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Combining the results of classifiers has shown much promise in machine learning generally.
However, published work on combining text categorizers suggests that, for this particular
application, improvements in performance are hard to attain. Explorative research using a simple
voting system is presented and discussed in the light of a probabilistic model that was originally
developed for safety critical software. It was found that typical categorization approaches produce
predictions which are too similar for combining them to be effective since they tend to fail on
the same records. Further experiments using two less orthodox categorizers are also presented
which suggest that combining text categorizers can be successful, provided the essential element of

‘difference’ is considered.
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1. INTRODUCTION

Combining the results of a number of individually trained
classification systems to obtain a single, hopefully more
accurate, classifier is a technique that has been extensively
researched and shows considerable promise on many test
sets, e.g. [1]. For methods, such as Bagging, a large number
of classifiers are combined. These are typically produced
by an ensemble of identical classifiers, which are often
neural networks, trained on different randomly chosen sets
of instances, e.g. [2, 3]. Alternatively, the predictions of
a smaller number of different types of classifier that have
been trained on the same data may be combined. Research
on combining text categorizers has mainly taken the latter
route. This may be because the relatively large numbers of
features and data sets used for text prohibit the training of
many classifiers.

How has this approach of combining a few categorizers
fared? Hull et al. considered simple probability averaging
strategies and more complex ways of combining the results
of four text-filtering methods with different optimization and
document representation methods [4]. It was found that the
simple strategies could improve on the best categorizer only
for ranking documents. They were less good at estimating
probabilities and were consistently outperformed by the
best single algorithm for a filtering application. The more
complex strategies were less successful than the simple
ones. Larkey and Croft report a consistent improvement
in precision for linear combination of scores from pairs of
classifiers in a medical domain and a greater improvement

3Author to whom correspondence should be addressed.

for a three-way combination [5]. Recall only exceeds
that of the better classifier for half the cases, but this is
not unreasonable as it would generally be expected that
gains in precision would come at the expense of recall.
Li and Jain experimented with three different methods for
combining the results of four typical classifiers: simple
voting and two methods for selecting the classifier with
the highest local accuracy for a problem [6]. They found
that ‘Combinations of multiple classifiers did not always
improve the classification accuracy compared to the best
individual classifier’. Scott and Matwin report selected
breakeven results from a simple voting system made up of
rule based classifiers that used different text representations,
words, stemmed words, noun phrases etc. [7]. These suggest
that performance can be improved over the best single
categorizer. Finally, Craven et al. tried combining votes
from several variants of a naive Bayes classifier in a Web-
based application. They report that the combined classifiers
were not uniformly better than their constituents [8].

To summarize, combining several text categorizers has
had mixed success. Some authors report improvements
with combined systems, particularly for precision, but others
report systems that give either marginal improvement or
no improvement at all. Given the bias towards publishing
positive rather than negative results, this suggests that
combined systems are not producing the improvements in
text categorization applications that one would expect from
their success elsewhere. This raises an interesting question:
what limits the payback from combining text categorizers?

Li and Jain [6] blamed their failure on ‘data dependence’,
without being specific about what features of their data were
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causing the problem. However, text is known to present
special difficulties because of its high dimensionality [9] and
context dependence [10]. These affect the performance of
single categorizers and might also affect combinations. Hull
et al. identified correlations between classifiers as a cause.
This seems reasonable: consider the case where a document
contains no features that have a strong statistical link to its
subject, but an interpretation of the context of the document
would make it clear what the subject is. Any algorithm that
ignores context and looks only at significant features will
have trouble classifying this document correctly. Combining
the results of several such algorithms will not magically
introduce context sensitivity.

In this paper, we explore a theoretical approach to
predicting the performance of combined systems and use
its predictions to benchmark the real results of a number
of combined systems. First we outline the theoretical
framework used. Then we describe two sets of exploratory
experiments. In the first experiment, the predictions of five
typical categorizers are combined for two different datasets.
In the second experiment we took the dataset for which the
combined systems had least success and developed two less
orthodox categorizers, each of which breaks from the typical
categorization approach in some way. Further combined
systems are produced which use these new systems with
some success.

Our aim in these experiments was to start to clarify why
combining text categorizers has not been very effective.
Two simple models of combining present themselves: linear
combining where the scores of a number of classifiers
are combined and simple voting in which the decisions
of the classifiers are taken as votes for or against the
class. Frameworks exist to analyse both [11, 12]. Linear
combining requires that the classifiers combined produce
scores which are an accurate estimate of class probability
(see [13] for a discussion of a categorizer that does this).
If the categorizers are optimized to produce a clear yes or no
decision for a particular class, they may be biased to produce
scores which are either very high (close to 1) or very low
(close to 0). Combining scores of this type would not be
expected to give satisfactory results and should be avoided.
Voting, on the other hand, allows results to be combined
from any kind of categorizer. We wished to use a selection of
existing binary categorizers, which might or might not give
‘true’ estimates of class membership. Consequently voting
was better suited to our purpose.

2. PROBABILISTIC FRAMEWORK

The framework we have used to make predictions about the
expected accuracy of a combined system given the accuracy
of its components [12] was originally devised for the design
of safety critical software. In safety critical applications,
several different versions of a function may be written and
run in parallel. The eventual result is determined by taking
votes from the competing functions.

The framework has two parts. The first is the independent
errors model. This allows us to make predictions of the

performance of majority voting systems assuming that all
the systems produce errors randomly. This provides an
ideal benchmark against which we can assess by how
much combined systems fail to meet our expectations.
The second part is the coincident errors model. This makes
the assumption that certain records are more likely to cause
categorizers to fail than others. This part of the framework
provides a rationale for cases, such as text categorization, in
which combined systems show limited success.

2.1. Independent errors model

Provided all the errors occur independently, the expected
performance of a combined system using simple voting
can be derived trivially from the multiplication law and the
addition law of basic probability theory. ‘Independence’ in
this case means that the chance of any of the categorizers
making an erroneous prediction on a document is the same
whichever document is being examined. Following the
method of Eckhardt and Lee [12] and assuming independent
errors and equal error rates for all the categorizers for a
combined system with N categorizers, the expected error
rate may be estimated from the binomial expansion

N∑
k>N/2

(
N

k

)
θk(1 − θ)N−k (1)

where N is a positive odd number, θ is the error rate and
k is the possible numbers of erroneous votes that can result
in a miscategorization (either two or three for a three vote
system, three, four or five for a five vote system, etc.).
Provided that the individual error rates of the components
are less than 0.5, the error rate of a majority voting system
with independent errors will be lower than the error rate of
the best component. Furthermore, we would expect that the
greater the value of N the more the error rate should fall.

Equation (1) assumes that all the categorizers have
identical error rates. This can easily be adapted to the real
situation in which the error rates for different categorizers
vary. For example, in a three component combined system
with error rates for the individual systems of θ1, θ2 and θ3, a
record will be miscategorized if two or more categorizers
make an error. The expected error rate of the combined
system θc is

θc = θ1θ2θ3 + θ1θ2(1 − θ3) + θ1θ3(1 − θ2) + θ2θ3(1 − θ1).

The independent errors model provides a benchmark
against which we can make qualitative judgements of how
close a given combination of categorizers comes to the
performance that would be expected in an ideal world of
independent categorizers.

2.2. Coincident errors model

The coincident errors model is derived directly from
the independent errors model described by Equation (1).
To apply it, we must understand the concept described by
Eckhardt and Lee as coincidence intensity distribution [12]
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FIGURE 1. The effect of coincident errors in a three-vote system.

and by Hansen and Salamon as the classification difficulty
distribution [14]. For the independent errors model it
was assumed that any randomly chosen document would
have the same probability of causing a categorizer error.
The difficulty distribution takes account of the fact that some
documents are more likely to cause an error than others.
The difficulty distribution µ describes the probability that
a given document will cause a proportion θ of the available
categorizers to give an error. If this distribution is known
the expected performance of the system assuming coincident
errors can be calculated. Drawing on the work in [12], we
can derive the following to predict the error rate:

θ=1∑
θ=1/m

N∑
k>N/2

(
N

k

)
θk(1 − θ)N−kµ(θ)δθ (2)

where θ is a measure of how hard the document is (the
proportion of categorizers that will fail—equivalent to the
error rate) and m is the number of categorizers used to derive
the difficulty distribution, so that 1/m is equivalent to the
interval δθ . It can be shown that if the difficulty distribution
contains any region where the error rate θ is equal to 0.5 the
reduction in error rate predicted by Equation (2) will reach a
limit beyond which adding further categorizers to the system
will not improve performance. Furthermore, if any region
has an error rate greater than 0.5, then a point will be reached
beyond which adding further classifiers causes performance
to fall and steadily worsen as more are added.

This is counterintuitive. It would be reasonable to expect
that gathering more votes should do no harm, even if it did
no good. To understand why this expectation is false we
must understand how coincident errors can operate. Figure 1
illustrates how a majority voting system can produce higher
error rates than its components. The symbols represent the
errors produced by three different categorizers, star, ring and
dot, each of which produces four errors on a dataset. These
symbols were selected because each symbol can still be seen
when any combination are overlaid. The dataset contains at
least 12 documents, but those which do not cause errors have
been omitted from the figure for the sake of clarity. Two or

more symbols overlaid represents a majority vote that would
produce an error for a given record. Scenario A is the ideal.
The errors are spread over twelve different records with the
effect that no single record has more than one erroneous
vote. Since the incorrect category has a minority in every
case, A produces a perfect classification. In scenario B all
three systems produce identical errors, with the result that
the voting system produces the same set of errors as each
of its components. Scenario C is the worst case. Here the
errors from any one component system coincide with two
errors each from the other two. The result is six records
each with two erroneous votes, a majority. In scenario C the
combined system produces half as many errors again as any
component alone.

3. TOOLS AND MATERIALS

The theory outlined above indicates that most success will be
obtained by combining categorizers that are different enough
to avoid coincident errors. To conduct the experiments,
we required a selection of text categorizers that might
be assumed to be different from each other. Since at
this stage there was no clear indication of what kinds of
‘difference’ could be expected to produce independent errors
in practice, we selected categorizers that used a wide variety
of algorithms and which, as far as possible, represented
a reasonable cross section of the methods available.
These ‘orthodox’ categorizers use a text representation
based on stemmed words and a variety of machine learning
methods. The algorithms are described below briefly to
illustrate the differences between them.

3.1. Categorizers

A unique letter code has been assigned to each categorizer
to identify it in the text and tables.

Naive Bayes (B)

The Naive Bayes theorem provides one of the most widely
used systems for categorization. It allows us to estimate
the conditional probability that a given document belongs to
class c given the words w that appear in it. This conditional
probability can be calculated from the equation where we
know the more easily obtained information; the probability
of a class (c), the probability of words and the probability of
the words given a class:

P(c|w) = P(c) × P(w|c)
P (w)

.

If we then assume that the words in the feature vector occur
independently of the probability of the words given, the class
can be estimated as the product of the individual conditional
probabilities of all the words w1 − wd :

d∏
j=1

P(wj |c).
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Clearly this independence assumption is false but still can
produce quite effective results. Where it fails, for example, is
in an artificial intelligence context—we know that the word
‘machine’ will not usually occur independently of the word
‘learning’. However it simplifies the problem of estimating
P(w|c) considerably, particularly given the very large
number of features typically involved in text classification
problems. For this study, the implementation of Naive Bayes
built at Carnegie Mellon was made available in the Rainbow
package and used with its standard settings [15].

IBM Intelligent Miner for Text (I)

A commercial package produced by IBM was used
as an example of an industry standard categorizer
(www.software.ibm.com/data/iminer/fortext/). The algo-
rithm underlying this categorizer is not known. However,
this should not present too much difficulty for us within the
context of voting systems. Since we are only interested
in the outcome of the classifier, we can treat it as a
black box and assume that its mechanism is potentially
distinct. The performance of this black box will tell us if
this latter assumption is valid. The version used was an
evaluation copy and the experimental work presented here
was performed well within the evaluation period.

k Nearest Neighbour (K)

k Nearest Neighbour belongs to the class of so called ‘lazy’
learning methods. That is, instead of trying to form a theory
about the class, in the form of a function or set of rules,
it examines the examples in the training set to find those
which are the most similar to the new document. It does
this by calculating the distance to all the training examples.
The classes of the k examples which are nearest to the new
document in the feature space are examined. The majority
class is assigned (k is usually an odd number to guarantee a
majority).

A basic implementation of the algorithm was written for
this study. The cosine measure was used to estimate the
similarity S of documents x and y:

Sxy =
∑

XiYi√∑
X2

i × ∑
Y 2

i

where Yi is the weight of feature i in document y and Xi

is the weight of feature i in document x. A simple word-
based text representation with stemming of plurals was used,
features that had some correlation with the class of interest
were selected using the χ2 measure. k was set to five
following optimization trials over a range of k values.

Probabilistic Indexer (P)

Regression techniques find a function that describes the
distribution of points in n-dimensional vector space that
belong to a particular class. The function may then
be used to predict class membership for new examples.
This categorizer uses regression to find a function that

describes the distribution of documents in a space of
features that have been selected and weighted using complex
probabilistic strategies. The implementation used in this
study was programmed at Carnegie Mellon and made
available in the Rainbow package but the algorithm used was
based on the work of Fuhr’s group at Darmstadt [16].

RIPPER (R)

RIPPER is an incremental rule learner designed to be
efficient for text [17]; it can handle much larger feature sets
than standard rule learners such as C4.5 rules. It finds one
good rule that fits some of the positive examples, removes
those positive examples from the training set and starts
afresh to build another single good rule. The resulting
rule set is a disjunction of conjunctions. RIPPER was
programmed at AT&T Research.

Rules are very adaptable. Rule learners can be easily
altered to exploit the structural aspects of language, for
example using phrases as features [18] and exploiting
information resources such as thesaurus knowledge [19].
Rules differ from algorithms such as Naive Bayes and k
Nearest Neighbour in another important way. Rule learners
carefully select a few important features to combine in
each rule. The other algorithms base their predictions
on a function calculated over a larger number of features.
Valid arguments could be put forward to support either
approach. However when it comes to combining systems the
point of interest is that the approaches are different. As our
aim is to maximize the difference between categorizers it is
necessary to have at least one rule learner available.

3.2. Evaluation

Recall, precision, error rates and F1 are all in common use
to assess how closely the indexing produced by the binary
learning algorithm corresponds to that produced by human
indexers [20].

The most fundamental measures are recall (the proportion
of potential correct outcomes that are actually achieved) and
precision (the proportion of the actual outcomes that are
correct). In practice these trade off against each other. High
recall can only be achieved at the expense of low precision
and vice versa. The measures are listed below: a is the
number of true positives, b the false negatives, c the false
positives and d the true negatives. Where a ‘positive’ is an
instance that has been assigned the class by the classifier, a
‘negative’ has been assigned ‘not-class’ and ‘true’ results are
instances which have been classified correctly.

recall = a

a + b
precision = a

a + c

F1 = 2 × recall × precision

recall + precision

error rate = (b + c)

(a + b + c + d)
.

This study uses error rate because it is equivalent to the
probability of failure θ . Therefore, we can compare
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predicted error rates to those actually achieved. As our
aim is to examine the discrepancies between predictions and
results, this suits our purpose well.

3.3. Datasets

The algorithms above were run on two datasets: the
Reuters-21578 collection of newswires and a subset of
Weldasearch, a bibliographic database. Reuters-21578
Distribution 1.0, hereafter referred to as ‘Reuters’, is
a collection of newswire articles made available for
research use by Reuters Ltd and Carnegie Group, Inc.
(http: // www.research.att.com / ∼lewis / reuters21578.html).
Reuters has become a standard for text categorization
research. Weldasearch is a commercial bibliographic
database, produced by TWI4 that indexes the literature on
materials joining technology.

For each dataset the ten most highly populated classes
were identified and studied in detail. We chose to look
at individual classes because the probabilistic framework
makes predictions on a class-by-class basis with each class
having a different difficulty distribution. Full details of how
the datasets were constructed are given in Appendix A.

4. FIVE TYPICAL CATEGORIZERS

In the first experiment, the results of the five categorizers
were combined in their standard form in simple voting
systems. We wished to see whether this could improve
the categorization accuracy. The five categorizers can be
combined in a total of ten three-vote systems and one five-
vote system (four-vote systems were ignored for simplicity).
The three-vote systems will be referred to by acronyms,
using the assigned letter code, for example BKP is the
system that combines Naive Bayes, k Nearest Neighbour
and the Probabilistic Indexer. The five-vote system is simply
called ‘Five’.

For each of the datasets the ten classes studied were
categorized using each possible combination. These ‘actual’
error rates were compared with ‘predicted’ error calculated
from the error rates of the individual categorizers assuming
that errors were independent. Tables 1 and 2 present the best
results for each of the classes. Where two combinations tie
both results are given.

It is immediately clear that the actual error rates
produced by the voting systems for individual classes are
consistently worse than the error rates predicted by the
independent errors model. Additionally, if the errors were
independent we would expect the Five categorizer system
to be substantially better than the three component systems.
In reality, Five is only one of the best systems in four out of
20 cases. Indeed in eight out of 20 cases a single categorizer
is either the best system overall or is as good as the best
combined system.

Perfect independence may not be critical. Pragmatic
system builders will be more inclined to ask whether

4TWI Ltd (The Welding Institute), Granta Park, Great Abington,
Cambridge, CB1 6AL, UK.

TABLE 1. Best systems for the Reuters data.

Actual Predicted
Class Best system/s error rate error rate

Earn BKR 0.020 0.002
Acq Five 0.025 0.006
Money-fx P 0.032 —
Grain BKR 0.014 0.002
Crude BIK 0.020 0.007
Trade Five, BIK 0.018 0.000, 0.003
Interest K, KPR, BKR 0.025 —, 0.004, 0.004
Ship P 0.016 —
Wheat BIR, IPR 0.000 0.000, 0.002
Corn R 0.000 —

TABLE 2. Best systems for the Weldasearch data.

Actual Predicted
Class Best system/s error rate error rate

Steels R 0.139 —
Mechanical props BKR 0.167 0.102
Process conditions Five 0.221 0.153
Arc welding Five, KPR 0.101 0.033, 0.053
Welded joints BKR 0.177 0.115
Microstructure BKR 0.127 0.064
Composition B 0.133 —
Strength BKR 0.115 0.055
Defects R 0.129 —
Patents R 0.029 —

performance can be improved sufficiently to justify the extra
effort required to run several categorizers instead of just one.
The general impression given by the data is that the voting
systems tend to perform about as well as the best component
system of the group. This was tested by performing paired
T tests, comparing each voting system with the component
with the lowest mean error rate. This test establishes
whether the two sets of performance results could have
come from the same population; in this case whether the
combined system is more effective than its best component
(the ‘best’ component was taken to be the one with the
lowest microaveraged error rate). Strictly speaking, the T
test is only valid for a population with a normal distribution.
However in reality it is robust to deviations from normality
and may be used for information retrieval evaluations [21].

The T tests show that for the Weldasearch dataset, none
of the combined systems improves on the best component.
For the Reuters dataset, four combinations improve on the
best component (significance greater than 5%). These are
Five, KPR, BKR and BPR (see Table 3). The improvement
in performance tends to be in the region of 10–20% of the
mean error rate of the best component.
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TABLE 3. Mean error rates of each voting system, combinations
that improve on their best component are in bold.

Reuters Weldasearch
Categorizer mean F1 mean F1

NBayes B 0.027 ± 0.003 0.160 ± 0.017
IBM I 0.182 ± 0.049 0.300 ± 0.026
kNN K 0.027 ± 0.004 0.185 ± 0.017
Prind P 0.041 ± 0.013 0.182 ± 0.022
Ripper R 0.036 ± 0.009 0.154 ± 0.020

Five 0.021 ± 0.003 0.145 ± 0.016
BIK 0.024 ± 0.003 0.164 ± 0.017
BIP 0.028 ± 0.006 0.167 ± 0.019
BIR 0.031 ± 0.007 0.146 ± 0.018
IKP 0.028 ± 0.006 0.173 ± 0.019
IKR 0.033 ± 0.007 0.157 ± 0.018
IPR 0.035 ± 0.008 0.158 ± 0.019
KPR 0.023 ± 0.003 0.143 ± 0.016
BKP 0.024 ± 0.002 0.160 ± 0.017
BKR 0.022 ± 0.004 0.140 ± 0.016
BPR 0.022 ± 0.003 0.153 ± 0.017

4.1. Coincident errors

We have seen that the combined systems tested here do not
perform as well as would be predicted using the independent
errors model. Does the coincident errors model conform
better to the results we have seen? In order to apply the
coincident errors model we require an approximation of
the difficulty distribution. The best difficulty distribution
would be derived from the population itself rather than a
sample. In practice, it is not possible to obtain this because
we can never test all possible categorizers. A practical
alternative is a discrete distribution derived from the largest
number of classifiers available. For this experiment, we
use the five classifiers that contribute to the five-vote
system. The observable θ values are 0, 1/5, . . . , 5/5
etc. (i.e. m from Equation (2) is 5). The values of
the difficulty distribution are the proportion of records
for which 0, 1 . . . 5 of the categorizers make an incorrect
classification. Difficulty distributions for the Reuters and
Weldasearch classes are presented in Tables 4 and 5,
respectively.

To get a prediction of the error rate using the independent
errors model, the integral5 of Equation (2) is calculated.
For example for Earn with three categorizers in the voting
systems the predicted error rate is

0.066(0.23 +3(0.22 ·0.8))+0.027(0.43+3(0.42 ·0.6)) . . . .

It is worth noting that all the categories have non-zero
values for θ = 0.6. We therefore expect that adding more
categorizers to the voting systems will eventually cause
performance to degrade rather than improve. Furthermore,
many of the difficulty distributions have non-zero values for

5In fact, a discrete summation.

θ = 0.8 and θ = 1.0. These represent groups of records for
which adding more systems can never improve performance.

Performance was predicted for majority voting systems
with 3–11 component categorizers using both the inde-
pendent errors model and the coincident errors model.
The results for a selection of classes are presented in
Figure 2. These predictions assume that all component
categorizers give the mean error rate. Therefore, they cannot
be compared directly to the predictions and actual results in
the previous section. However, they do demonstrate what
could be expected, given the level of coincident errors that
we have here, if even more effort were exerted to combine
the results from more categorizers.

For all the classes the independent errors model predicts
a steady improvement in performance as more categorizers
are added to the voting system, with the error rate tending
towards zero. Some classes, e.g. Wheat, actually hit
zero errors with less than 11 systems. The coincident
errors model gives a very different picture. At best,
performance improves for a while then reaches a limit
and starts to flatten off; classes such as Earn show this
behaviour. At worst, adding more categorizers to the
system produces a small but steady decline in performance.
The Steels class is an example of this. The coincident
errors model thus indicates that while combining systems
in this way is not particularly damaging it does not reward
the extra computation required to produce large numbers of
categorizers.

The predictions fit well with the experimental results in
the previous section. The independent errors model would
have predicted that the best performance should always have
been obtained with the five-vote system. In practice, the
system that gave the best performance was often a three-
vote system or even a single categorizer. The coincident
errors model predicts limited performance improvement of
this kind with error rate plots tending to a minimum and
then flattening off, so that nothing is gained by adding more
categorizers to the system.

The coincident errors model predictions also fit with the
apparent intractability of the Weldasearch data. The plots
of the coincident errors model for the ten Weldasearch
classes are all very flat, suggesting that combining systems
will not improve performance and, in practice, none of the
combined systems was a significant improvement on its best
component.

It seems that the systems selected here, which are
reasonably typical of categorizers, are not sufficiently
different to make really effective combined systems.
Some improvement can be seen for the Reuters data, but
there is no indication that working harder by adding more
than five systems is going to improve performance any
further. For the Weldasearch data there is no significant
improvement. For this data, the levels of coincident errors
appear too high for combining systems to produce any gains.
High levels of coincident errors may indicate that there are
underlying similarities between the predictions made by the
categorizers.
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TABLE 4. Difficulty distributions for the Reuters classes.

θ

Class 0.0 0.2 0.4 0.6 0.8 1.0

Earn 0.888 0.066 0.027 0.012 0.007 0.000
Acq 0.856 0.098 0.030 0.012 0.004 0.000
Money 0.921 0.031 0.019 0.012 0.011 0.005
Grain 0.951 0.028 0.011 0.008 0.001 0.002
Crude 0.948 0.025 0.008 0.003 0.004 0.011
Trade 0.971 0.007 0.007 0.003 0.003 0.009
Interest 0.958 0.009 0.013 0.011 0.006 0.004
Ship 0.933 0.046 0.004 0.003 0.010 0.004
Wheat 0.984 0.011 0.004 0.001 0.000 0.000
Corn 0.965 0.024 0.007 0.003 0.001 0.000

TABLE 5. Difficulty distributions for the Weldasearch classes.

θ

Class 0.0 0.2 0.4 0.6 0.8 1.0

Steels 0.776 0.053 0.048 0.056 0.043 0.023
Mechanical props 0.755 0.054 0.058 0.058 0.052 0.022
Process conditions 0.706 0.062 0.068 0.060 0.070 0.034
Arc welding 0.834 0.052 0.043 0.037 0.021 0.013
Welded joints 0.768 0.044 0.051 0.047 0.054 0.035
Microstructure 0.811 0.042 0.048 0.047 0.032 0.020
Composition 0.837 0.032 0.031 0.036 0.040 0.024
Strength 0.819 0.047 0.047 0.043 0.026 0.018
Defects 0.802 0.053 0.028 0.041 0.049 0.028
Patents 0.934 0.027 0.010 0.010 0.015 0.004

5. TWO LESS ORTHODOX CATEGORIZERS

The first experiment has given indications that ‘difference’
of the kind needed to produce independent errors cannot
be produced simply by using a variety of machine learning
algorithms; there is some other process that needs to be
considered to make a ‘difference’ workable. We hypothesize
that this ‘difference’ must be created by stepping away from
the underlying formal information processing mechanisms
that constitute the usual range of categorizing/pattern
recognition algorithms. In the second experiment, we
explored this hypothesis by developing two new categorizers
each of which ‘break the rules’ used to develop typical
categorizers in some way.

We used RIPPER as the platform on which to build
these unorthodox categorizers. RIPPER was one of the
more successful standard categorizers, it featured in all
of the successful combined systems for the Reuters data.
Furthermore it was designed with intrinsic flexibility, which
made it easy to adapt.

The test bed for these experiments was the Weldasearch
database. None of the combined systems involving only
the five standard categorizers could improve on their best
component for this data. Therefore Weldasearch presented
itself as a hard case.

An additional point of experimental design was to decide
how many categorizers to include in each voting system.
The predictions of the coincident errors model strongly
suggest that unless the new categorizers are radically
different most of the payback will come from combining
three categorizers. Combining five is significantly more
effort for very marginal gain. Therefore this experiment
concentrates on three-vote systems.

5.1. Introducing difference in text representation

The standard categorization approach represents text as
words, because experience suggests that they are the best
available representation. Phrases, which would be expected
to have more semantic content than isolated words, have
been shown to perform less well than words, probably
because they occur comparatively infrequently giving them
poor statistical properties [22]. Since almost all categorizers
use a word-based text representation it could be a source of
similarity between them.

Changing the text representation is a candidate method
for increasing the ‘difference’ between the systems that are
to be combined. Research published by Scott and Matwin
suggests that taking votes from versions of RIPPER that
use different types of phrases with versions of RIPPER
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FIGURE 2. Selected plots for classes Earn, Wheat and Steels, comparing the predictions of the independent (solid) and coincident (dashed)
models for combinations of between three and eleven systems. Note, the x-axis varies.

using words can sometimes produce improvements over the
best single classifier [7]. We take a different approach by
representing text as n-grams: short strings of characters
that ignore word boundaries. This is counter-intuitive—
why would we want to reduce the amount of information
available to a categorizer from word units, which have
a recognizable semantic content, to n-grams which have
none? To get improvements with combined systems we
do not necessarily need to combine systems which are the
best available. Rather, we need to combine systems which
are good enough, ultimately systems with error rates of
less than 0.5 and which are ‘different’ from each other.
Combining a categorizer that uses phrases with one that
uses words may work because more information has been
made available. This introduces an additional factor which
could confuse the interpretation of the results. Combining
word-based categorizers with a categorizer that uses less
information and is therefore weaker is a cleaner experiment;
we can have more confidence that any improvement has
come from the difference in the text representation rather
than its nature.

In this experiment equifrequent n-grams were deployed.
n-grams are strings of consecutive letters which may be
confined within words or bridge across words incorporating
spaces. Bi-grams contain two characters, tri-grams three
and so forth. They are produced by shifting an n character
window across the text one letter at a time. In this way the
phrase

nests in my beard

would produce the following set of bi-grams, where the

symbol ‘*’ represents a space:

ne, es, st, ts, s∗, ∗ i, in, n∗, ∗ m, my, y∗, ∗b, be,

ea, ar, rd.

Taken over a whole text collection, this produces a more
economical representation than looking at words since there
are a fixed number of n-grams of a particular length; for
example, the bi-gram st occurs in many more places than
the word nests.

Equifrequent n-grams are fragments of strings of different
lengths which occur with approximately equal frequency in
the text and produce attribute vectors which are as small and
as densely populated as possible. For this work, a program
was written to select equifrequent n-grams using Lynch’s
method [23].

n-grams are a well-established tool in textual information
systems. Their uses include text compression, spelling
error detection, query expansion, personal name matching
and processing of non-English texts. A review of this
work is provided by Robertson and Willett [24]. n-gram-
based systems have not been a dominant line of enquiry in
text categorization, because the use of this format reduces
retrieval effectiveness [25]. However, n-grams are flexible.
They can make sense of text containing spelling errors
and are well suited to languages that are not amenable
to the simple stemmers that can be used for English
[26]. A number of promising n-gram-based categorizers
have been reported in the literature including: an error
tolerant categorizer for OCR documents [27]; Acquaintance,
a language-independent system that could estimate the
similarity between documents in English and Japanese [28]
and was also tested on the TREC-4 problem [29]; and, more
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TABLE 6. Best systems which include the equifrequent n-gram
categorizer for the Weldasearch data.

Actual Predicted
Class Best system/s error rate error rate

Steels R 0.139 —
Mechanical props XRK 0.157 0.096
Process conditions XKP 0.227 0.184
Arc welding P 0.118 —
Welded joints XKB 0.178 0.121
Microstructure XRK 0.113 0.056
Composition XPB 0.130 0.059
Strength XRB 0.112 0.045
Defects XRB 0.124 0.061
Patents XRP, XRB 0.015 0.003, 0.003

recently, Telltale, also aimed at OCR text, which claims to
offer the searching of a gigabyte of text data on an ordinary
PC in 45 s [25].

High dimensionality and the extremely skewed distri-
bution of word frequencies are well-known problems for
text categorization. To combat them, feature selection
heuristics are commonly used which pick out words with
mid-range frequencies. It might be reasonable to expect
that equifrequent n-grams, which eliminate these two prob-
lems, would perform well. In reality this is not quite
true. The average performance of RIPPER using this text
representation was worse than both standard RIPPER and
naive Bayes. It seems that features with good frequency
properties are not sufficient on their own to make a good
categorizer. However, in theory combining systems with this
new ‘Xripper’ categorizer ought to be profitable because all
ten Weldasearch classes have error rates of less than 0.5 (the
mean error rate of Xripper is 0.176 ± 0.024).

The new Xripper (X) categorizer was combined with
every available pair of the original five standard paradigm
categorizers giving ten three-vote systems. The results are
presented in Table 6.

5.2. Introducing ‘difference’ by using domain
knowledge

The second approach to producing an unorthodox catego-
rizer breaks from the machine learning approach altogether.
Instead of using the rule learning function of RIPPER to gen-
erate rules automatically, rules were written by hand using
both information gathered from a thinking-aloud exercise
conducted as part of a related study [30] and information
in the Weldasearch thesaurus. This is a method that has
been rejected by most categorization researchers. The reason
normally given is that writing an optimal rule set is very time
consuming; writing the rules for the CONSTRUE system is
reported to have taken 9.5 person years [31]. However, for
this combined system no attempt was made to write the best
possible rules. It was not necessary, all that was required
was a ‘good enough’ rule set that had not been produced
by a machine learning system. Instead a ‘first draft’ set of

sensible rules was used. Similar rules could be written by
any competent indexer with very little training. Nonetheless,
these ‘semantic rules’ were better on average than all the
standard categorizers except RIPPER (the mean error rate of
semantic rules is 0.155 ± 0.027).

The semantic rules differ from RIPPER rules because the
rules RIPPER makes are based on a probabilistic association
between words and index terms, so that a typical RIPPER
rule reads

steels IF fabrication AND welded AND heat.

These words are likely to appear in the context of articles
on steels, most fabrication is carried out using steels, but
they have no direct conceptual link to steels; a document
on the fabrication of copper boilers could use exactly the
same terms. The RIPPER rules are effective, but they do
not necessarily make sense to a human expert. The semantic
rules only incorporate words that mean steel in a much more
direct way. For example AISI 316 is a commonly used type
of stainless-steel, all the indexers who participated in the
thinking-aloud experiment made the connection to steels as
soon as they spotted it. Therefore we wrote the rule

steels IF 316.

Another rule for steels is context related. Most types of steel
are magnetic and electric arcs can induce strong magnetic
fields which may be a problem in welding. Any discussion
of magnetic effects in a welding database is therefore likely
to concern steels, resulting in the rule

steels IF magnetic.

Similar explanations could be produced for each of the rules
we used, some would be complicated but most are very
simple. This is what makes these rules semantic—they
can be explained in the terms of the domain by tracing the
connections between ideas. The rules produced by machine
learning systems such as RIPPER can only be explained
in terms of the information content of the system derived
through training sets.

The semantic rules (S) categorizer was combined with
every available pair of the original five standard paradigm
categorizers giving ten three-vote systems. The results are
presented in Table 7. In addition, semantic rules were
combined with Xripper and each of the standard categorizers
to give a total of five combined systems. The results for these
combinations are presented in Table 8.

5.3. Results

Employing equifrequent n-grams as the text representation
effectively cripples RIPPER. The average error rate of
Xripper is 0.176 ± 0.024, as compared to 0.154 ± 0.020 for
the standard version. Yet although it still does not approach
the predictions of the independent errors model, we observe
that when it is combined in simple voting systems this
crippled version can reduce error rates significantly. This is
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TABLE 7. Best systems which include semantic rules for the
Weldasearch data.

Actual Predicted
Class Best system/s error rate error rate

Steels SRK 0.132 0.070
Mechanical props SKB 0.157 0.095
Process conditions SKP 0.227 0.205
Arc welding SKP 0.101 0.050
Welded joints SRB 0.186 0.121
Microstructure SRB 0.108 0.049
Composition SPB 0.124 0.059
Strength SRP 0.104 0.052
Defects S 0.116 —
Patents SRP, SRB 0.017 0.003, 0.003

TABLE 8. Best systems which include both the equifrequent
n-gram categorizer and semantic rules.

Actual Predicted
Class Best system/s error rate error rate

Steels XSR 0.134 0.080
Mechanical props XSP 0.144 0.098
Process conditions P 0.253 —
Arc welding XSP 0.113 0.054
Welded joints B 0.187 —
Microstructure XSB 0.107 0.049
Composition B 0.133 —
Strength XSB 0.104 0.042
Defects S, XSI 0.116 0.097
Patents XSB, XSP, 0.019 0.003, 0.003,

XSR 0.002

something that the combinations of typical categorization
systems tested in the first experiment were not capable of
achieving for this dataset.

In total, there are just two classes where a single
categorizer is better than any of the combined systems
(see Table 6), compared to four when standard categorizers
only were combined. Furthermore, paired T tests show
that six of the new combined systems perform significantly
better than their best component (5% level). These winning
combinations are presented in Table 9. They show
improvements in mean error rate of 5–15%.

For the first time for the Weldasearch data, combined
systems are doing better than standard RIPPER, the best
single categorizer available for these classes. We have the
evidence to show that introducing less orthodox categorizers
can improve the effectiveness of combined systems.

Examination of Table 7 shows that the combinations that
have semantic rules as a component also fail to perform
as well as the independent errors model would predict.
However, a single component is more effective than any
of the combined systems for only the one term ‘Defects’.
It is notable that the single categorizer that outperforms the
combined systems in this case is semantic rules itself.

TABLE 9. Mean error rates of voting systems that include the
equifrequent n-gram categorizer, combinations that improve on
their best component are in bold.

Categorizer Mean F1

Xripper X 0.176 ± 0.024

XRK 0.145 ± 0.020
XRP 0.143 ± 0.019
XRB 0.141 ± 0.019
XRI 0.158 ± 0.022
XKP 0.147 ± 0.016
XKB 0.144 ± 0.016
XKI 0.165 ± 0.019
XPB 0.150 ± 0.017
XPI 0.165 ± 0.021
XBI 0.153 ± 0.018

TABLE 10. Mean error rates of voting systems that include the
semantic rules categorizer, combinations that improve on their best
component are in bold.

Categorizer Mean F1

SRules S 0.155 ± 0.027

SRK 0.138 ± 0.020
SRP 0.136 ± 0.020
SRB 0.135 ± 0.020
SRI 0.156 ± 0.025
SKP 0.143 ± 0.017
SKB 0.140 ± 0.017
SKI 0.160 ± 0.022
SPB 0.148 ± 0.017
SPI 0.160 ± 0.022
SBI 0.149 ± 0.022

Paired T tests confirm that three of the three-vote systems
that include semantic rules are significantly better than their
best single component (see Table 10), compared with six for
the systems that include Xripper (Table 9). On the surface
this looks as though semantic rules are less effective in
combined systems than Xripper. Closer examination shows
that where the semantic rules do produce improvements, the
actual improvement in performance is greater than similar
winning systems involving Xripper. Whereas Xripper
produced improvements in the mean error rate with a
maximum of 8.5% when RIPPER was the best component,
the improvements for semantic rules with RIPPER as the
best component are between 10 and 12%. This suggests that
involving an element of domain knowledge in the system
produces extra gains in effectiveness, as might be expected.
This result is also coherent with our ‘difference’ hypothesis.

As for three-vote systems that contain both the new
categorizers, the results presented in Table 8 show that the
number of classes which give the best performance with
a single categorizer has increased to four (from two for
three-vote systems with Xripper, and just one for three-vote
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TABLE 11. Mean error rates of voting systems that include both
the Xripper and semantic rules categorizers, the combination that
improves on its best component is in bold.

Categorizer Mean F1

XSB 0.1389 + 0.020
XSI 0.158 ± 0.025
XSK 0.144 ± 0.021
XSP 0.140 ± 0.020
XSR 0.141 ± 0.021

systems with semantic rules). Furthermore, only one
system, that which combines semantic rules and Xripper
with standard RIPPER, performs significantly better than its
best component (see Table 11). This system has a mean error
rate which is comparable to the best rate produced by any
other voting system that uses Xripper (XRB), but it is not as
good as the best three-vote system that uses semantic rules
(SRB).

A limit appears to have been reached. Since performance
is similar to the best system that uses Xripper and two
standard categorizers, this may be a limit on the amount
of ‘difference’ that can be achieved when combining an
equifrequent n-gram representation with other systems.
Alternatively, it may be a limit on the amount of difference
that can be expected between rule-based systems, given
that both semantic rules and Xripper use the RIPPER rules
format. Xripper also uses RIPPER’s learning functions,
albeit on a different text representation. This might be
reasonably expected to introduce similarities in behaviour.

The experiments with Xripper and semantic rules in
voting systems indicate that combining categorizers that
use word-based text representations and machine learning
algorithms with less orthodox ones can improve accuracy.

6. DISCUSSION AND CONCLUSIONS

We have seen that the actual accuracy achieved by
combining text categorizers is considerably less than
the accuracy that would be predicted if the errors
produced by the systems were independent of each other.
Their performance conforms more closely to the coincident
errors model which assumes that some records are more
likely to cause errors than others. This suggests that there
may be fundamental similarities in the ways that different
categorizers operate. We propose that this similarity can
be traced to the underlying ‘information’ processing upon
which the algorithms depend.

Categorization systems have limits on their performance
that may be described by information theory [32].
They search for features whose values will help predict
the categories of interest; in information theoretic terms,
these minimize the conditional entropy. Some algorithms
do a better job of distinguishing which features reduce the
conditional entropy the most and, consequently, are more
accurate. Obviously, not all algorithms use the entropy

measure to rate their success, but, ultimately, they can do
one of two things: they either learn a function for a set
of features or they select indicative features [15]. If the
features available to the systems are similar, then, almost by
definition, the machine learning algorithms that do best will
be doing similar things and their performance will be limited
by the distribution of the features across the classes of
interest (the same distribution that would be used to calculate
conditional entropy). Records in which the information
given is misleading or inadequate will tend to cause errors
whichever categorizer is used, thus producing an inevitable
source of coincident errors when they are combined.

The best text categorizers tend to use the same kind
of word-based text representation. Could coincident
errors be reduced if a categorizer using a different kind
of information as input was included in the combined
system? We examined this possibility by developing a
categorizer that used an unusual equifrequent n-gram text
representation, Xripper. Although this categorizer was less
accurate than its word-based equivalent, it did produce
improvements in accuracy when included in a voting
system. Apparently an n-gram representation can reduce
the number of coincident errors when combined with word-
based systems, despite the fact that the individual categorizer
is weaker than its word-based equivalent.

The second unorthodox categorizer abandoned machine
learning in favour of a knowledge based approach.
This opened up the categorizer to new information sources.
The knowledge encoded in the texts was supplemented by
knowledge elicited from human indexers. The semantic
rules produced were slightly less accurate than the
equivalent rules produced by RIPPER. Once again, the
less orthodox system produced improved accuracy when
combined with other categorizers. The expertise required
to write a rule set by hand is not available for every problem;
few academic researchers have the privilege of working with
domain experts on categorization problems. However, when
that expertise is available it would certainly be unwise to
ignore it. Combining systems presents an opportunity for
getting the most out of rapidly developed knowledge-based
systems by combining them with machine learning systems.

The orthodox approach to building a text categorizer
using machine learning and a word-based text representation
is highly effective when a single accurate categorizer is
required. The problem is not that this approach is flawed.
The problem is that machine learning algorithms all achieve
their success in the same way: by learning a function using
the correlation between features in the text and the subject.
This means that, when the features remain unchanged, there
is little to be gained from combining these systems because
the errors they make tend to be the same. A better approach
is to combine categorizers with others that break from the
orthodoxy of stemmed words and machine learning, even if
they are individually weaker.

It appears that, when combining text categorizers, success
comes from selectively breaking the rules that have been
developed to produce optimal individual categorizers and
instead producing a collection of suboptimal categorizers
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with different biases. This opens up an opportunity for a new
generation of categorizers that employ imaginative methods.
The combined systems will then provide a platform on
which high-risk categorizer designs can exploit each others’
strengths.

Finally, based on the results presented here, we can
form some intuitions about what kinds of ‘differences’
between categorizers are likely to minimize coincident
errors. Based on our results, combining categorizers that all
use a word-based text representation and machine learning
algorithms is not particularly profitable. A successful
combination might include a mixture of systems that weight
features, methods such as naive Bayes and k Nearest
Neighbour and methods that select features. Ideally, the
text representation used by these two systems should be
different. The third component should exploit domain
knowledge. The use of knowledge elicited from domain
experts is the best available alternative to the function
learning approach adopted by the current generation of
categorizers. The work presented here demonstrates that the
two approaches are not antagonistic, but can be successfully
combined.
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APPENDIX A. CONSTRUCTION OF THE
DATASETS

This research was concerned with the core factors affecting
performance and not with building a state of the art
categorization system. Consequently a decision was
made to sacrifice direct comparability with other systems
in favour of using a somewhat smaller dataset, that
would produce acceptable results while minimizing the
time required for experiments. This is a continuation
of our strategy of conducting minimal input explorative
experiments. However, no published work on the minimum
dataset size needed for text categorization is available. It was
therefore necessary to establish empirically the number of
records required to establish a reasonable performance.

A.1. Reuters-21578

The Reuters-21578 Distribution 1.0 (Reuters) is a collection
of newswires. Most researchers use the Modified Apte
(ModApte) split based on that used by Apte and co-workers
[33]. This uses 9603 documents in the training set and 3299
documents in the test set and omits all documents that have
no topic set. Since we had chosen to only study the ten
most populated classes we considered it necessary to reduce
the size of the training set as such an abundance of data is
unrealistic in practice.
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FIGURE A.1. F1 versus training set size for acq (solid), crude
(dashed) and ship (dotted).

To this end, trials were run to determine the effect
of gradually increasing the training set size. Distributed
selections of test documents were made from the ModApte
split maintaining the test set size at 559 documents and
gradually increasing the training set size from approximately
100 to approximately 1000. The documents included in the
training and test sets were sampled evenly from the main file
rather than taking them all from the beginning of the file.
This procedure was adopted to avoid temporal problems in
which a particular class is represented mainly by wires about
one news story. The naive Bayes algorithm was trained and
tested using this data.

As Figure A.1 illustrates, when there are few training
examples for a particular class, as for ‘ship’ in the early
iterations, F1 is low and erratic. However once there
are 10 examples of the class ship, which occurs with
approximately 500 documents, F1 changes relatively little
as more documents are added to the training data. By the
time there are about 1000 training records in total the
performances of these classes have all stabilized and adding
further data does not substantially improve performance.
A decision was therefore made to work with a sample of the
ModApte split consisting of 988 training documents and 559
test documents. With this sample, none of the ten classes
chosen for study had fewer than 15 records in the training
set.

A.2. Weldasearch

Bibliographic databases provide an invaluable resource for
text categorization research because they contain many
examples of text which have already been given subjects.
For these experiments, a specialist engineering database was
used. Weldasearch is a commercial bibliographic database
on materials joining technology (welding, brazing, solid-
state bonding, etc.). Typical content for a Weldasearch
record is illustrated in Figure A.2.

This database has not previously been used in categoriza-
tion experiments. However we consider it an acceptable
experimental platform. First, there is the issue of quality.
Weldasearch is produced by a relatively small team of
indexers who deal with a relatively small range of topics.
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ID: 158937
TITLE: Application of modified 9% chromium steels in power generation components
BODY: The effect of welding and cold bending on the long term properties of modified 9%Cr steel
(P91/T91: approx. 0.1%C, 0.4%Mn, 9%Cr, 1%Mo, 0.2%V, 0.08%Nb) is reported. The behaviour
of the parent material, weldments (produced by TIG, MMA and submerged arc welding), and short
radius bends are investigated, including microstructural characteristics, mechanical properties, and
creep strength (under constant stress). Comparison is made with the corresponding properties in
the 12%Cr steel X20CrMoV121 (0.18%C, 0.52%Mn, 11.9%Cr, 0.92%Mo, 0.26%V). Advice is given
on suitable design stress, and how to account for the reduced creep rupture strength resulting from
welding and cold working. Material cost savings are reported for a case when T91/P91 material was
used as a replacement for X20 material.
TOPICS: Reference lists; Bending; Submerged arc welding; Steels; Strength; Stress rupture strength;
Tubes and pipes; Weld zone; Welded joints; Creep resisting materials; Gas shielded arc welding; GTA
welding; Heat affected zone; High alloy steels; Arc welding; Mechanical properties; Metal working;
Microstructure; MMA welding

FIGURE A.2. Example of typical content of a Weldasearch record.

All the abstracts are written to a house style and abstracts
and index terms are edited so that all entries to the database
are checked at least once. These factors produce a dataset
that can be expected to be consistent. Second, it was possible
to communicate with the indexers themselves and discover
what processes they used to decide on class assignments.
This made it possible to take the unusual route of building
knowledge-based rule sets.

A subset of the database from record 143,000 to record
145,000 was used in most of the experiments. Even-
numbered records were used for the training set and odd
numbered records for the test set. These classes are more
densely populated than those for the Reuters data. Given the
results of the Reuters trials there is every reason to believe
that this is a sufficiently large sample to categorize these
classes.
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