitness tend
to behave very differently at the word usage distribution
level than documents from a narrow financial corpus where
we are trying to distinguishCorporate Acquisitions from
not Corporate Acquisitions. However, in terms of the
abstraction that the reliability-indicatorUnigramVariance
provides, we expect a unigram classifier to show poor re-
liability for a particular document from either task when
UnigramVariance is high.

With this approach, we treat the metaclassifier as an ab-
straction moving the focus of the analysis from discrimi-
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Figure 2. Architecture ofSTRIVE. In STRIVE, an additional layer of learning is added where the metaclassifier can use the context
established by the reliability indicators and the output of the base classifiers to make an improved decision. The reliability indicators are
functions of the document and the output of the base classifiers.

nating a specific topic (e.g., Corporate Acquisitions vs.not
Corporate Acquisitions) to the problem of discriminating
topic membership (i.e., In-Topic vs. Out-of-Topic). The
base-level classifiers trained on a particular topic are used
as the representation of topic-specific knowledge, while the
metaclassifier provides information about how to leverage
context across topic-classification in general.

Therefore,LABEL, like STRIVE, constructs models with the
same type of combination rules as that shown in Figure 1.
The differences fromSTRIVE are in the model construc-
tion procedure. After generating the metalevel data, the
metafeatures are normalized to have zero mean and unit
standard deviation within their particular task.3 At this
point STRIVE would use data from each task to separately
build a metaclassifier for each task,LABEL departs from
this by pooling all of the data together and building a sin-
gle metaclassifier (with the class variable taking the value
1 if the document isIn-Topic for the particular task and -1
otherwise).

We now give a more formal definition of the problem.
For our purposes, a task is the approximation of a sin-
gle binary function,fi(Xi) ∈ {−1, 1}. The input do-
main of each of these tasks may differ; thus,Xi denotes
an input example from theith task’s domain. The la-
beled data for each task,Li, consists of a set of tuples
〈�xi,j , fi(�xi,j)〉 (wherej = 1, . . . , |Li|). Given N tasks
and a performance measureperf, we would like an in-
ductive learning procedure,Train(i, L1, . . . , LN ), that pro-
duces a model to generate predictions for theith task.
Furthermore, we desire that our performance using all
the data exceeds the performance using the data for each
task separately:

∑N
i=1 EPi

[perf(Train(i, L1, . . . , LN ))] >
∑N

i=1 EPi
[perf(Train(i, Li))] wherePi is the probability

distribution on theith task. To be of practical use, the per-
3This is not necessary forSTRIVE, but for LABEL this helps

to deal with spurious statistical variance that arises from the tasks
having different numbers of training examples.

formance achieved using only labeled data from the task
EPi

[perf(Train(i, Li))] should be competitive with the best
methods on this task, otherwise the solution is trivial (sim-
ply ensure the models using only labeled data from the task
perform as poorly as possible).

Before applying the resulting model for prediction, it is de-
sirable to specialize this single metaclassifier for each task
in two ways. First, each task may have different priors,
therefore these priors should be taken into account at pre-
diction time. This can be directly accomplished by obtain-
ing probability predictions from the metaclassifier or sim-
ply setting a different threshold for each classification task.
Secondly, tasks may diverge from the average case in dif-
ferent ways. Thus, we may want to only retain part of the
general model. The best way to address this question de-
pends, in part, upon the choice of classification algorithm
for the metaclassifier. We discuss our particular choices in
Section 4.2 below.

4. Experimental Analysis

We performed an empirical analysis over standard text
classification corpora to explore the effectiveness ofLA-
BEL. We also performed ablation experiments to elucidate
howLABEL achieves an improvement in generalization per-
formance. Each of the classification models use a deci-
sion threshold specific to each task. The threshold for each
model and task was empirically determined over the train-
ing data.

4.1. Base Classifiers

We selected for our experiments four classifiers that have
been used traditionally for text classification: decision
trees, linear SVMs, naı̈ve Bayes, and a unigram classifier.

For the decision-tree implementation, we employed the
WinMine decision networks toolkit and refer to this asDnet
below (Microsoft Corporation, 2001).Dnet builds decision



trees using a Bayesian machine learning algorithm (Chick-
ering, Heckerman, and Meek, 1997; Heckerman et al.,
2000). Although this toolkit is targeted primarily at build-
ing models that provide probability estimates, we found
thatDnet models usually perform acceptably for the goal of
minimizing error rate. However, we found that the perfor-
mance ofDnet with regard to other measures is sometimes
poor.

For linear SVMs, we use theSmox toolkit which is based on
Platt’s SequentialMinimal Optimization algorithm (Platt,
1998). A continuous model of the feature space is used.

The naı̈ve Bayes classifier has also been referred to as
a multivariate Bernoulli model. In using this classifier,
we smoothed word probabilities using a Bayesian estimate
with the word prior and smoothed class probabilities using
a Laplace m-estimate.

The unigram classifier uses probability estimates from a
unigram language model. This classifier has also been re-
ferred to as a multinomial naı̈ve Bayes classifier. Probabil-
ity estimates are smoothed in a similar fashion to smooth-
ing in thenaı̈ve Bayes classifier.

SinceSmox is the best base classifier in the experiments be-
low, it is the only base classifier we report in summarizing
our experimental results.

4.2. Metaclassifiers

As mentioned above, the inputs to the metaclassifiers are
normalized to zero mean and unit standard deviation (as
estimated during the training phase). The experiments re-
ported here use a total of 49 reliability indicators which
were formulated by hand as an initial pass at represent-
ing potentially valuable contexts (additional detail can be
found in Bennett et al. 2002; 2003).

For these experiments, we used only a decision-tree al-
gorithm (using Dnet) as a metaclassifier. For this reason,
we refer to the primary metaclassifier implementations be-
low asSTRIVE-D andLABEL-D. We note that by comparing
these two systems directly, we see the effects ofseparately
building a metaclassifier per task versus building them in
conjunction.

Here, we introduce one way to specialize the single me-
taclassifier model learned byLABEL-D for decision trees.
Given a single metaclassifier decision tree model, instead
of using the prediction at each leaf node as the aggregate
distribution across tasks ofIn-Topic vs.Out-of-Topic, when
predicting for taskT , we use the estimate:

P (In-Topici| leaf = l)=
In-Topici,l + mpl

m+In-Topici,l+Out-of-Topici,l

. (1)

For the particular binary classification taski, In-Topici,l

andOut-of-Topici,l are the numberin andout of topic of
those training examples that fall in the leaf node, respec-
tively. pl is the priorat the leaf node of In-Topic obtained
from using all of the data across tasks.m is the effective
sample size which determines how much evidential weight,
measured in “number of observed datapoints”, the prior
carries.

We sampled the two extremes of this spectrum,m = 0
andm = ∞. By choosingm = 0, we specialize theLABEL
model to a particular task by placing all of the weight on the
task-specific data. This allows some leaves to effectively
have no data in them; for those leaves, we use the overall
prior of in-topic according to the task-specific data. We
refer to this system asLABEL-D (repop) since this acts as
if we completely repopulated the decision tree with task-
specific data.

We also present the results obtained by making the predic-
tion at a leaf node using all of the data across tasks equally
(i.e., m = ∞ and the right side of Equation 1 simply be-
comespl). We refer to this asLABEL-D (general) since the
metaclassifier is not specialized for each task other than the
decision threshold. Comparing these specific instantiations
allows us to determine if we are simply coincidentally find-
ing a better tree structure using all the data or if the actual
predictions based on all the data aids us as well.

4.3. Data

MSN Web Directory The MSN Web Directory is a large
collection of heterogeneous web pages (from a May 1999
web snapshot) that have been hierarchically classified. We
used the same train/test split of 50078/10024 documents as
that reported by Dumais and Chen (2000).

The MSN Web hierarchy is a seven-level hierarchy; we
used all 13 of the top-level categories. The class propor-
tions in the training set vary from1.15% to 22.29%. In the
testing set, they range from1.14% to 21.54%. The classes
are general subject categories such asHealth & Fitness and
Travel & Vacation. Human indexers have assigned the doc-
uments to zero or more categories.

For the experiments below, we used only the top 1000
words with highest mutual information for each class;
approximately 195K words appear in at least three training
documents.

Reuters

The Reuters 21578 corpus (Lewis, 1997) contains Reuters
news articles from 1987. For this data set, we used the
ModApte standard train/test split of 9603/3299 documents
(8676 unused documents). The classes are economic sub-
jects (e.g., “acq” for acquisitions, “earn” for earnings, etc.)



that human taggers applied to the document; a document
may have multiple subjects. Limiting to the ten largest
classes allows us to compare our results to a variety of pre-
viously published results (Dumais et al., 1998; Joachims,
1998; McCallum & Nigam, 1998; Platt, 1999). The class
proportions in the training set vary from1.88% to 29.96%.
In the testing set, they range from1.7% to 32.95%.

For the experiments below we used only the top 300
words with highest mutual information for each class;
approximately 15K words appear in at least three training
documents.

TREC-AP

The TREC-AP corpus is a collection of AP news stories
from 1988 to 1990. We used the same train/test split of
142791/66992 documents that was used by Lewis et al.
(1996). As described by Lewis and Gale (1994) (see also
Lewis, 1995), the categories are defined by keywords in a
keyword field. The title and body fields are used in the ex-
periments below. There are twenty categories in total. The
frequencies of the twenty classes are the same as those re-
ported in Lewis et al. (1996). The class proportions in the
training set vary from0.06% to 2.03%. In the testing set,
they range from0.03% to 4.32%.

For the experiments described below, we used only the top
1000 words with the highest mutual information for each
class; approximately 123K words appeared in at least 3
training documents.

4.4. Performance Measures

To compare the performance of the classification methods
we look at a set of standard accuracy measures. The F1
measure (van Rijsbergen, 1979; Yang & Liu, 1999) is the
harmonic mean of precision and recall wherePrecision =

Correct Positives
Predicted Positives andRecall = Correct Positives

Actual Positives . Addi-
tionally, we report error, emphasizing thenormalized error
score. Normalized error divides the error in each task by
the error that would have been achieved by random guess-
ing (thea priori prevalent class). A normalized error less
than one indicates the method outperforms random guess-
ing. The scores reported here are the arithmetic averages of
the values across all tasks (for F1 this is termed macroF1 in
the text classification literature).

5. Experimental Results

Table 1 summarizes the performance of the systems over
all 43 classification tasks. Better performance is indi-
cated by larger F1 and by smaller error or normalized er-
ror values. The best performance in each column is given
bold. To determine statistical significance for the macro-
averaged measures, a one-sided macro sign test was per-

formed (Yang & Liu, 1999). When comparing systemA
and systemB the null hypothesis is that systemA performs
better on approximately half the tasks that they differ in
performance over. The results forLABEL-D (general) are
significantly better than the other systems at thep = 0.01
level with the exception of the difference between the er-
ror metrics ofLABEL-D (general) andSTRIVE-D which are
significant at thep = 0.05 level.

Table 1.Performance Summary over all Tasks

Method Macro F1 Error norm Error

Smox 0.7411 0.0197 0.4789
STRIVE-D 0.7457 0.0191 0.4716
LABEL-D (repop) 0.7431 0.0188 0.4758
LABEL-D (general) 0.7545 0.0181 0.4512

6. Discussion and Summary

First, we note that the base classifiers are competitive and
more particularly the results forSmox are consistent with
the best reported results over these corpora (Dumais &
Chen, 2000; Dumais et al., 1998; Joachims, 1998). Thus,
we are challenged with an extremely competitive baseline.

In spite of this,LABEL-D (general) shows dominance for
each of the performance measures. Additionally, compar-
ing it directly to the most comparable version ofSTRIVE-D
reported in Bennett et al. (2002; 2003), we see improve-
ment over the same system that uses data from each task in
isolation. Additionally, by comparingLABEL-D (general)
to LABEL-D (repop), we see that it is not simply the struc-
ture of the resulting decision trees, but that the predicted
probabilities induced across the entire set of tasks are key
to improving generalization performance. While the per-
centage improvement is small, we believe these results are
very encouraging for the future use of inductive transfer to
improve models of classifier reliability.

Similar results are observed for each corpus individually
but are more pronounced in the Reuters corpus than the
MSN Web or TREC-AP corpora.

7. Future Work

We are currently pursuing several extensions of this work.
We are exploring parametric variations ofm that control
how much weight task-specific data is given versus the
weight given to data from across all tasks. Additionally,
we are interested in the value of using task identifiers with
each example given to the metaclassifier. Such identifiers
will allow the metaclassifier to model a task separately if it
improves model fit. Finally, we are conducting task-centric



analyses of the successes of the approach to improve our
understanding of when use of the methods will likely lead
to increased predictive performance on a task.
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